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TWISTED LINEARIZED REED-SOLOMON CODES:

A SKEW POLYNOMIAL FRAMEWORK

ALESSANDRO NERI

Abstract. We provide an algebraic description for sum-rank metric codes, as quotient space
of a skew polynomial ring. This approach generalizes at the same time the skew group algebra
setting for rank-metric codes and the polynomial setting for codes in the Hamming metric.
This allows to construct twisted linearized Reed-Solomon codes, a new family of maximum
sum-rank distance codes extending at the same time Sheekey’s twisted Gabidulin codes in
the rank metric and twisted Reed-Solomon codes in the Hamming metric. Furthermore,
we provide an analogue in the sum-rank metric of Trombetti-Zhou construction, which also
provides a family of maximum sum-rank distance codes. As a byproduct, in the extremal
case of the Hamming metric, we obtain a new family of additive MDS codes over quadratic
fields.
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1. Introduction

The sum-rank metric has emerged recently as a solution to improve the performance of
multishot network coding based on rank-metric codes [40]. However, traces of this metric can
be already found in connection with space-time coding [17, 27]. In addition, sum-rank metric
codes have been shown to have applications also in the context of distributed storage, for
constructing partial MDS codes [34, 31]. Furthermore, the sum-rank distance has also been
used as a metric on convolutional codes for network streaming [28].

In the last few years, the theory of codes in the sum-rank metric has been developing thanks
to the works of Mart́ınez-Peñas [29, 32, 31]. These codes can be seen as a generalization of
Hamming-metric codes and rank-metric codes. The sum-rank metric is defined on vectors
over a (non necessarily finite) field, by partitioning the ambient vector space in several blocks,
considering in each of them the rank metric over a subfield and then summing up the distances
of each block. In this setting, in the case of a single block one obtains the rank metric, while
partitioning the ambient space in blocks of length one, one gets the Hamming metric. In a
slightly different setting, the sum-rank metric can be considered on tuples of matrices, as it is
done e.g. in [10]. This setting is slightly more general, although it is equivalent when working
over finite fields; see e.g. Figure 1.

Codes with optimal parameters for the sum-rank metric are called maximum sum-rank
distance (MSRD for short) codes and they are essentially the analogue of MDS codes for the
Hamming metric and of MRD codes for the rank metric. Only a few constructions of MSRD
codes are known so far. The most prominent one is undoubtedly the family of linearized Reed-

Solomon codes, introduced in [29]. These codes are a sort of “tensorization” between Reed-
Solomon codes in the Hamming metric and Gabidulin codes in the rank metric. Recently, a
new construction has been proposed in [31], which generalizes linearized Reed-Solomon codes.

In this paper we introduce the family of twisted linearized Reed-Solomon codes, and show
that these codes are MSRD codes; see Theorem 6.3. This family represents the natural
counterpart in the sum-rank metric of twisted Gabidulin codes introduced by Sheekey in [48]
and of twisted Reed-Solomon codes, defined later by Beelen, Puchinger and Rosenkilde in [8].
Indeed, when we specialize our construction to only one block, we obtain exactly twisted
Gabidulin codes in the rank metric, while if we choose all the blocks to have length one, our
codes turn out to be twisted Reed-Solomon codes in the Hamming-metric.

We then generalize Trombetti and Zhou construction of maximum rank distance codes to a
new family of sum-rank metric codes, called twisted linearized Reed-Solomon codes of TZ-type.
Also in this case we prove in Theorem 7.2 that the resulting codes are MSRD codes. In the
special case of block length equal to one, the construction can be adapted to obtain a new
family of additive MDS codes in the Hamming metric. This result is certainly of independent
interest; see Theorem 7.8. These codes are defined over a quadratic finite field of order q2,

but they are only linear over the subfield Fq. Their length can be extended up to q2−1
2 .

Our constructions strongly rely on a new framework that we develop for studying codes in
the sum-rank metric. We indeed propose to study codes in the sum-rank metric as subsets of
a particular quotient algebra of skew polynomials. In Theorem 4.1 we show that this setting
is isometric to the natural frameworks of sum-rank metric codes. Our setting unifies the
linearized polynomial framework used to construct rank-metric codes over finite fields (see
e.g. [48]) – and of the more general representation as skew polynomials or as elements of a
skew algebra used for rank-metric codes over arbitrary fields (see [4, 3]) – with the polynomial
framework of linear codes in the Hamming metric. We remark that a similar point of view
was used by Sheekey in [50], in which he used this approach to construct new optimal codes
in the rank metric over field extensions.

The key idea on which our framework is based, is due to recent results characterizing the
roots of linearized and projective polynomials appeared in [12, 15, 35]. We generalize their
results over arbitrary fields, making more explicit the connection between the sum-rank metric
and the eigenspaces of a special linear map; see Theorem 3.10. Thanks to these results, we
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show that our framework is isometric to the classical ones, where sum-rank metric codes are
represented as sets of vectors, or as sets of tuples of matrices. We also explicitly point out how
to go from one setting to another one and viceversa. Furthermore, we show how the natural
nondegenerate bilinear map on the skew polynomial setting simplifies the study of duality of
codes in the sum-rank metric.

The paper is structured as follows. Section 2 contains the basic notions and the mathe-
matical background needed for the purpose of the paper. We first recall the notion of skew
algebras obtained from a Galois extension L/K and relate them with the ring of K-linear endo-
morphisms of L and with the ring of the skew polynomials. In these frameworks, we give the
basic definitions of rank and sum-rank metric. In Section 3 we study projective θ-polynomials
over arbitrary fields. We show their main properties and how one can get from them infor-
mation about the kernel of some related endomorphisms. Section 4 introduces the new skew
polynomial framework for sum-rank metric codes. This is obtained as a quotient of a skew
polynomial ring, and it is shown to be isometric to the space of ℓ-uples of square matrices.
Furthermore, we define sum-rank metric codes in this setting, where linearized Reed-Solomon
codes can be seen as the natural analogue of Reed-Solomon and Gabidulin codes, generated
by all the skew polynomials of bounded degree. Here we also provide the study of equivalence
of sum-rank metric codes and we investigate the notions of adjoint of a skew polynomial and
its associated Dickson matrix. In Section 5 we deepen the notion of duality of sum-rank
metric codes. Our definition is shown to be equivalent to the natural dualities defined on the
space of vectors and on the space of ℓ-uples of matrices. Furthermore, the skew polynomial
framework simplifies drastically the study of the duals of linearized Reed-Solomon codes. We
then introduce the family of twisted linearized Reed-Solomon codes in Section 6. We show
that they constitute a family of MSRD codes and then derive their dual and adjoint codes. In
Section 7 we investigate the family twisted linearized Reed-Solomon codes of TZ-type. After
showing that they are MSRD, we focus on the special case of blocks of length one, and the
new obtained MDS codes in the Hamming metric. Finally, we draw our conclusions and list
some open problems in Section 8.

2. Preliminaries

2.1. Skew Group Algebras. Let L be a field, let G be a finite group and let φ : G→ Aut(L)
be a group homomorphism. We denote by (Lφ[G],+, ◦φ) the skew group algebra

Lφ[G] :=

{

∑

g∈G

agg | ag ∈ L

}

,

with the usual addition + that works componentwise, i.e.
∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g,

and where the multiplication ◦φ is defined as

agg ◦φ bhh := ag(φ(g)(bh))(gh),

and then extended by associativity and distributivity. Observe that if we take φ to be the
trivial homomorphism mapping each element of G to the identity automorphism of L, we
obtain the classical group algebra LG.

We now fix the following framework. Let L/K be a Galois extension whose Galois group is
G := Gal(L/K). Since G ≤ Aut(L), we consider the natural inclusion map G →֒ Aut(L) and
we denote it by ι. Clearly, ι is a group homomorphism and one can clearly consider the skew
group algebra L[G] := Lι[G].

The skew group algebra L[G] has been recently studied in connection with rank-metric
codes [3, 18]. Recall that the theory of rank-metric codes deals with the study of subspaces
of the matrix space Kn×n equipped with the rank metric, where the distance between two
matrices A,B ∈ Kn×n is rk(A − B). The reasons why L[G] is fundamental in the study of
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these codes are the following. First, it is isomorphic to the n×n matrix algebra over K. More
precisely, for any element a =

∑

g agg ∈ L[G], one can associate a map

ψa : L → L

β 7−→
∑

g agg(β).

Theorem 2.1 ([13, Theorem 1.3]). The map : a 7−→ ψa is a K-algebra isomorphism between
L[G] and EndK(L).

With a slight abuse of notation, from now on we will write a also to indicate the map ψa,
and so we will refer to rk(a) and ker(a) to indicate the rank over K of ψa and its kernel,
respectively.

The second reason why this skew group algebra approach is useful for studying rank-metric
codes is described in the following. In the theory of codes equipped with the rank metric,
the classical framework is given by choosing as fields K = Fq and L = Fqm. With these
assumptions, G = Gal(Fqm/Fq) is always cyclic and when this happens, the skew group
algebra L[G] = L[θ], where θ is any generator of Gal(L/K). Hence, the elements of L[θ]
are represented as polynomials in θ with coefficients in L and are also called θ-polynomials
(or θ-linearized polynomials). This naturally induces a notion of θ-degree of a nonzero
θ-polynomial f :=

∑

i fiθ
i, as degθ(f) := max{i | fi 6= 0}. This notion allows to establish a

fundamental result that gives an upper bound on the nullity of a θ-polynomial.

Theorem 2.2 ([21, 4]). Let L/K be a cyclic Galois extension whose Galois group is generated
by θ, and let f ∈ L[θ] be a nonzero θ-polynomial. Then

dimK(ker(f)) ≤ degθ(f).

Theorem 2.2 is the analogue of the well-known result on polynomials over a field that states
that the number of roots of a nonzero polynomial is at most its degree. A generalization of
this result to polynomials in m variables has been provided in [3], where instead of having
a cyclic extension, one considers an Abelian extension whose Galois group is isomorphic to
Z/n1Z × . . . × Z/nmZ. However, we will later improve this result in Theorem 3.10, give a
more refined bound.

Lastly, representing the space Kn×n via the skew group algebra L[θ] allows to give a natural
notion of L-linearity to rank-metric codes. In the case of finite fields, it was shown that rank-
metric codes with optimal parameters (called maximum rank distance codes) are dense
among L-linear codes [38].

We conclude this section by recalling the notion of adjoint of a θ-polynomial. For a given
f = f0id + . . .+ fn−1θ

n−1 ∈ L[θ], the adjoint of f is the θ-polynomial

f⊤ :=
n−1
∑

i=0

θn−i(fi)θ
n−i ∈ L[θ]. (1)

Note that the term “adjoint” comes from the fact that it represents the adjoint operator on
L with respect to the trace bilinear form, that is,

TrL/K(f(α)β) = TrL/K(αf
⊤(β)), for every α, β ∈ L.

In the identity above, the map TrL/K is the trace map with respect to the extension L/K,
defined as

TrL/K(α) :=
∑

σ∈Gal(L/K)

σ(α) =
n−1
∑

i=0

θi(α),
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2.2. Norm of a Galois Extension. In this subsection we study the norm associated to a
field extension L/K. It can be definied over any arbitrary extension, but for our purposes
we only consider when L/K being Galois. In this case, the norm of an element is given by
the product of all its conjugates under the Galois group action, and it has well-known and
interesting properties that we summarize here.

Definition 2.3. Let L/K be a cyclic Galois extension of field and let θ be a generator of
Gal(L/K). For α ∈ L, the norm of α with respect to the extension L/K is defined by

NL/K(α) :=
∏

σ∈Gal(L/K)

σ(α) =
n−1
∏

i=0

θi(α),

We will refer to the function

NL/K : L −→ K

as the norm map of L/K. Moreover, for any nonnegative integer i, define the i-th truncated
norm as the map

Ni
θ : L −→ L

β 7−→
i−1
∏

j=0
θj(β).

Now, by a well-known result of Hilbert, we introduce the last map, which connects the
norm and the i-th truncated norm. For any θ generator of Gal(L/K), we define

ξθ : L
∗ −→ L∗

α 7−→ θ(α)
α .

The following results are well known and their proofs can can be found in any Algebra
textbook.

Lemma 2.4. The norm map of L/K satisfies the following properties:

(1) NL/K(α) ∈ K for all α ∈ L.
(2) NL/K(α) = 0 if and only if α = 0.
(3) NL/K restricted to L∗ is a surjective group homomorphism from L∗ to K∗.
(4) ξθ is a group homomorphism from L∗ to itself.
(5) For every generator θ of Gal(L/K), ξθ(α) = 1 if and only if α ∈ K∗.
(6) (Hilbert’s Theorem 90) For every generator θ of Gal(L/K), ker(NL/K) = Im(ξθ).
(7) For every generator θ of Gal(L/K) and for every K-subspace V of L,

ξθ(V \ {0}) ∼= (V \ {0})/K∗.

Lemma 2.5. Let α ∈ L∗ and θ be a generator of Gal(L/K). Then

(1) If α /∈ ker(NL/K), then ξ
−1
θ ({α}) = ∅.

(2) Let α ∈ ker(NL/K). If x1, x2 ∈ ξ−1
θ ({α}), then x1

x2
∈ K∗, or equivalently, there exists

an x ∈ Fqm such that

ξ−1
θ ({α}) = {λx | λ ∈ K∗} .

Moreover such an x is of the form x = χα(γ
−1), where

χα =
n−1
∑

i=0

Ni
θ(α)θ

i,

and γ ∈ L∗ is such that χα(γ) 6= 0.

Note that in the statement of Lemma 2.5(2) there always exists an element γ ∈ L∗ such
that χα(γ) 6= 0. This is due to Theorem 2.1, since χα ∈ L[θ] \ {0}.
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2.3. Skew Polynomials. In this section we introduce the rings of skew polynomials and
recall some of their basic properties. These polynomials naturally arises studying the skew
group algebra L[θ], which can be obtained as a quotient of this ring. There is plenty of
literature on skew polynomial rings, starting from the pioneering work of Ore [41].

Let L be a field and let θ ∈ Aut(L). Define the skew polynomial ring (L[X; θ],+, ·) as
the set of polynomials in the indeterminate X with coefficients in L, where “+” is the usual
polynomial addition, while the multiplication follows the rule

Xa = θ(a)X, for any a ∈ L,

and it is then extended by associativity and distributivity.
It is well-known that the ring L[X; θ] is commutative if and only if θ = id, and in general

its center is K[Xm], where K := Lθ is the subfield of L fixed by θ and m is the order of
θ. Moreover, the ring L[X; θ] is a right-Euclidean domain, and hence there is a well-defined
notion of greatest common right divisor and least common left multiple between two skew
polynomials F1 and F2, which are denoted, respectively, by gcrd(F1, F2) and lclm(F1, F2).
Throughout the paper, the right-divisibility of polynomials will be written as F (X) |r G(X).

From now on we will focus on a field L with an automorphism θ of order n, and call K := Lθ.
Thus, we are in the same setting as the one introduced in Section 2.1, where L/K is a cyclic
Galois extension, and θ is a generator of Gal(L/K). In this setting, define the map

Φ : L[X; θ] −→ L[θ]
f0 + f1X + . . . + fdX

d 7−→ f0id + f1θ + . . .+ fdθ
d.

(2)

The importance of the map Φ is given by the following well-known result.

Theorem 2.6. The map Φ defined in (2) is a K-algebra surjective homomorphism (and an
L-vector space homomorphism) whose kernel is the twosided ideal (Xn − 1). Consequently,

L[X; θ]/(Xn − 1) ∼= L[θ].

Notation. As a consequence of Theorem 2.6, from now on we will abbreviate the notation,
writing ker(F ) := ker(Φ(F )), for any skew polynomial F ∈ L[X; θ]. Moreover, we can define
the evaluation of a skew polynomial F in an element β ∈ L as the evaluation of Φ(F ) in β,
and write F (β).

Corollary 2.7. Let F ∈ L[X; θ]. Then

dimK(ker(F )) = deg(gcrd(F (X),Xn − 1)).

By Corollary 2.7 we can see that the degree of the greatest common right divisor of a skew
polynomial F (X) with Xn−1 reveals important information about the K-linear map induced
by F (X). We can generalize this approach, and substitute Xn − 1 with any other central
skew polynomial Xn − λ, for λ ∈ K.

Definition 2.8. Let F ∈ L[X; θ], and let λ ∈ K∗. We define the λ-value for F to be the
integer

dλ(F ) := deg(gcrd(F (X),Xn − λ)).

One can immediately see that by Corollary 2.7 we have d1(F ) = dimK(ker(F )). However, all
the λ-values represent important quantities for the study of the map given by F , and especially
for the corresponding θ-projective polynomial that we introduce in the next section.

2.4. Rank and Sum-Rank Metric. In the last decade rank-metric codes have gained atten-
tion due to their numerous applications, such as in random network coding [51], cryptography
[20] and distributed storage [45]. However, codes in the rank metric have been already intro-
duced by Delsarte [16], Gabidulin [19] and Roth [46] independently. Originally introduced as
sets of n ×m matrices over a finite field Fq, they can be equivalently represented as sets of
vectors of length n over a field extension Fqm. However, when we restrict to n = m, another
equivalent representation is via the ring of q-linearized polynomials with coefficients in Fqn
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modulo the ideal generated by xq
n
− x; see [49] for a survey on rank-metric codes from this

viewpoint. The representation of rank-metric codes as q-linearized polynomials is exactly the
same as the one via the skew algebra Fqn [θ], as explained in Section 2.1. We briefly describe
rank-metric codes and consequently sum-rank metric codes in the setting of skew algebras.

Let θ be a generator of Gal(L/K). The rank metric on L[θ] is the distance defined by the
rank, that is

drk(f, g) := rk(f − g), for ever f, g,∈ L[θ].

A rank-metric code C is a subset of L[θ] endowed with the rank metric. The minimum
rank distance of C is the integer

drk(C) := min{drk(f, g) : f, g ∈ C, f 6= g}.

This space is often considered endowed with a nondegenerate bilinear form. We denote by
〈·, ·〉rk the nondegenerate K-bilinear form on L[θ], given by

〈a, b〉rk := TrL/K

( n−1
∑

i=0

aibi

)

= TrL/K (〈a, b〉rk,L) ,

for any a = a0id + . . . + an−1θ
n−1, b = b0id + . . . + bn−1θ

n−1 ∈ L[θ]. This bilinear form
is often used to define a notion of dual codes. The interested reader is referred to [3] for a
comprehensive study of the skew algebra setting for rank-metric codes.

This setting can be naturally generalized in order to define the sum-rank metric. We
first introduce the classical frameworks in which sum-rank metric codes are usually considered.
The first case of codes interpreted as vectors was deeply analyzed by Mart́ınez-Peñas et al.

in several papers; see e.g. [29, 34]. The sum-rank weight on Lℓn with respect to the partition
ℓn = n+ n+ . . .+ n is defined as

wtv((v
(1) | · · · | v(ℓ))) =

ℓ
∑

i=1

rkK(v
(i)), for v(1), . . . , v(ℓ) ∈ Ln,

where rkK(u) = dimK〈u1, . . . , un〉K, for any u = (u1, . . . , un) ∈ Ln. A (vector) sum-rank
code is a subset of Lℓn endowed with the sum-rank distance dv induced by wtv.

As a natural generalization, one can also think as sum-rank metric codes as sets made of
ℓ-uples of matrices. More specifically, the sum-rank metric on (Kn×n)ℓ is defined as

dm((A1, . . . , Aℓ), (B1, . . . , Bℓ)) :=

ℓ
∑

i=1

rk(Ai −Bi), for A1, . . . , Aℓ, B1, . . . , Bℓ ∈ Kn×n.

Here, a (matrix) sum-rank metric code is a subset of (Kn×n)ℓ endowed with the sum-rank
distance dm. A deep study of the properties of codes in this framework has been carried out
in [10, 11].

Now, we introduce the skew algebra point of view. Consider ℓ copies of the space L[θ] and
define the sum-rank distance on (L[θ])ℓ as

dsrk((f1, . . . , fℓ), (g1, . . . , gℓ)) =

ℓ
∑

i=1

drk(fi, gi).

Here, the duality is given by the bilinear form

〈f ,g〉srk := TrL/K

( ℓ
∑

i=1

〈fi, gi〉rk,L

)

= TrL/K (〈f ,g〉srk,L) ,

for any f = (f1, . . . , fℓ), g = (g1, . . . , gℓ) ∈ (L[θ])ℓ. Due to the isometry between (L[θ],drk)
and (Kn×n, rk) discussed in Section 2.1, we obtain that ((L[θ])ℓ,dsrk) is isometric to the space
(Kn×n)ℓ endowed with the sum-rank metric defined there (see also Section 4.3).

However, our aim is to study another framework for codes in the sum-rank metric, which
will be fully described in Section 4.
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3. θ-Projective Polynomials

Analogously to the case of finite field, we consider the projective θ-polynomials, extending
the definition to any cyclic Galois extension L/K. Projective polynomials were introduced
and studeid by Abhyankar in [1] as polynomials over function fields in positive characteristic.
Over finite fields, the number of zeros of special projective polynomials was investigated by
many authors;[9, 24]. More recently, McGuire and Sheekey in [35] and Csajbók, Marino,
Polverino and Zullo in [15], gave a constructive criterion to fully determine the number of
roots of any projective polynomial over a finite field.

3.1. Roots of θ-Projective Polynomials. We give an alternative point of view here which
allows to generalize their notion to fields of any characteristic, and preserves many of the
properties of the original projective polynomials. However, the objects we define will no
longer be proper polynomials.

Definition 3.1. A θ-projective polynomial over L is a map P : L → L of the form

P :=

d
∑

i=0

aiN
i
θ, ai ∈ L,

acting as β 7−→
∑d

i=0 aiN
i
θ(β). The space of θ-projective polynomials over L is denoted by

PL[θ].

Definition 3.2. Let P ∈ PL[θ] be a θ-projective polynomial. An element β ∈ L is said to be
a root of P if P (β) = 0. Moreover, we denote the set of roots of P lying in L by VL(P )

It is natural to define the following map, which relates the skew polynomial ring L[X; θ]
and the space of θ-projective polynomials PL[θ]:

Ψ : L[X; θ] −→ PL[θ]
d
∑

i=0
fiX

i 7−→
d
∑

i=0
fiN

i
θ .

In order to lighten the notation, from now on we will always write PF to denote the projective
polynomial Ψ(F ). The connection between a skew polynomial F and the corresponding θ-
projective polynomial PF has been already investigated in [14, 15, 35] for finite fields.

In the following we go through many of the properties of θ-projective polynomials over
L, linking them to the corresponding θ-polynomial, similarly as done in [35] for finite fields.
In particular, one can easily prove the following result relating the evaluation of a skew
polynomial F (X) with the evaluation of PF .

Proposition 3.3. Let F (X) ∈ L[X; θ] be a nonzero skew polynomial. Then, for every β ∈ L

we have

F (β) = β · (PF ◦ ξθ(β)). (3)

As a consequence, we have

ker(F ) = ξ−1
θ (VL(PF )) ∪ {0}

Proof. We can verify (3) simply by evaluating the right-hand side, since Ni
θ(ξθ(β)) = θi(β)β−1.

The second equality directly follows. �

Now, given a skew-polynomial F (X) ∈ L[X; θ] and an element α ∈ L∗, denote by Fα(X)
the skew polynomial F (αX). One can directly verify that, if F (x) = f0 + f1X + . . . + fdX

d,
then

Fα(X) :=

d
∑

i=0

fiN
i
θ(α)X

i. (4)
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Remark 3.4. It is easy to see that for every skew polynomial F (X) ∈ L[X; θ] and every
α ∈ L, the map F (X) 7−→ F (αX) is a ring homomorphism. Therefore, we have

FαGα = (FG)α. (5)

Proposition 3.5. Let F ∈ L[X; θ], and α ∈ L∗. Then, it holds that PFα = PF ◦mα, where
mα denotes the map given by the multiplication by α. In particular,

VL(PFα) = α−1 · VL(PF ).

and

ker(Fα) = ξ−1
θ (VL(PFα)) = ξ−1

θ (α−1 · VL(PF )) ∪ {0}.

Proof. This is an easy calculation. By (4) one can immediately see that for every β ∈ L we
have

PFα(β) =

d
∑

i=0

fiN
i
θ(α)N

i
θ(β) =

d
∑

i=0

fiN
i
θ(αβ) = PF (αβ).

The other two identities follow immediately. �

The following result clarify why the term θ-projective polynomial is indeed appropriate.

Theorem 3.6. Let F = f0 + . . .+ fdX
d be a nonzero θ-polynomial with f0 6= 0. Then,

VL(PF ) =
⊔

λ∈K∗

Xλ,

where Xλ = αλ · ξθ(ker(Fαλ
) \ {0}) is a copy of Pdλ(F )−1(K), and αλ ∈ L∗ is any element such

that NL/K(αλ) = λ.

Proof. For each λ ∈ K∗, let us fix a representative of the norm function in L∗, i.e. an element
αλ ∈ L∗ such that NL/K(αλ) = λ. Let β ∈ L∗ such that NL/K(β) = λ. This means that
there exists µ ∈ L∗ such that β = αλξθ(µ), and such an element µ is unique modulo scalar
multiplication in K∗. Now, observe that

PF (β) = PF (αλξθ(µ))
(∗)
= PFαλ

(ξθ(µ))
(∗∗)
= µ−1Fαλ

(µ),

where (∗) and (∗∗) follow respectively by Proposition 3.5 and (3). Hence, β ∈ VL(PF ) if
and only if the one-dimensional K-subspace K · µ of L is contained in ker(Fαλ

). However, by
Lemma 2.4, the space ξθ(ker(Fαλ

) \ {0}) is a copy of a (dλ(F ) − 1)-dimensional projective
space over K, and thus, so is Xλ = αλ · ξθ(ker(Fαλ

) \ {0}). �

3.2. Kernel and λ-Values. Now we explore properties of the λ-values for a skew polynomial
F , connecting them with the kernel of the endomorphisms associated to the skew polynomials
Fα’s.

Proposition 3.7. Let F (X) ∈ L[X; θ] be a nonzero skew polynomial and let α ∈ L∗. Then,

dimK(kerFα) = dNL/K(α)(F ).

Proof. Let λ := NL/K(α). By Corollary 2.7, ker(Fα) has dimension deg(gcrd(Fα(X),Xn −
1)), and we only need to show that this quantity is in turn equal to dλ(F ). Clearly the
ring homomorphism G 7−→ Gα is degree-preserving. Hence, deg(gcrd(Fα(X),Xn − 1)) =
deg((gcrd(Fα(X),Xn − 1))α−1), Moreover, by (5), we can deduce that (gcrd(Fα(X),Xn −
1))α−1 = gcrd(F (X), (Xn − 1)α−1). Finally, we obtain (Xn − 1)α−1 = Nn

θ (α
−1)Xn − 1 =

λ−1Xn − 1 and thus deg(gcrd(Fα(X),Xn − 1)) = deg(gcrd(F (X), λ−1Xn − 1)) = dλ(F ). �
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Here we introduce the following notation based on [35]. Let F (X) = f0+f1X+. . .+fdX
d ∈

L[X; θ] be a nonzero skew polynomial of degree d. Define the companion matrix CF ∈ Ld×d

as for classical commutative polynomials, and the matrix AF ∈ Ld×d as

AF := CF θ(CF ) · . . . · θ
n−1(CF ) = CFCXFX−1 · . . . · CXn−1FX−n+1 .

Moreover, let us define the maps

φF : L[X; θ]<d −→ L[X; θ]<d

G(X) 7−→ XG(X) modr F (X),

ψF : L[X; θ]<d −→ L[X; θ]<d

G(X) 7−→ XnG(X) modr F (X),

where modr denotes the remainder obtained after the right division. The following result
is due to McGuire and Sheekey in [35], where they prove it when L is a finite field. However,
since the proof adapts straightforwardly to our setting of a general field L, we leave it out.

Proposition 3.8. Let F ∈ L[X, θ] be a nonzero skew polynomial of degree d and let Bd :=
{1,X, . . . ,Xd−1}. Then

(1) The map φF is a θ-semilinear map of L-vector spaces whose associated matrix with
respect to the basis Bd is AF .

(2) The map ψF is an L-linear map whose associated matrix with respect to the basis Bd

is CF .

With these new tools, we can deduce further connections between the kernel of the endo-
morphisms associated to the skew polynomials Fα’s and the correspondent λ-values of F .

Corollary 3.9. Let F (X) = f0 + . . . + fdX
d ∈ L[X; θ] be a nonzero skew polynomial with

deg(F ) = d and let α ∈ L∗. Then, we have

dimK(kerFα) = dimL(ker(AF −NL/K(α)Id)).

Proof. See [35, Theorem 5] �

We can finally derive the following important result, whose first part was already shown in
[12, Proposition 1.3.7].

Theorem 3.10. Let F ∈ L[X; θ] be a nonzero skew polynomial, let A ⊆ L∗ be a set whose
elements have pairwise distinct norms, and denote Λ := NL/K(A). Then the set {α ∈ A |
ker(Fα) 6= {0}} is finite and

∑

α∈A

dimker(Fα) ≤ deg(F ).

Moreover, the following are equivalent:

(1)
∑

α∈A dimker(Fα) = deg(F ).

(2) AF is diagonalizable over L and its eigenvalues are Λ := {λ ∈ NL/K(A) | dλ(F ) > 0}

where each λ ∈ Λ has multiplicity dλ(F ).
(3) F (X) right-divides the skew polynomial HΛ(X) :=

∏

λ∈Λ(X
n − λ).

Proof. The inequality directly comes from Proposition 3.7, since we have
∑

α∈A

dimker(Fα) =
∑

λ∈NL/K(A)

dλ(F )

=
∑

λ∈NL/K(A)

deg(gcrd(F (X),Xn − λ))

= deg(gcrd(F (X),HΛ(X)) ≤ deg(F ),

and equality occurs if and only if F (X) right-divides HΛ(X).
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Furthermore, the size of the matrix AF is d× d, where d = deg(F ). Thus, by Corollary 3.9
we have

∑

α∈A

dimker(Fα) = deg(F )

if and only if
∑

λ∈NL/K(A)

dimL(ker(AF −NL/K(α)Id)) = d,

which in turn is equivalent to say that the matrix AF is diagonalizable over L and its eigen-
values are Λ := {λ ∈ NL/K(A) | dλ(F ) > 0}, where each λ ∈ Λ has multiplicity dλ(F ). �

4. Skew Polynomial Framework for Sum-Rank Metric Codes

This section is devoted to explore a new point of view for sum-rank metric codes. We first
show that we can define a isometries between the space ((Kn×n)ℓ,dm). (L

ℓn,dv) and a suitable
quotient of a skew polynomial ring. We then study sum-rank metric codes in this framework,
with a particular focus on maximum sum-rank distance and linearized Reed-Solomon codes.

For the whole section we fix the following notation. Let α1, . . . αℓ ∈ L∗ be elements with
pairwise distinct norms. Let Λ = {λ1, . . . , λℓ} ⊆ K∗ where λi = NL/K(αi). Define

HΛ(X) =

ℓ
∏

i=1

(Xn − λi) ∈ L[X; θ].

Observe that HΛ(X) belongs to the center of L[X; θ], that is K[Xn], since it is the product
of ℓ central polynomials. Therefore, HΛ(X) generates a two-sided ideal in L[X; θ].

4.1. Structure Theorem for Sum-Rank Metric Spaces. In this section we study a new
skew-polynomial framework in which we can naturally define the sum-rank metric.

The following result is a generalization of Theorem 2.6 and it provides a skew-polynomial
description of the space (L[θ])ℓ.

Theorem 4.1. With the notation above, the map

Φα : L[X; θ] −→ (L[θ])ℓ

F (X) 7−→ (Φ(Fα1
), . . . ,Φ(Fαℓ

))

is a surjective K-algebra homomorphism, whose kernel is (HΛ(X)). Hence, it induces a K-
algebra isomorphism

Φα : L[X; θ]/(HΛ(X)) ∼= (L[θ])ℓ.

Moreover, both Φα and Φα are also L-linear.

Proof. One can see that the map Φα is obtained as the composition of the map ρ : F 7−→
(Fα1,, . . . , Fαℓ

) with the map defined as Φ acting entrywise. By Theorem 2.6, Φ is a surjective
K-algebra homomorphism and an L-linear map. The L-linearity of ρ is trivial. Moreover,
the map F 7−→ Fα is a ring homomorphism, due to (5) and so it is ρ. Hence it is left to
show that the map ρ is surjective. For this purpose, we compute the kernel of Φα. We have
that F ∈ ker(Φα) if and only if (Xn − 1) |r Fαi(X) for every i ∈ {1, . . . , ℓ}. Again, by (5),
this is true if and only if (Xn − 1)α−1

i
|r F (X). Since (Xn − 1)α−1

i
= λ−1

i Xn − 1, we finally

conclude that F (X) ∈ ker(Φα) if and only if lclm{Xn − λ : λ ∈ Λ} = HΛ(X) right-divides
F (X). Thus, we have that im(Φα) ∼= L[X; θ]/(HΛ(X)). Since this is true also as L-vector
spaces, and dimL(L[X; θ]/(HΛ(X))) = ℓn = dimL((L[θ])

ℓ), we can conclude that Φα is in fact
surjective, and Φα is an isomorphism. �

Remark 4.2. The isomorphism described in Theorem 4.1 clearly depends on the chosen
elements α1, . . . , αℓ ∈ L∗, and hence on the set Λ of their norms. However, we can observe
that any set of ℓ elements α1, . . . , αℓ ∈ L∗ whose norms are pairwise distinct induces an
isomorphism.
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Remark 4.3. It is easy to see that Theorem 2.6 is just a special case of Theorem 4.1 when
ℓ = 1, and it is obtained by choosing α1 = 1.

As a consequence of Theorem 4.1, we can define the notion of sum-rank metric directly on
the space L[X; θ]/(HΛ(X)).

Definition 4.4. The sum-rank weight on the space L[X; θ]/(HΛ(X)) is the map

wtΛ : L[X; θ]/(HΛ(X)) −→ N

F (X) 7−→ ℓn−
ℓ
∑

i=1
dλi

(F ) = ℓn− deg gcrd(F (X),HΛ(X)).

Furthermore, the sum-rank weight induces the sum-rank distance on L[X; θ]/(HΛ(X)),
which is defined as

dΛ(F1, F2) := wtΛ(F1 − F2), for any F1, F2 ∈ L[X; θ]/(HΛ(X)).

One can immediately ask whether this defintion of sum-rank weight and distance on
L[X; θ]/(HΛ(X)) is consistent with the metric dsrk introduced for the space (L[θ])ℓ . Not
surprisingly, the answer is that the map Φα is an isometry of metric spaces, as it shown in
the following result.

Corollary 4.5. Let α = (α1, . . . , αn) ∈ Lℓ be any vector such that NL/K(αi) = λi for each
i = 1, . . . , ℓ. For every F,G ∈ L[X; θ]/(HΛ(X)), we have

dΛ(F,G) = dsrk(Φα(F ),Φα(G)).

In particular, the map Φα : (L[X; θ]/(HΛ(X)),dΛ) → ((L[θ])ℓ,dsrk)) is an isometry of metric
spaces.

Proof. It directly comes from the definition of the two metrics together with Proposition
3.7. �

4.2. The Λ-Dickson Matrix. We now show that, as in the case of rank-metric codes and
their representations as linearized polynomials or skew group algebra elements, it is possible
to relate the sum-rank weight of a skew polynomial to the rank of a particular matrix of
Dickson-type; see e.g. [36, 53] for finite fields and [3] for general Galois extensions.

For this purpose, for a given F ∈ L[X; θ]/(HΛ(X)), define the L-linear map

µ : L[X; θ]/(HΛ(X)) −→ EndL(L[X; θ]/(HΛ(X))),

given by
µ(F ) : L[X; θ]/(HΛ(X)) −→ L[X; θ]/(HΛ(X)),

G(X) 7−→ G(X)F (X).

Definition 4.6. Let F ∈ L[X; θ]/(HΛ(X)). The matrix representation of the L-linear map
µ(F ) with respect to the monomial basis {1,X, . . . ,Xℓn−1} is called the Λ-Dickson matrix
associated to F , and it is denoted by DΛ(F ) ∈ Lℓn×ℓn.

Dickson matrices associated to linearized polynomials over finite fields are well-known ob-
jects [36]. Such matrices have been recently generalized to any Galois extension of fields in
[3], where they were called G-Dickson matrices. We kept a similar name because when Λ
is a finite subgroup, the Λ-Dickson matrix resembles these objects, as the following example
shows.

Example 4.7. Let Λ be a finite – and hence cyclic – subgroup of K∗ of order ℓ and let
us consider F (X) = f0 + . . . + fℓn−1X

ℓn−1 ∈ L[X; θ]/(HΛ(X)). Since Λ is cyclic, we have
HΛ(X) = Xℓn − 1. In this case, it is not difficult to see that the Λ-Dickson matrix associated
to F (X) is DΛ(F ) = (di,j) ∈ Lℓn×ℓn, where

di,j = θj−1(f(j−i mod ℓn)), ∀ i, j ∈ {1, . . . , ℓn}.
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Definition 4.8. Let F ∈ L[X; θ]/(HΛ(X)), The (left) annihilator of the skew polynomial
F is

Ann(F ) := {G ∈ L[X; θ]/(HΛ(X)) | G(X)F (X) = 0}.

It is easy to see that the left annihilator of a skew polynomial in L[X; θ]/(HΛ(X)) is a left
ideal, and it is clearly principal. Moreover, one has an explicit formula for the generator of
such a left ideal.

Proposition 4.9 ([41, Theorem 14]). Let F ∈ L[X; θ]/(HΛ(X)). Then

Ann(F ) = (L[X; θ]/(HΛ(X)))(A(X)),

where A(X) := lclm(HΛ(X), F (X))F (X)−1 .1

We are now ready to connect the sum-rank weight of a skew polynomial with the rank of
its associated Dickson matrix.

Theorem 4.10. For every F (X) ∈ L[X; θ]/(HΛ(X)) it holds that

wtΛ(F ) = ℓn− dimL(Ann(F )) = rk(DΛ(F )).

Proof. By Proposition 4.9, we have that Ann(F ) is the left ideal generated by A(X) =
lclm(HΛ(X), F (X))F (X)−1 . Moreover, it not difficult to see that A(X) |r HΛ(X) (see e.g.
[41, Theorem 11]). Therefore,

dimL(Ann(F )) = deg(HΛ)− deg(A) = deg(HΛ)− deg(lclm(HΛ, F )) + deg(F )

= deg(HΛ)− deg(HΛ)− deg(F ) + deg(gcrd(HΛ, F )) + deg(F )

= deg(gcrd(HΛ, F )),

which shows the first equality. For the second equality, it is enough to observe that Ann(F ) =
ker(µ(F )), and then we conclude. �

Example 4.11. Let K = F5, n = 3, ℓ = 4 and let θ be the Frobenius automorphism defined
by θ(α) = α5. Since gcd(n, q−1) = 1, we have that F∗

5 is a set of representatives for the norm
function. Hence, we can take αi = i and λi = NL/K(αi) = i3 for i ∈ {1, 2, 3, 4}. Thus, we have
Λ = F∗

5 and we can compute the polynomial

HΛ(X) =

4
∏

i=1

(X3 − i) = X12 − 1.

Now let us take F (X) = X4+2X3+3X2+3X+1 ∈ F53 [X; θ]/(X12−1). With straightforward
computations one can see that F (X) right-divides X12−1 and we have d1(F ) = 1, d2(F ) = 0,
d3(F ) = 2 and d4(F ) = 1. Therefore,

wtΛ(F ) = ℓn− deg(gcrd(F,HΛ)) = 12− 4 = 8.

The ℓ components obtained through the map Φα are given by

Φ(F1) = 3θ2 + 4θ + 3id, Φ(F2) = 2θ2 + 2θ + 2id
Φ(F3) = 2θ2, Φ(F4) = 3θ2 + 3θ + 4id

and their rank-weights are

rk(Φ(F1)) = n− dNL/K(1)(F ) = 3− d1(F ) = 2,

rk(Φ(F2)) = n− dNL/K(2)(F ) = 3− d3(F ) = 1,

rk(Φ(F3)) = n− dNL/K(3)(F ) = 3− d2(F ) = 3,

rk(Φ(F4)) = n− dNL/K(4)(F ) = 3− d4(F ) = 2.

1Since lclm(HΛ(X), F (X)) is right divisible by F (X), then lclm(HΛ(X), F (X)) = B(X)F (X) for some skew
polynomial B(X). Thus, one defines lclm(HΛ(X), F (X))F (X)−1 := B(X).
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Furthermore, we can compute Ann(F ), which by Proposition 4.9 is the left ideal generated
by the polynomial

(lclm(HΛ(X), F (X))F (X)−1 = x8 + 3x7 + x6 + x5 + x3 + 4x2 + 3x+ 4.

Finally, the Λ-Dickson matrix associated to F is

DΛ(F ) =







































1 0 0 0 0 0 0 0 1 2 3 3
3 1 0 0 0 0 0 0 0 1 2 3
3 3 1 0 0 0 0 0 0 0 1 2
2 3 3 1 0 0 0 0 0 0 0 1
1 2 3 3 1 0 0 0 0 0 0 0
0 1 2 3 3 1 0 0 0 0 0 0
0 0 1 2 3 3 1 0 0 0 0 0
0 0 0 1 2 3 3 1 0 0 0 0
0 0 0 0 1 2 3 3 1 0 0 0
0 0 0 0 0 1 2 3 3 1 0 0
0 0 0 0 0 0 1 2 3 3 1 0
0 0 0 0 0 0 0 1 2 3 3 1







































∈ (F53)
12×12,

which has rank 8.

Example 4.12. We fix the same setting as the one in Example 4.11 and choose the primitive
element γ to be a root of y3+3y+3. If we select the skew polynomial G(X) = X4+ γ55X3+
γ29X2 + γ63X + 1 and compute the λ-values, we obtain

d1(G) = d3(G) = 1, d2(G) = d4(G) = 0.

Thus, we have wtΛ(G) = 12− 2 = 10. Its Λ-Dickson matrix is given by

DΛ(G) =





































1 0 0 0 0 0 0 0 1 γ55 γ21 γ87

γ63 1 0 0 0 0 0 0 0 1 γ27 γ105

γ29 γ67 1 0 0 0 0 0 0 0 1 γ11

γ55 γ21 γ87 1 0 0 0 0 0 0 0 1
1 γ27 γ105 γ63 1 0 0 0 0 0 0 0
0 1 γ11 γ29 γ67 1 0 0 0 0 0 0
0 0 1 γ55 γ21 γ87 1 0 0 0 0 0
0 0 0 1 γ27 γ105 γ63 1 0 0 0 0
0 0 0 0 1 γ11 γ29 γ67 1 0 0 0
0 0 0 0 0 1 γ55 γ21 γ87 1 0 0
0 0 0 0 0 0 1 γ27 γ105 γ63 1 0
0 0 0 0 0 0 0 1 γ11 γ29 γ67 1





































∈ (F53)
12×12,

We can now introduce the notion of codes endowed with the sum-rank metric in this skew
polynomial framework.

Definition 4.13. A sum-rank metric code C is a subset of L[X; θ]/(HΛ(X)) endowed with
the sum-rank distance dΛ. The minimum sum-rank distance of C is the integer

dΛ(C) := min{dΛ(F,G) | F,G ∈ C, F 6= G}.

Moreover, for any subfield F ⊆ L, a sum-rank metric code will be called F-linear, if it is an
F-linear subspace of L[X; θ]/(HΛ(X)).

4.3. Connections with Classical Frameworks. Here we briefly recap how to recover the
original frameworks of sum-rank metric codes, seen either as spaces of vectors of length ℓn
over L, or as subspaces of the direct sum of ℓ matrix spaces over K.

First, let E be a K-basis of L. Write every element of L in coordinates with respect to E ,
resulting in a column vector in Kn. In the same way, we can transform a vector v ∈ Ln to
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a matrix in Kn×n, which we denote by ExtE(v). Let B1, . . . ,Bℓ be K-bases of L and write

B := (B1, . . . ,Bℓ). If v = (v(1) | · · · | v(ℓ)) ∈ Lℓn, we define

ExtB(v) := (ExtB1
(v(1)), . . . ,ExtBℓ

(v(ℓ))) ∈ (Kn×n)ℓ.

Given a vector sum-rank metric code C ⊆ Lℓn, we define

ExtB(C) := {ExtB(c) | c ∈ C}. (vec) → (mat)

From the definition of the metrics, it is immediate to verify that the map ExtB : (Lℓn,dv) →
((Kn×n)ℓ,dm) is an isometry, and hence one can equivalently study codes in one or in the
other setting.

Now, for a given K-basis E = (e1, . . . , en) of L, define the map

evE : L[θ] −→ Ln

f 7−→ (f(e1), . . . , f(en)).

Denote by evB : (L[θ])ℓ → (Lℓn), the direct sum of the maps evBi . Given a sum-rank metric
code C ⊆ L[X; θ]/(HΛ(X)), define

C(α,B) := evB(Φα(C)). (poly) → (vec)

Also in this case it is straightforward to verify that

evB ◦Φα : (L[X; θ]/(HΛ(X)),dv) → (Lℓn,dv)

is an isometry of metric spaces. This is due to the fact that each map evBi is an isometry (see
e.g. [3]) – and hence also the direct sum of them – and to the fact that Φα is an isometry by
Corollary 4.5.

Finally, one can combine the isometries described above. Suppose that we have B =
(B1, . . . ,Bℓ),E = (E1, . . . , Eℓ), where the Bi’s and the Ei’s are K-bases of L. For a given
sum-rank metric code C ⊆ L[X; θ]/(HΛ(X)) we define

Matα,B,E(C) := ExtE(C(α,B)). (poly) → (mat)

Since the map Matα,B,E : (L[X; θ]/(HΛ(X)),dΛ) → ((Kn×n)ℓ,dm) is the composition of two
isometries, is itself an isometry of metric spaces.

The procedures described above show how to get a code representation from another.
Moreover, all the procedures are reversible, assuming that there exists a cyclic Galois extension
of K of degree n. More specifically, from a skew-polynomial representation of sum-rank metric
codes we can always derive a vector representation, and from a vector representation we can
always get a matrix representation. On the other hand, from a matrix sum-rank metric code
over K we can derive a vector representation only when K admits a degree n extension field
L, and the vector representation can be converted into a skew-polynomial representation as
L[X; θ]/(HΛ(X)), only when the extension L/K is Galois and cyclic and ℓ ≤ |K∗|.

L[X; θ]/(HΛ(X)) Lℓn (Kn×n)ℓ
always always

there is a cyclic (Galois) extension of degree n and ℓ ≤ |K∗|

there is an extension L/K of degree nL/K is cyclic (Galois) and ℓ ≤ |K∗|

Figure 1. The diagram above shows under which conditions it is possible to
transform a framework into another one.
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However, over finite fields – that is where most applications come from – the three represen-
tations are equivalent whenever ℓ ≤ q − 1, due to the fact that for every positive integer n
there always exists a degree n-extension of a finite field Fq and such an extension field is also
cyclic. When we choose K = Q the three representations are completely equivalent, since
it is well-known that for every integer n there exists a cyclic Galois extension of degree n
over Q. On the other hand, when K = R, the three representations are equivalent only when
n = 2, while for n ≥ 3 there is no vector representation, and hence neither a skew-polynomial
representation.

Example 4.14. Let us consider the same setting and notation of Examples 4.11 and 4.12:
let K = F5, n = 3, ℓ = 4 and let θ be the 5-Frobenius automorphism. Moreover, let us take
αi = i and λi = NL/K(αi) = i3 for i ∈ {1, 2, 3, 4}. Thus, we fox Λ = F∗

5 and

HΛ(X) =

4
∏

i=1

(X3 − i) = X12 − 1.

Now consider the primitive element γ of F53 that is a root of the polynomial y3 + 3y + 3 and
let us choose F (X) = X4 + 2X3 + 3X2 + 3X + 1 ∈ F53 [X; θ]/(X12 − 1). At this point, define
the code

C := 〈1, F (X)〉F
53
.

As F5-bases of F53 we take B := (B,B,B,B), where B := (1, γ, γ2). We have already computed
Φα(F ) in Example 4.11, and its components are

Φ(F1) = 3θ2 + 4θ + 3id, Φ(F2) = 2θ2 + 2θ + 2id,
Φ(F3) = 2θ2, Φ(F4) = 3θ2 + 3θ + 4id.

Moreover, we clearly have Φα(1) = (id, id, id, id). Thus,

C(α,B) = 〈evB(Φα(1)), evB(Φα(F ))〉F
53

= Rowsp

(

1 γ γ2 1 γ γ2 1 γ γ2 1 γ γ2

0 γ5 γ32 1 0 γ93 γ31 γ56 γ81 0 γ γ56

)

.

Now, let us fix also E := B = (B,B,B,B) and let us denote by u and v the first and
respectively the second row of the matrix above. With easy computations one gets

ExtB(u) =









1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 1 0
0 0 1







 ,

ExtB(v) =









0 4 0
0 4 2
0 2 0



 ,





1 0 3
0 0 0
0 0 0



 ,





2 2 2
0 0 1
0 1 3



 ,





0 0 2
0 1 0
0 0 1







 .

If we define M to be the companion matrix of the polynomial y3 + 3y + 3, that is

M =





0 0 2
1 0 2
0 1 0



 ,

we then obtain that

Matα,B,B(C) = 〈{M i · ExtB(u) : 0 ≤ i ≤ 2} ∪ {M i · ExtB(v) : 0 ≤ i ≤ 2}〉F5
.
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4.4. The Adjoint Operator. In the theory of θ-polynomials, the adjoint defined in (1) plays
an important role in L[θ]: it provides in this setting the analogue of the transpose in Kn×n. If
we want to understand the analogue for the ambient space (Kn×n)ℓ, then we may transpose
any r matrices in an ℓ-uple of matrices. This can be formalized via the action of the group
(Z/2Z)ℓ on (Kn×n)ℓ, given by

(v1, . . . , vℓ) · (A1, . . . , Aℓ) = (B1, . . . , Bℓ),

where

Bi =

{

Ai if vi = 0,

A⊤
i if vi = 1.

Here we give the counterpart to this map in our setting. First, for any vector v =
(v1, . . . , vℓ) ∈ (Z/2Z)ℓ define the map Υv : (L[θ])

ℓ −→ (L[θ])ℓ as

Υv(f1, . . . , fℓ) = (g1, . . . , gℓ),

where

gi =

{

fi if vi = 0,

f⊤i if vi = 1.

Remark 4.15. Observe that for any set of elements A′ = {β1, . . . , βℓ} such that NL/K(A
′) =

NL/K(A) = Λ, by Theorem 4.1 the map Φβ : (L[X; θ]/(HΛ(X)),dΛ) −→ ((L[θ))ℓ,dsrk) is a
well-defined isometry, where β := (β1, . . . , βℓ).

Definition 4.16. Let α = (α1, . . . , αℓ), β = (β1, . . . , βℓ) ∈ Lℓ be two vectors such that
NL/K({α1, . . . , αℓ}) = NL/K({β1, . . . , βℓ}) = Λ. For any v ∈ (Z/2Z)ℓ, and any F (X) ∈
L[X; θ]/(HΛ(X)), the v-adjoint of F (X) with respect to α and β is the skew polynomial

F v
[α,β](X) := (Φ

−1
β ◦Υv ◦ Φα)(F (x)).

Clearly, one has

wtΛ(F
v
[α,β]) = wtΛ(F ), for every F ∈ L[X; θ]/(HΛ(X)) and every v ∈ (Z/2Z)ℓ.

Note that it seems difficult to express the v-adjoint of an element F (X) in a simple formula
using the coefficients of F (X). However, there is a special case in which we can derive a nice
expression.

For a α = (α1, . . . , αℓ), we will write α−1 to indicate the vector whose entries are the
inverses of the entries of α, that is α−1 := (α−1

1 , . . . , α−1
ℓ ). In particular, if we assume that Λ

is a subgroup, we have that NL/K({α
−1
1 , . . . , α−1

ℓ }) = NL/K(A) = Λ, and

Φα−1 : L[X; θ]/(HΛ(X)) −→ (L[θ])ℓ

is well defined by Remark 4.15.

Theorem 4.17. Let 1 ∈ (Z/2Z)ℓ denote the all-ones vector, and let F (X) = f0+f1X+ . . .+
fℓn−1X

ℓn−1 ∈ L[X; θ]/(HΛ(X)). Assume that Λ is a cyclic group of order ℓ. Then

F 1

[α,α−1](X) =

ℓn
∑

i=1

θn−i(fi)X
ℓn−i.2

Proof. Notice that it is enough to show that (Φ(µ(αX)u)⊤ = Φ(θn−u(µ)(α−1X)ℓn−u), for
every u ∈ {0, . . . , ℓn − 1}, α, µ ∈ L∗ with NL/K(α) ∈ Λ, since then we can conclude by K-
linearity. Let λ := NL/K(α), and let us write u = i+ tn, with 0 ≤ i ≤ n− 1, and 0 ≤ t ≤ ℓ− 1.

2Here we write the indices of the coefficients modulo ℓn. In particular, in the formula above, we define
fℓn := f0.
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Then

(Φ(µ(αX)u)⊤ = (µNi
θ(α)λ

tθi)⊤

= θn−i(µ)Ni
θ(θ

n−i(α))θn−i

= θn−i(µ)λt+1 Nn−i
θ (α−1)θn−i

= θn−i(µ)(λ−1)ℓ−t−1 Nn−i
θ (α−1)θn−i.

= Φ(θn−u(µ)(α−1X)(ℓ−t−1)n+n−i)

= Φ(θn−u(µ)(α−1X)ℓn−u).

�

In particular, when Λ is a cyclic group, we deduce by Proposition 4.17 that the 1-adjoint
F 1

[α,α−1](x) does not depend on α. Thus, from now on, we will write

F⊤(X) := F 1

[α,α−1](X).

Using the formula provided in Theorem 4.17, we can immediately deduce the following
result on the Λ-Dickson matrix of the 1-adjoint of a skew polynomial in L[X; θ]/(HΛ(X)).

Corollary 4.18. Let Λ be a cyclic group, and let F (X) ∈ L[X; θ]/(HΛ(X)). Then

DΛ(F
⊤) = DΛ(F )

⊤.

We conclude this section by providing the definition of adjoint of a code.

Definition 4.19. Let α = (α1, . . . , αℓ), β = (β1, . . . , βℓ) ∈ Lℓ be two vectors such that
NL/K({α1, . . . , αℓ}) = NL/K({β1, . . . , βℓ}) = Λ, and let v ∈ (Z/2Z)ℓ. The v-adjoint code of
a K-linear code C ⊆ L[X; θ]/(HΛ(X)) is

Cv
[α,β] :=

{

F v
[α,β](X) : F (X) ∈ C

}

.

Furthermore, when v = 1, Λ is a cyclic group and β = α−1, we will simply refer to it as the
adjoint code and we will denote it by C⊤.

4.5. Maximum Sum-Rank Distance and Linearized Reed-Solomon Codes. We now
focus on the special class of sum-rank metric codes which have optimal parameters. The
following is a well-known result, already proved in [29] for vector codes.

Theorem 4.20. Let F be a subfield of L, and let C ⊆ L[X; θ]/(HΛ(X)) be an F-linear
sum-rank metric code. Then

dimF(C) ≤ [L : F](ℓn− dΛ(C) + 1).

Proof. We first identify the codewords as vectors in Lℓn via evB ◦Φα. In other words, we
consider the vector code C(α,B), for some suitable vector α whose entries have norm equal to
λi’s and any vector B formed by ℓ bases of L over K. We will prove that the F-dimension of
C(α,B) is at most [L : F](ℓn−dΛ(C)+1). Let us consider the Hamming metric on Lℓn, defined
via the Hamming weight wtH(v) := |{i : vi 6= 0}|. Let dH denote the minimum Hamming
distance of C(α,B). It is immediate to see that

dH ≥ dv(C(α,B)) = dΛ(C).

If we now puncture the code C(α,B) on dH − 1 coordinates, then by definition of Hamming
distance, the obtained code has the same F-dimension. However, this code is contained in the
space Lℓn−dH+1, which has F-dimension equal to [L : F](ℓn− dH + 1). Thus, we deduce

dimF(C) ≤ [L : F](ℓn− dH(C) + 1) ≤ [L : F](ℓn− dΛ(C) + 1).

�
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Definition 4.21. An F-linear code C ⊆ L[X; θ]/(HΛ(X)) is called maximum sum-rank
distance (or MSRD in short) if its parameters meet the Singleton-like bound of Theorem
4.20 with equality.

The study of MSRD codes has started in [29], and since then many other papers analyzed
their structure [33, 34, 43] from the vector point of view. In this vector framework, the most
prominent family of MSRD codes is given by linearized Reed-Solomon codes. They represent
a sort of “tensorization” between Reed-Solomn codes in the Hamming metric and Gabidulin
codes in the rank metric. Indeed, these two families of codes are extremal cases of linearized
Reed-Solomon codes. In our skew polynomial setting, we can define linearized Reed-Solomon
codes as follows.

Definition 4.22 (Linearized Reed-Solomon codes). The linearized Reed-Solomon code
of dimension k is the code

Cθ
k := {F ∈ L[X; θ]/(HΛ(X)) | deg(F ) < k} ⊆ L[X; θ]/(HΛ(X)).

As a trivial consequence of Theorem 3.10, we cam deduce the following well-known result.

Corollary 4.23. Linearized Reed-Solomon codes are maximum sum-rank distance codes.

Proof. By Theorem 3.10 and the definition of the metric dΛ on L[X; θ]/(HΛ(X)), for any
nonzero skew polynomial F ∈ Cθ

k we have

wtΛ(F ) = ℓn− deg(gcrd(F,HΛ)) ≥ ℓn− deg(F ) ≥ ℓn− k + 1.

�

Remark 4.24. Linearized Reed-Solomon codes have been originally defined as evaluation
vectors of skew polynomials, where also a derivation is considered. However, if we restrict to
skew polynomials with no derivation, then we have that the codes originally defined in [29,
Definition 31] are exactly the vectorizations of Cθ

k, that is C
θ
k(α,B) = evB(Φα(C)).

4.6. Equivalence of Sum-Rank Metric Codes. The notion of equivalence of codes in the
sum-rank metric has been introduced in [32, Theorem 2]. As observed there, MacWilliams ex-
tension theorem does not hold even for the case ℓ = 1 (see e.g. [6, Example 2.9]). Thus, equiv-
alence of sum-rank metric codes is defined through isometries of the whole space. Moreover,
in that paper codes were exclusively considered to be L-linear and hence only L-linear isome-
tries were considered; see also [2, Theorem 3.8] In the following, we aim to characterize the
K-linear and K-semilinear isometries, deriving a similar result in the space L[X; θ]/(HΛ(X)).

The easiest setting where we can prove this result is the space (Kn×n)ℓ.

Proposition 4.25. The group of K-linear isometries on (Kn×n)ℓ is isomorphic to ((Sℓ ⋊

(GL(n,K)ℓ ×GL(n,K)ℓ))⋊ (Z/2Z)ℓ)/K, with

K =
{

(id, (λ1In, . . . λℓIn), (λ
−1
1 In, . . . λ

−1
ℓ In),0) : λi ∈ K∗

}

,

and the action is given by

(π, (M1, . . . ,Mℓ), (N1, . . . , Nℓ), v) · (A1, . . . , Aℓ) = (M1A
[v1]
π−1(1)

Nℓ, . . . ,MℓA
[v1]
π−1(ℓ)

Nℓ),

where A[0] := A and A[1] := A⊤.

Proof. We fix the following notation. For a ∈ {1, . . . , ℓ} and M ∈ Kn×n, we denote by M (a)

the element of (Kn×n)ℓ that has the matrix M as a-th entry, while all the other entries are
the 0 matrix. Moreover, for i, j ∈ {1, . . . , n} we denote by Ei,j the matrix e⊤i ej that has 1 in
the (i, j)-th entry and 0 elsewhere.

Now, consider a K-linear isometry φ of (Kn×n)ℓ and fix a ∈ {1, . . . , ℓ}. Since any matrix E
(a)
i,j

has sum-rank weight equal to 1, then we have φ(E
(a)
1,1 ) = M (b), for some b ∈ {1, . . . , ℓ} and
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M ∈ Kn×n of rank 1. Now, fix j ∈ {1, . . . , n} there are also c ∈ {1, . . . , ℓ} and N ∈ Kn×n of

rank 1 such that φ(E
(a)
1,j ) = N (c). Hence by K-linearity of φ we have

φ((E1,1 + E1,j)
(a)) = φ(E

(a)
1,1 + E

(a)
1,j ) =M (b) +N (c),

which must have sum-rank weight equal to 1. This is only possible if b = c and M +N has

rank 1. This shows that all the elementary matrices of the form E
(a)
1,j are sent by φ in elements

of the form M (b). Arguing in the same way, we can actually show that this is true for every

element E
(a)
i,j . Thus, since this holds for every a, we can deduce that the map φ acts as

φ(M (a)) = (φa(M))(π
−1(b)),

for some π ∈ Sℓ, and some φa that is a K-linear rank isometry of Kn×n. However, the K-linear
rank isometries are characterized and are given by the group

(GL(n,K)×GL(n,K))/N ⋊ Z/2Z,

where N = {(λIn, λ
−1In) : λ ∈ K∗}, acting as

(M,N, t) ·A =MA[t]N ;

see e.g. [37, Proposition 4]. This concludes the proof. �

Now, using the isomorphism ExtB ◦ evB ◦Φα : L[X; θ]/(HΛ(X)) → (Kn×n)ℓ and its inverse,
and combining it with the characterization of the K-linear isometries given in Proposition 4.25,
we can derive the representation of the K-linear sum-rank isometries in L[X; θ]/(HΛ(X)).

Theorem 4.26. The group of K-linear isometries on the space L[X; θ]/(HΛ(X)) is isomorphic
to (Sℓ ⋊ (GL(n, q)ℓ ×GL(n, q)ℓ))⋊ (Z/2Z)ℓ. Moreover, the action is given by

F (X) · (Φ
−1
α ◦Υv ◦ Φπ(α))(C) ·G(X)

for some skew polynomials F (X), G(X) ∈ L[X; θ]/(HΛ(X)) such that wtΛ(F ) = wtΛ(G) = ℓn,
π ∈ Sℓ and v ∈ (Z/2Z)ℓ.

5. Duality of Sum-Rank Metric Codes

In this section we analyze a duality theory for sum-rank metric codes in the setting we
proposed. We will show that the duality behaves as one would expect, and that it can be
expressed in terms of the duality of the constituent skew algebras L[θ]. This in turn can
be equivalently formulated with respect to the standard inner product duality in the vector
setting and in terms of the Delsarte duality of the corresponding matrix spaces, provided that
we choose suitable K-bases of L. This also implies that the dual of an MSRD code is itself
MSRD. Furthermore, we analyze the dual of a linearized Reed-Solomon codes in this setting,
which turns out to be naturally (equivalent to) a linearized Reed-Solomon code.

5.1. Definition and Comparison with Other Dualities. We fix the following notation
and setting, that will be kept for the whole section. We choose a set of elements A =
{α1, . . . , αℓ} ⊆ L∗ whose norms are pairwise distinct. The set Λ = NL/K(A) = {λ1, . . . , λℓ} of

norms of the elements αi’s will be taken to be a finite – and hence cyclic3 – subgroup of K∗.
Moreover, given the vector α = (α1, . . . , αℓ), we will write α−1 to indicate the vector whose
entries are the inverses of the entries of α, that is α−1 := (α−1

1 , . . . , α−1
ℓ ). Observe that, if we

have another set A′ := {β1, . . . , βℓ} ⊆ L∗ such that NL/K(A
′) = NL/K(A) = Λ, then Φβ is a

well-defined map : L[X; θ]/(HΛ(X)) → (L[θ])ℓ). In particular, since Λ is a subgroup, we have
that NL/K({α

−1
1 , . . . , α−1

ℓ }) = NL/K(A) = Λ, and

Φα−1 : L[X; θ]/(HΛ(X)) −→ (L[θ])ℓ

is well defined.

3It is well-known that every finite multiplicative subgroup of the units of a field is cyclic



TWISTED LINEARIZED REED-SOLOMON CODES 21

We introduce the K-bilinear form 〈·, ·〉Λ on L[X; θ]/(HΛ(X)), given by

〈F,G〉Λ = TrL/K

( ℓn−1
∑

i=0

figi

)

. (6)

It is easy to see that it is nondegenerate, and hence defines a duality isomorphism. Moreover,
it is induced by the L-bilinear form

〈F,G〉Λ,L =

ℓn−1
∑

i=0

figi.

Definition 5.1. Let C ⊆ L[X; θ]/(HΛ(X)) be a (not necessarily linear) sum-rank metric code.
The dual code of C is

C⊥ := {G ∈ L[X; θ]/(HΛ(X)) | 〈F,G〉Λ = 0 for every F ∈ C} .

Our aim is now to show that this definition of duality induced by (6) is consistent with the
definitions of dualities studied in literature: the one on vector codes defined by the standard
inner product, and the one of matrix codes induced by the Delsarte trace product. As an
intermediate step, we first want to contextualize the duality induced by (6) and express it in
terms of the duality theory of the single components in (L[θ])ℓ, induced by the map Φα.

We first recall an auxiliary well-known result, whose proof is omitted.

Lemma 5.2. Let F be a field, let Λ be a cyclic subgroup of F∗ of order ℓ ≥ 2 and let i ∈ Z.
Then

∑

λ∈Λ

λi =

{

ℓ if i ≡ 0 mod ℓ

0 if i 6≡ 0 mod ℓ.

We are now ready to express the duality of (6) in terms of the bilinear form 〈·, ·〉rk.

Proposition 5.3. Let A = {α1, . . . , αℓ} ⊆ L∗ be a set of elements whose norms are pairwise
distinct. Assume that Λ = {NL/K(α1), . . . ,NL/K(αℓ)} is a finite subgroup of K∗. Then

ℓ · 〈F,G〉Λ = 〈Φα(F ),Φα−1(G)〉srk. (7)

Proof. First of all, we notice that, due to the K-linearity of TrL/K, it is enough to prove that

ℓ · 〈F,G〉Λ,L =
∑

α∈A

〈Φ(Fα),Φ(Gα−1)〉rk,L

Let us fix the following notation. Let F (X) = f0 + f1X + . . . + fℓn−1X
ℓn−1, G(X) = g0 +

g1X + . . .+ gℓn−1X
ℓn−1. Furthermore, for any α ∈ A, we write

Φ(Fα) =

n−1
∑

i=0

fα,iθ
i, Φ(Gα) =

n−1
∑

i=0

gα,iθ
i.

Observe that, by definition we have

fα,i =

ℓ−1
∑

t=0

Ni+tn
θ (α)fi+tn, gα,i =

ℓ−1
∑

t=0

Ni+tn
θ (α)gi+tn. (8)

If we compute now the right-hand side of (7), and substitute (8) in it, we get

〈Φ(Fα),Φ(Gα−1)〉rk,L =

n−1
∑

i=0

fα,igα−1,i =

n−1
∑

i=0

( ℓ−1
∑

t=0

Ni+tn
θ (α)fi+tn

)( ℓ−1
∑

t=0

Ni+tn
θ (α−1)gi+tn

)

=

n−1
∑

i=0

( ℓ−1
∑

t=0

λtαfi+tn

)( ℓ−1
∑

t=0

λ−t
α gi+tn

)

(9)
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Now, both the hand sides of (7) are L-bilinear forms, so we only need to check that they agree
on the basis {1,X, . . . ,Xℓn−1}. Therefore, we aim to show that

∑

α∈A

〈Φ((αX)u),Φ((α−1X)v)〉rk,L = ℓ · δu,v =

{

ℓ if u = v

0 if u 6= v.

Let us take F (X) = Xi+tn and G(X) = Xj+sn for some 0 ≤ s, t ≤ ℓ− 1 and 0 ≤ i, j ≤ n− 1.
It is easy to prove that substituting these monomials F (X) and G(X) in (9) we obtain 0
whenever i 6= j. Therefore, let us assume that i = j. In this case, using (9), we obtain

∑

α∈A

〈Φ((αX)u),Φ((α−1X)v)〉rk,L =
∑

α∈A

λt−s
α .

At this point, observe that Λ is a finite subgroup of K∗, hence it is cyclic. By Lemma 5.2, we
have

∑

λ∈Λ

λt−s
α =

{

ℓ if t− s ≡ 0 mod ℓ

0 if t− s 6≡ 0 mod ℓ.

Due to the range of t and s, we have t − s ≡ 0 mod ℓ if and only if t = s. Thus, putting
together all the cases, we obtain the desired result. �

Remark 5.4. The space L[X; θ]/(HΛ(X)) is an L-vector space. If we write the bilinear
form 〈·, ·〉Λ,L in coordinates with respect to the monomial basis {1,X, . . . ,Xℓn−1}, the matrix
representing 〈·, ·〉Λ,L is clearly the ℓn×ℓn identity matrix. On the other hand, one can consider
the usual duality theory inherited from the bilinear form 〈·, ·〉srk,L over L[θ], i.e.

〈F,G〉α,L := 〈Φα(F ),Φα(G)〉srk,L.

One can easily see that, if F (X) = Xu, G(X) = Xv with u 6≡ v mod n, then 〈F,G〉α,L = 0.
Moreover, if F (X) = Xi+sn and G(X) = Xi+tn for some 0 ≤ s, t ≤ ℓ − 1 and 0 ≤ i ≤ n− 1,
using (8) it is easy to derive that

〈Xi+sn,Xi+tn〉α,L =
∑

α∈A

Ni
θ(α

2)λs+t
α .

Thus, the matrix associated to 〈·, ·〉α,L with respect to the monomial basis is given by
∑

α∈A

Mα,

where

Mα := (λs+t
α )s,t ⊗ diag(N0

θ(α
2), . . . ,Nn−1

θ (α2)) ∈ Lℓn×ℓn.

One could directly consider the canonical orthonormal basis of (L[θ])ℓ for the L-bilinear
form 〈·, ·〉srk,L, namely

{(θi, 0, . . . , 0) | 0 ≤ i < n} ∪ {(0, θi, . . . , 0) | 0 ≤ i < n} ∪ . . . ∪ {(0, 0, . . . , θi) | 0 ≤ i < n}.

It is easy to see that this is the image under the map Φα of the set of skew polynomials

M :=
{

ℓ−1 Ni
θ(α

−1
j )λj(X

ℓn − 1)(Xn − λj)
−1Xi | 1 ≤ j ≤ ℓ, 0 ≤ i ≤ n− 1

}

.

Indeed,

((Xℓn − 1)(Xn − λj)
−1Xi)αt = ((αtX)ℓn − 1)((αtX)n − λj)

−1(αtX)i

= λ−1
t (Xℓn − 1)(X − λ−1

t λj)
−1 Ni

θ(αt)X
i,

which is 0 modulo (Xn − 1) whenever t 6= j. If t = j, we have

((Xℓn − 1)(Xn − λj)
−1Xi)αj = λ−1

j (Xℓn − 1)(X − 1)−1 Ni
θ(αj)X

i

= λ−1
j Ni

θ(αj)(1 +Xn + . . .+X(ℓ−1)n)Xi,
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that equals to λ−1
j Ni

θ(αj)ℓX
i modulo (Xn − 1). Thus, one also obtains that

∑

α∈A

Mα = N⊤N,

where N is the change-of-basis matrix from M to B = {1,X, . . . ,Xℓn−1}. Observe that the
division by ℓ is always well-defined, since ℓ is the order of a cyclic subgroup of K∗, and hence
it cannot be a multiple of char(K).

Now, we want to analyze the connection with the duality of codes in Lℓn with respect to
the standard inner product. In this setting, if we have a code C ⊆ Lℓn, we define the dual
code, to be the orthogonal space C⊥v with respect to the bilinear form

〈u,v〉v := TrL/K(uv
⊤), for every u,v ∈ Lℓn.

First, for a given K-basis B = (β1, . . . , βn) of L, we denote by B∗ := (β∗1 , . . . , β
∗
n) its dual basis

with respect to the trace bilinear form induced by TrL/K, that is such that

TrL/K(βiβ
∗
j ) = δi,j =

{

1 if i = j,

0 if i 6= j.

Theorem 5.5. Assume that Λ = NL/K({α1, . . . , αℓ}) is a multiplicative subgroup of K∗, and
let B := (B1, . . . ,Bℓ) be a vector of K-bases of L. Let C ⊆ L[X; θ]/(HΛ(X)) be a K-linear
code. Then

C⊥(α,B) = (C(α−1,B∗))⊥v ,

where B
∗ := (B∗

1, . . . ,B
∗
ℓ ).

Proof. Observe that it is enough to verify that

((evB ◦Φα)(X
u))((evB∗ ◦Φα−1)(Xv))⊤ = ωδu,v,

for some ω ∈ K∗. Let us fix u, v ∈ {0, . . . , ℓn− 1} and let us write u = i+ tn and v = j + sn,
for some 0 ≤ s, t ≤ ℓ− 1 and 0 ≤ i, j,≤ n− 1. We can write

((evB ◦Φα)(X
u))((evB∗ ◦Φα−1)(Xv))⊤ =

ℓ
∑

i=1

(evBi(Φ((αiX)u))(evB∗
i
(Φ((α−1

i X)v)))⊤. (10)

We now distinguish two cases.
Case I: Normal bases. Let α ∈ L∗ such that NL/K(α) = λ ∈ Λ and let us fix a normal

basis E = (β, θ(β), . . . , θn−1(β)). In this case, it is known that E∗ is also a normal basis, i.e.
E∗ = (γ, θ(γ), . . . , θn−1(γ)). Then we have

(evE(Φ((αX)u))(evE∗(Φ((α−1X)v)))⊤ = (evE (λ
tNi

θ(α)θ
i))(evE∗(λ−s Nj

θ(α
−1)θj))⊤

= λt−s Ni
θ(α)N

j
θ(α

−1) evE(θ
i) evE∗(θj)

= λt−s Ni
θ(α)N

j
θ(α

−1)

n−1
∑

a=0

θi+a(β)θj+a(γ)

= λt−s Ni
θ(α)N

j
θ(α

−1)TrL/K(θ
i(β)θj(γ))

= λt−s Ni
θ(α)N

j
θ(α

−1)δi,j

= λt−sδi,j, (11)

where the last equality follows from the fact computed quantity is nonzero only when i = j, in

which case Ni
θ(α)N

j
θ(α

−1) = 1. Assume now that each basis Bi is normal. Then, combining
(10) and (11), we obtain

((evB ◦Φα)(X
u))((evB∗ ◦Φα−1)(Xv))⊤ =

ℓ
∑

i=1

λt−sδi,j = ℓδi,jδt,s = ℓδu,v,

where the second to last equality follows from Lemma 5.2.
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Case II: General bases. Now, suppose that B is a general K-basis of L. There exists X ∈
GL(n,K) such that B = EX, where E is normal. Moreover, we also have that B∗ = E∗(X−1)⊤.
Hence, we get

evB(θ
i) evB∗(θj)⊤ = evEX(θ) evE∗(X−1)⊤(θ

j)⊤

= evE(θ
i)X(evE∗(θj)(X−1)⊤)⊤

= evE(θ
i) evE∗(θj)⊤,

and we can conclude using Case I. �

Now, we proceed relating the duality between vector sum-rank metric codes and matrix
sum-rank metric codes. By transitivity, we then also deduce a relation of the duality between
the skew polynomial and the matrix frameworks.

In the following if we have a code C ⊆ (Kn×n)ℓ, we define the dual code, to be the orthogonal
space C⊥m with respect to the bilinear form

〈(M1, . . . ,Mℓ), (N1, . . . , Nℓ)〉m :=

ℓ
∑

i=1

Tr(MiN
⊤
i ), for every Mi, Ni ∈ Kn×n.

We omit the proof of the following result, since it can be derived in exactly the same way as
done for the rank metric; see e.g. [22, 44].

Proposition 5.6. Let C ⊆ Lℓn be a K-linear sum-rank metric code. Then, for every ℓ-uple
of K-bases of L we have

ExtB(C
⊥v) = ExtB∗(C)⊥m .

5.2. Duality of MSRD and Linearized Reed-Solomon Codes. As a consequence, we
can immediately deduce a duality result for MSRD codes, that holds also in this skew poly-
nomials framework.

Theorem 5.7. Let C ⊆ L[X; θ]/(HΛ(X)) be a K-linear MSRD code and assume that Λ is a
finite group. Then C⊥ is a K-linear MSRD code.

Proof. Let C ⊆ L[X; θ]/(HΛ(X)) be a K-linear MSRD code. For any vector α = (α1, . . . , αℓ) ∈
Lℓ such that NL/K({α1, . . . , αℓ}) = Λ, and for every ℓ-uples B = (B1, . . . ,Bℓ) E = (E1, . . . , Eℓ)

of K-bases of L, the code (ExtE ◦ evB ◦Φα)(C) = Matα,B,E(C) ⊆ (Kn×n)ℓ is also MSRD. This
is due to the fact that the map

ExtE ◦ evB ◦Φα : (L[X; θ]/(HΛ(X)),dΛ) −→ ((Kn×n)ℓ,dm)

is a K-linear isometry. Furthermore, the code Matα,B,E(C)
⊥m is also MSRD, due to [10,

Theorem VI.1].4 Now using Proposition 5.6 and Theorem 5.5, we get

Matα,B,E(C)
⊥m = (ExtE(C(α,B)))⊥m = ExtE∗(C(α,B)⊥v)

= ExtE∗(C⊥(α−1,B∗)) = Matα−1,B∗,E∗(C⊥).

Since also the map

ExtE∗ ◦ evB∗ ◦Φα−1 : (L[X; θ]/(HΛ(X)),dΛ) −→ ((Kn×n)ℓ,dm)

is a K-linear isometry, we can conclude that C⊥ is MSRD. �

Remark 5.8. In the proof of Theorem 5.7 we relied on the duality statement of [10, Theorem
VI.1] in the matrix setting, although the duality of MSRD codes was already proved in [30,
Theorem 5] in the vector framework. However, the latter result was only given for L-linear
codes, while the one in [10] was extended to K-linear sum-rank metric codes.

4The result in [10] is only stated for K = Fq, but the proof can be adapted straightforwardly to any field K.
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As observed in Remark 5.4, it is clear that a duality theory based on the bilinear form
〈·, ·〉srk is not “monomial-friendly” – that is, the monomial basis is not orthonormal with
respect to 〈·, ·〉srk,L – and this makes the computations more complicated. The bilinear form
〈·, ·〉Λ is indeed more natural in this setting, as it allows to show straightforwardly that the
dual of a Linearized Reed-Solomon code is equivalent to a Linearized Reed-Solomon code.

Theorem 5.9. Let k ≤ ℓn be a positive integer. Then

(Cθ
k)

⊥ = Cθ
ℓn−k ·X

k = Xk · Cθ
ℓn−k.

Proof. This is immediate, since (Cθ
k)

⊥ = 〈{Xi : k ≤ i ≤ ℓn− 1}〉L. �

Remark 5.10. In [33, Theorem 4] it was shown that the dual of a Linearized Reed-Solomon
code over a finite field is in turn a Linearized Reed-Solomon code, in the vector framework.
The hypothesis of working over a finite field could not be removed, since the proof relies on
the choice of a suitable primitive element of L = Fqn . Our approach is more intrinsic and
natural, and allows to show the same result over any cyclic extension of fields. Moreover,
since wtΛ(X

k) = ℓn, then, by Theorem 4.26, (Cθ
k)

⊥ is equivalent to Cθ
ℓn−k. In order to get

the result on the vector representation as the one in [33, Theorem 4], at this point one can
simply use Theorem 5.5, obtaining that Cθ

k(α,B)⊥v = D(α−1,B∗), where D = Cθ
ℓn−k · Xk.

It is not difficult to check that D(α−1,B∗) = Cθ
ℓn−k(α

−1,E), where E = (E1, . . . , Eℓ) and

Ei = Nk
θ(α

−1
i ) · θk(B∗

i ) for every i ∈ {1, . . . , ℓ}.

The following is a very easy calculation showing that the adjoint of a linearized Reed-
Solomon code is equivalent to a linearized Reed-Solomon code.

Proposition 5.11. Assume that Λ is a subgroup of K∗, and let k ≤ ℓn be a positive integer.
Then

(Cθ
k)

⊤ = Cθ
k ·X

ℓn−k+1 = Xℓn−k+1 · Cθ
k .

6. Twisted Linearized Reed-Solomon Codes

In this section we introduce a twisted version of linearized Reed-Solomon codes in the sum-
rank metric, which generalizes the notion of twisted Gabidulin codes defined in [48]. We will
show that, under certain assumptions, these codes are maximum sum-rank distance codes.
Moreover, we will see that when we specialize our construction to only one block, this results
in a twisted Gabidulin code. Note that for the moment we are still considering a general cyclic
Galois extension L/K.

6.1. Definition and Properties. We start with a preliminary result that generalizes [48,
Lemma 3].

Proposition 6.1. Let Λ ⊆ K∗ and let F (X) = f0 + . . . + fkX
k be such that k = deg(F ) =

∑

λ∈Λ dλ(F ). Then

NL/K(f0/fk) = (−1)kn
∏

λ∈Λ

λdλ(F ).

Proof. Assume that k =
∑

λ∈Λ dλ(F ) =
∑

λ∈Λ dimL(ker(AF − λIk)). Therefore, by Theorem

3.10, the set Λ := {λ ∈ Λ | dλ(F ) > 0} is the set of eigenvalues for AF , where each eigenvalue
λ has multiplicity dλ(F ). This implies that

det(AF ) =
∏

λ∈Λ

λdλ(F ).

On the other hand, by definition of the matrix AF ,

det(AF ) =

n−1
∏

i=0

det(θi(CF )) =

n−1
∏

i=0

θi(det(CF )) = NL/K((−1)kf0/fk) = (−1)knNL/K(f0/fk).

Combining the two equalities we obtain the desired result. �
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Definition 6.2. Let k, n, ℓ be positive integers with 1 ≤ k ≤ ℓn. Let Λ = {λ1, . . . , λℓ} ⊆ K∗

be a finite set. Furthermore, let η ∈ L such that (−1)kn NL/K(η) 6∈ 〈Λ〉, where 〈Λ〉 denotes
the multiplicative subgroup of K∗ generated by Λ. The code

Lθ
k(η, h) :=

{

f0 + . . .+ fk−1X
k−1 + ηθh(f0)X

k | fi ∈ L
}

⊆ L[X; θ]/(HΛ(X))

is called a twisted linearized Reed-Solomon code.

Theorem 6.3. The code Lθ
k(η, h) is a maximum sum-rank distance code.

Proof. First, notice that Lθ
k(η, h) is K-linear, with dimK(L

θ
k(η, h)) = nk = [L : K]k. Therefore,

by Theorem 4.20 we need to prove that for every F ∈ Lθ
k(η, h) we have wtΛ(F ) ≥ ℓn− k+ 1.

Observe that, by definition of Fα, we have

wtΛ(F ) =

ℓ
∑

i=1

(n− dimK(ker(Fαi)) = ℓn−
ℓ

∑

i=1

dλi
(F ),

where the last equality comes from Proposition 3.7. If deg(F ) ≤ k−1, then by Theorem 3.10,

we have the desired inequality. Hence, assume that deg(F ) = k. If
∑ℓ

i=1 dλi
(F ) = k, then by

Proposition 6.1 we must have

(−1)knNL/K(η) = (−1)knNL/K(f0/fk) =
ℓ
∏

i=1

λ
dλi(F )

i ,

which contradicts the assumption on η. �

Remark 6.4. If we set ℓ = 1 and choose α = α1 = 1, then Lθ
k(η, h) is simply the twisted

Gabidulin code Hθ
k(η, h). Moreover, we can see that if we choose η = 0, then Lθ

k(0, h) = Cθ
k is

a linearized Reed-Solomon code. For this reason, we will refer to nontrivial twisted linearized

Reed-Solomon codes to denote those with η 6= 0.

Remark 6.5. If we set L = K – or equivalently θ = id – the sum-rank metric is in fact just
the Hamming metric. Moreover, in this case, the code Lid

k (η, h) = Lid
k (η, 0) coincides with the

twisted Reed-Solomon code proposed in [8, Definition 7]. Also the condition on η in Definition
6.2 turns out to be the same as the one proposed there. See also [7].

We now illustrate how to represent twisted linearized Reed-Solomon codes also in the vector
and matrix frameworks with the aid of the following example.

Example 6.6. Let us fix the same setting used in Examples 4.11, 4.12 and 4.14, that is
K = F5, L = F53 with γ primitive element of L which is a root of y3 + 3y + 3. However,
this time we choose ℓ = 2 with α = (1, 4), and hence Λ = {1, 4}. Let us take a twisted
linearized Reed-Solomon code which is linear over L = F53 , that is with h = 0. Observe that
NL/K(2) = 3 and consider the code

C := Lθ
2(2, 0) = {f0 + f1X + 2f2X

2 | f0, f1 ∈ F53} = 〈X, 1 + 2X2〉F
53
.

By Theorem 6.3, Lθ
2(2, 0) is a MSRD code, with minimum sum-rank distance dΛ(C) = 5. Let

B = (1, γ, γ2) and define B = (B,B). We now compute the vector representation with respect
to B and α. First, let us call F (X) := X and G(X) := 1 + 2X2 and compute

Φ(F1) = θ, Φ(G1) = 2θ2 + id,
Φ(F4) = 2θ, Φ(G4) = 3θ2 + id.

Then,

C(α,B) = 〈evB(Φα(F )), evB(Φα(G))〉F
53

= Rowsp

(

1 γ5 γ10 γ31 γ36 γ41

γ93 γ115 γ29 γ62 γ54 γ51

)

.
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Let u and v denote the first and the second row of the above matrix, and let us fix E := B.
Then we have

ExtB(u) =









1 4 3
0 4 2
0 2 0



 ,





2 3 1
0 3 4
0 4 0







 ,

ExtB(v) =









3 2 2
0 1 1
0 1 4



 ,





4 3 3
0 1 4
0 4 3







 .

If M denotes the companion matrix of the polynomial y3 + 3y + 3, that is

M =





0 0 2
1 0 2
0 1 0



 ,

then we have

Matα,B,B(C) = 〈{M i · ExtB(u) : 0 ≤ i ≤ 2} ∪ {M i · ExtB(v) : 0 ≤ i ≤ 2}〉F5
.

Remark 6.7. Twisted Gabidulin codes have been generalized to a wider class of MRD codes,
called additive (generalized) twisted Gabidulin codes, by Otal and Ozbudak in [42]. Their main
idea is that to extend the definition to any automorphism of L acting on the coefficient of Xk.
Formally, they considered the set of θ-polynomials

{

f0id + . . .+ fk−1θ
k−1 + ητh(f0)θ

k | fi ∈ L
}

⊆ L[θ],

where τ is any element in Aut(L). If we call u := [L : Lτ ] and we assume that (−1)uk NL/K(η) 6=
1, they showed that the resulting code is MRD. Also in our setting we can easily generalize
our family of codes to a class of additive twisted linearized Reed-Solomon codes. If
we fix τ ∈ Aut(L) of finite order u, we can define the code

Lτ
k(η, h) :=

{

f0 + . . .+ fk−1X
k−1 + ητh(f0)X

k | fi ∈ L
}

⊆ L[X; θ]/(HΛ(X)).

It is easy to verify that under the assumption that (−1)uk NL/K(η) /∈ 〈Λ〉, the resulting code
is maximum sum-rank distance. Furthermore, such a code is Lτ -linear.

6.2. Existence and Parameters. In principle, one could define the code Lθ
k(η, h) without

any assumption on the value η. However, in this case it is not guaranteed that we have a
maximum sum-rank distance code. Indeed, the condition

(−1)knNL/K(η) 6∈ 〈NL/K(α1), . . . ,NL/K(αℓ)〉 (12)

is used in the proof of Theorem 6.3 to show that the code is maximum sum-rank distance.
This condition could produce a restriction on ℓ, that is the number of blocks allowed in the
construction of nontrivial twisted linearized Reed-Solomon codes. This clearly depends on
how big the subgroup 〈Λ〉 is. For instance, if we choose Λ such that 〈Λ〉 = K∗, then the
only element η satisfying (12) is η = 0, and hence we cannot construct any nontrivial twisted
linearized Reed-Solomon code of the form Lθ

k(η, h).
Here we investigate the possible values ℓ and the existence of twisted linearized Reed-

Solomon codes.

Proposition 6.8.

(1) If K = Fq, then we can construct a nontrivial twisted linearized Reed-Solomon code

Lθ
k(η, h) with ℓ blocks satisfying (12), whenever ℓ ≤ q−1

r , where r is the smallest prime
dividing (q − 1).

(2) If K is an infinite field admitting a cyclic Galois extension L of degree n, then we can
construct a nontrivial twisted linearized Reed-Solomon code Lθ

k(η, h) with ℓ blocks
satisfying (12), for every ℓ ∈ N.
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Proof. According to (12), we can construct nontrivial twisted linearized Reed-Solomon if and
only if there exists λ1, . . . , λℓ distinct elements of K∗ all belonging to a proper subgroup H of
K∗.

(1) In the case of finite fields, the biggest proper subgroup of F∗
q has cardinality

q−1
r , where

r is the smallest prime dividing q − 1.
(2) If K is an infinite field, then it is well-known that K∗ is not finitely generated. Hence,

〈NL/K(α1), . . . ,NL/K(αℓ)〉 6= K∗, for any choice of ℓ ∈ N and we can always find an
element η ∈ K∗ \ 〈NL/K(α1), . . . ,NL/K(αℓ)〉.

�

Hence, if we compare twisted linearized Reed-Solomon codes with linearized Reed-Solomon
codes, Proposition 6.8 shows that the price to pay in terms of number of blocks is only in the
case of finite fields.

Remark 6.9. Part (2) of Proposition 6.8 is consistent with the fact that there exist nontrivial
twisted Gabidulin codes over a finite field Fq whenever q 6= 2. Indeed, as a particular case
of Proposition 6.8, it is possible to find a proper subgroup of F∗

q of order ℓ = 1 if and only if
q > 2, which is the same condition on the element η imposed in the definition of nontrivial
twisted Gabidulin codes.

Remark 6.10. In the case of finite fields, one could try to construct codes with the same shape
of twisted linearized Reed-Solomon codes removing the condition (12), hoping to obtain longer
MSRD codes. Indeed, this assumption is sufficient but not necessary in general for producing
MSRD codes, and it can be replaced with the condition

(−1)kn NL/K(η) /∈

{ ℓ
∏

i=1

λjii : j1, . . . , jℓ ∈ N, j1 + . . .+ jℓ = k

}

.

However, when k ≥ 3 and q ≥ 13 is odd, there is no gain in the length; see [47, Theorem 3.1].

6.3. Dual and Adjoint. In this section we conclude the study on twisted linearized Reed-
Solomon codes by deriving their dual and their adjoint codes.

Theorem 6.11. The dual code of a twisted linearized Reed-Solomon code is given by

Lθ
k(η, h)

⊥ = Lθ
ℓn−k(−θ

n−h(η), n − h) ·Xk.

Proof. It is immediate to see that every monomial λXi, with k + 1 ≤ i ≤ ℓn − 1 belongs to
Lθ
k(η, h)

⊥. It is enough to show that also every binomial of the form

Fµ(X) := µXk − θℓn−h(η)θℓn−h(µ)

belongs to Lθ
k(η, h)

⊥. Clearly Fµ(X) is orthogonal to all the monomials βXj for 1 ≤ j ≤ k−1.
It remains to show that for every β ∈ L we have

〈Fµ(X), Gβ(X)〉Λ = 0,

where Gβ(X) = ηθh(β)Xk + β. An easy computation shows that

〈Fµ(X), Gβ(X)〉Λ = TrL/K(〈F
µ(X), Gβ(X)〉Λ,L) = TrL/K(µηθ

h(β)− θn−h(η)θn−h(µ)β) = 0.

Thus, we have

Lθ
k(η, h)

⊥ =
{

f0X
k + f1X

k+1 + . . .+ fn−k+1X
ℓn−1 − θn−h(f0)θ

n−h(η) : fi ∈ L
}

= Lθ
ℓn−k(−θ

n−h(η), n − h) ·Xk.

�

Theorem 6.12. Let Λ be a cyclic group. Then, the adjoint code of a twisted linearized
Reed-Solomon code is given by

Lθ
k(η, h)

⊤ = Lθ
k(θ

n−k(η−1), k − h) ·Xℓn−k.
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Proof. By Theorem 4.17, the adjoint of any monomial Xi is (Xi)⊤ = Xℓn−i. Morover, for
every polynomial Gβ(X) := ηθh(β)Xk + β, we can compute the adjoint using again Theorem
4.17 and obtaining

(Gβ)⊤(X) = β + θn−k(η)θn−k+h(β)Xℓn−k.

Thus, we have

Lθ
k(η, h)

⊤ =
{

θn−k(η)θn−k+h(f0)X
ℓn−k + f1X

ℓn−k+1 + . . .+ fk−1X
ℓn−1 + f0 : fi ∈ L

}

=
{

f0X
ℓn−k + f1X

ℓn−k+1 + . . .+ fk−1X
ℓn−1 + θn−k(η−1)θk−h(f0) : fi ∈ L

}

= Lθ
k(θ

n−k(η−1), k − h) ·Xℓn−k.

�

7. The Analogue of Trombetti-Zhou Construction and New MDS Codes

Another family of MRD codes was given by Trombetti and Zhou in [52], and it was based
on the same auxiliary result that we generalized in Proposition 6.1. In this section we provide
the same construction for the sum-rank metric, and show that they are as well MSRD. As a
byproduct, this construction also produces a new family of additive MDS codes.5

7.1. Twisted Linearized Reed-Solomon Codes of TZ-Type. Since we have that L/K is
a cyclic Galois extension of degree n, then for every divisor s of n there exists an intermediate
field K ⊆ E ⊆ L such that [L : E] = s and E/K is Galois with Gal(E/K) = 〈θs〉.6 Moreover,

we will write K(2) to denote the multiplicative subgroup of K∗ consisting of all the squares,
that is

K(2) := {a2 : a ∈ K∗}.

Definition 7.1. Let n = 2t and let E be an intermediate extension such that [L : E] = 2. Let

γ ∈ L∗ be such that NL/K(γ) /∈ K(2). Moreover, assume that Λ ⊆ K(2). The code

Dθ
k(γ) :=

{

f0 + . . .+ fk−1X
k−1 + γfkX

k : f1, . . . , fk−1 ∈ L, f0, fk ∈ E
}

⊆ L[X; θ]/(HΛ(X))

is called twisted linearized Reed-Solomon code of TZ-type.

Also in this case we can prove that these codes are MSRD using Proposition 6.1.

Theorem 7.2. The code Dθ
k(γ) is a maximum sum-rank distance code.

Proof. First, observe that the code Dθ
k(γ) is E-linear, and dimE(D

θ
k(γ)) = 2k. Hence, by

Theorem 4.20, we need to show that dΛ(D
θ
k(γ)) = ℓn − k + 1. Let F (X) = f0 + . . . +

fk−1X
k−1 + γfkX

k ∈ Dθ
k(γ) be a nonzero skew polynomial. If fk = 0, then degF (X) ≤ k− 1

and by Theorem 3.10 we have wtΛ(F ) ≥ ℓn − k + 1. Hence, assume that fk 6= 0. If by
contradiction we have wtΛ(F ) = ℓn − k, this means that deg(F ) = dimK(ker(F )) = k. By
Proposition 6.1 we must have

NL/K(f0/γfk) = (−1)2tk
ℓ
∏

i=1

λ
dλi(F )

i =

ℓ
∏

i=1

λ
dλi (F )

i ∈ K(2).

On the other hand, we have

NL/K(f0/γfk) = NL/K(γ)
−1 NL/K(f0/fk)

= NL/K(γ)
−1NE/K(NL/E(f0/fk))

= NL/K(γ)
−1NE/K(f0/fk)

2 /∈ K(2),

which yields a contradiction. �

5An additive code is a code which is linear over the prime field.
6Here, with a slight abuse of notation, we are writing θt using θ also to denote the restriction of θ to E.
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Remark 7.3. Also in this case, if we fix ℓ = 1 and choose α = α1 = 1, the resulting code
coincides with the code introduced by Trombetti and Zhou in [52], with respect to the rank
metric.

We now state the results on the dual and the adjoint of a twisted linearized Reed-Solomon
code of TZ-type. The proof are omitted since they can be derived with straightforward
computations as done in Theorems 6.11 and 6.12.

Proposition 7.4. The dual code of a twisted linearized Reed-Solomon code of TZ-type is
given by

Dθ
k(γ)

⊥ = Dθ
ℓn−k(−γ) ·X

k.

Proposition 7.5. Let Λ be a cyclic group. Then, the adjoint code of a twisted linearized
Reed-Solomon code of TZ-type is given by

Dθ
k(γ)

⊤ = Dθ
k(θ

n−k(γ−1)) ·Xℓn−k.

As we did for twisted linearized Reed-Solomon codes in Proposition 6.8, here we determine
the possible values ℓ and the existence of twisted linearized Reed-Solomon codes of TZ-type.

Proposition 7.6.

(1) If K = Fq, then we can construct a twisted linearized Reed-Solomon code of TZ-type

Dθ
k(γ) with ℓ blocks whenever q is odd and ℓ ≤ q−1

2 .
(2) If K is an infinite field with char(K) 6= 2 admitting a cyclic Galois extension L of

degree n, then we can construct a twisted linearized Reed-Solomon code of TZ-type
Dθ

k(γ) with ℓ blocks, for every ℓ ∈ N.

Proof. By definition, for the existence of an element γ such that NL/K(γ) /∈ K(2), we need

that K(2) ( K∗, and this is possible if and only if char(K) 6= 2.

(1) In the case of finite fields, the subgroup F
(2)
q has cardinality q−1

2 , and therefore we can

choose as Λ a set of ℓ elements for any ℓ ≤ q−1
2 .

(2) If K is infinite and char(K) 6= 2, then |K∗/K(2)| = 2, and thus we can choose as Λ any
set of ℓ elements in K∗, for every ℓ ∈ N.

�

7.2. New Additive MDS Codes. The importance of MDS codes in coding theory is un-
deniable. These are codes meeting the Singleton bound with equality, and they have the
greatest error correction and detection capabilities in the Hamming metric, for the given size
and length. The most prominent faily of MDS codes is certainly given by Reed-Solomon
codes. These codes are linear over the underlying field, as many of the codes studied in the
literature, due to the efficiency of encoding and decoding operations. However, also additive
MDS codes also play an important role and they have been investigated also for their geomet-
ric equivalent interpretation as arcs of projective subspaces; see [5]. In addition, it was shown
in [23] that the existence of additive MDS codes is equivalent to the existence of quantum
stabilizer MDS codes.

We now focus on the special case of our code framework in which the block dimension is
n = 1. Although it can be derived from the general setting explained in Definition 7.1, here
we give a detailed description, since what we are going to obtain is a new family of additive
MDS codes and we want to make our best to have a self-contained subsection. We will focus
only on the finite field case, since MDS codes over infinite fields are probably less interesting.

The special case of block dimension equal to 1 coincides with the Hamming metric. The
connection is easily explained by specializing the isomorphism given in Theorem 4.1 to the
case of commutative polynomials with K = L and θ = id. Let Λ = {λ1, . . . , λℓ} ⊆ L be a set
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of distinct evaluation points, and let us denote by dH the Hamming distance on Lℓ, that is
the distance map defined as dH(u,v) = wtH(u− v), where

wtH((v1, . . . , vℓ)) = |{i : vi 6= 0}|.

In this case, we have that

HΛ(X) =

ℓ
∏

i=1

(X − λi),

and the isomorphism of Theorem 4.1 can be rewritten as

evλ : L[X]/(HΛ(X)) −→ Lℓ,
F (X) 7−→ (F (λ1), . . . , F (λℓ)),

where λ = (λ1, . . . , λℓ) This isomorphism is also an isometry, since one can verify, using the
Chinese Remainder Theorem, that

wtΛ(F (X)) = |{i : F (λi) 6= 0}| = wtH(evλ(F (X))).

We now fix q to be an odd prime power and we assume now that L = K = Fq2 . Moreover,
we also consider the subfield E = Fq. The only difference with respect to Definition 7.1 is
that in this case here the field E = Fq is strictly contained in K = Fq2 and not viceversa.
Nevertheless, this is not going to affect the construction, which is given below.

Definition 7.7. Let 1 ≤ k ≤ ℓ − 1 be positive integers. Let γ ∈ Fq2 \ (Fq2)
(2), and let

Λ ⊆ (Fq2)
(2) with |Λ| = ℓ. The code

Dk(γ) :=
{

f0 + . . .+ fk−1X
k−1 + γfkX

k : f1, . . . , fk−1 ∈ Fq2 , f0, fk ∈ Fq

}

⊆ Fq2 [X]/(HΛ(X))

is called a Twisted Reed-Solomon code of TZ-type.

We now prove that these codes are maximum distance separable (MDS).

Theorem 7.8. The code evλ(Dk(γ)) is an Fq-linear code of length ℓ, size q2k and minimum

Hamming distance ℓ − k + 1. In other words, evλ(Dk(γ)) is an Fq-linear (ℓ, q2k, ℓ − k + 1)q2
MDS code.

Proof. It is clear that the set Dk(γ) is Fq-linear and has size q2k. Moreover, the map evλ is

clearly injective. We only need to prove that, for each F (X) = f0+ . . .+fk−1X
k−1+γfkX

k ∈
Dk(γ), we have |{i : F (λi) = 0}| ≤ k+1. If fk = 0, then degF (X) ≤ k− 1, and hence clearly
|{i : F (λi) = 0}| ≤ k + 1. Now, assume that fk 6= 0 and |{i : F (λi) = 0}| ≤ k + 1. Therefore,
there exists a subset Λ′ ⊆ Λ with |Λ′| = k such that

(γfk)
−1F (X) =

∏

λ∈Λ′

(X − λ).

Thus, the degree-0 coefficient of the polynomial (γfk)
−1F (X) is equal to

(−1)k
∏

λ∈Λ′

λ ∈ (Fq2)
(2).

On the other hand, the degree-0 coefficient of the polynomial (γfk)
−1F (X) is also equal to

f0(fkγ)
−1 which does not belong to (Fq2)

(2), since f0/fk ∈ F∗
q and F∗

q ⊆ (Fq2)
(2). This yields

a contradiction and proves the claim. �

8. Conclusions and Future Work

In this paper we have proposed a new natural algebraic framework to study codes endowed
with the sum-rank metric. The ambient space is a K-algebra obtained as the quotient of a skew
polynomial ring over a field extension L of K by a suitable two-sided ideal. This space is then
proved to be isometric to the classical vector framework endowed with the sum-metric, as well
as the matrix framework. This result is based on recent works by McGuire and Sheekey [35];
see also [12]. We have then studied sum-rank metric codes in this setting and their duality
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theory. Our approach appears very natural as a generalization of the polynomial approach for
codes in the Hamming metric, and of the q-linearized polynomial approach for rank-metric
codes over finite fields. We have then introduced twisted linearized Reed-Solomon codes, which
are the counterpart of Sheekey’s twisted Gabidulin codes. With an argument that resembles
the proof that twisted Gabidulin codes are optimal in the rank metric (i.e. MRD), we were
able to prove that twisted linearized Reed-Solomon codes are maximum sum-rank distance
codes. The same strategy also allows to show that the same construction given by Trombetti
and Zhou (see [52]) in the rank metric setting produces here a second family of MSRD codes.
As a byproduct, in this way we derive a new family of Fq-linear MDS codes in the Hamming

metric over Fq2 of length up to q2−1
2 .

In light of this new point of view, it is natural to ask which properties sum-rank metric
codes share with rank-metric and Hamming-metric codes, and which constructions of codes
can be borrowed. In [26] and [25], two new families of MRD codes over finite fields were
introduced, which were recently generalized to a new larger family in [39]. These codes, in
the language of skew polynomials, can be described as follows. Let n = 2t with t ≥ 3, q be an
odd prime power and fix any h ∈ Fqn such that Nqn/qt(h) = −1. Define the skew polynomial

ψh,t(X) = X +Xt−1 + hθ(h)Xt+1 + hθ−1(h−1)X2t−1.

Then, the rank-metric code

〈1, ψh,t(X)〉Fqn
⊆ Fqn [X; θ]/(Xn − 1),

is an MRD code. It would be interesting to determine whether one can adapt this construction
to develop a more general family of MSRD codes in L[X; θ]/(HΛ(X)).
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