Twisted speckle entities inside wave-front reversal mirrors

A. Yu Okulov*
General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia

(Received 10 March 2009; revised manuscript received 11 June 2009; published 30 July 2009)

Abstract

The previously unknown property of the optical speckle pattern reported. The interference of a speckle with the counterpropagating phase-conjugated (PC) speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of a randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wave-front reversal. These numerically generated interference patterns are relevant to the Brillouin PC mirrors and to a four-wave mixing PC mirrors based upon laser trapped ultracold atomic cloud.

DOI: 10.1103/PhysRevA.80.013837
PACS number(s): 42.30.Ms, 42.50.Tx, 42.65.Hw, 42.65.Es

Phase singularities of the optical beams attracted a substantial interest in recent decades from the point of view of optical information processing [1]. Helical wave fronts had been shown to affect a processes of the second-harmonic generation [1], image processing with a photorefractive mirrors [2], phase-conjugated (PC) reflection via nondegenerate four-wave mixing in a cold atoms cloud [3]. The photons with helical wave function had been shown to possess quantized angular momentum \hbar per photon [4]. The optical nonlinearities are capable to transfer the angular momentum from photons to an ensemble of ultracold atoms [3]. This effect is considered as a possible tool for the light storage in addition to the slow light technique based on electromagnetically induced transparency (EIT) [5,6]. Recently the angular momentum transfer to BEC cloud of sodium atoms via stimulated Raman scheme had been observed [7]. Of special interest is the nondegenerate four-wave mixing a cold atomic cloud and PC reflection of the optical vortices (OVs), i.e., Laguerre-Gaussian (LG) beams with helical wave fronts [3]. The reflection of the phase-conjugated LG photons from 10^{7} cesium atoms cooled down to $T \approx 10^{-3} \mathrm{~K}$ and reversal of the orbital angular momentum (OAM) had been interpreted as a consequence of internal macroscopic rotations inside atomic cloud [8]. Afterwards these experimental results were analyzed from a point of view of the angular momentum conservation for the incident and reflected photons from a Brillouin PC mirror [9]. The goal of the current communication is to study the spiral interference patterns with the period of $\lambda / 2$ around the nodes of optical speckle pattern. These coarse interference patterns turn in rotation the Brillouin medium [10] producing the acoustical vortices carrying OAM [11].

The traditional experimental and numerical technique for the visualization of the optical phase singularities is based on mixing of a wide quasi-plane-wave reference optical beam with a speckle signal [12]. The dark spots (zeros of amplitudes) appearing in intensity distribution are collocated with the helical ramps in phase distribution. The current communication reports a theoretical description of the alternative visualization technique which uses the interference of the speckle wave with the counterpropagating phase-conjugated

[^0]one. In fact this technique is automatically implemented in a wavefront reversing mirrors where a phase-conjugated wave produces near the bright spot the Bragg grating of dielectric permittivity of the form $\cos \left[\left(k_{p}+k_{s}\right) z\right]$. In the vicinity of the dark line the modulation of the light intensity is more complex: the Bragg grating is transformed into spirals of the form $\cos \left[\left(k_{p}+k_{s}\right) z \pm 2 \ell \phi\right]$, where ϕ is the local azimuthal angle, ℓ is topological charge of the phase singularity, and k_{p} and k_{S} are wave numbers of incident (pump) and reflected (Stokes) waves, respectively $[9,10]$. In the real PC mirrors the contrast of such gratings may be reduced due to the interference with a non-phase-conjugated component of the radiation.

The feature compared to the previous findings $[12,13]$ is that the ideal (or close to an ideal) PC mirror visualizes in the speckle patterns a peculiar optical entities, which might be called the ropes. Typically each such a rope is composed of a 2 or 3 optical vortex lines (Fig. 1). In contrast to the well-studied straight optical vortex lines, e.g., LG $[1,4]$, the OV in a speckle field are self-twisted as it seen from Fig. 2. Having in mind the well-known fact [12] that OV appear and annihilate as a pair of whirls with opposite circulations [9,10$]$, it is easy to conclude that at least two adjacent OV with opposite topological charges are needed to produce a rope (Fig. 3). The mean length of each OV in Z direction is the Rayleigh range of a speckle pattern $L_{R} \approx D^{2} / \lambda$, where D is an average transverse size [in the plane (X, Y)] of the OV core and the wavelength $\lambda=2 \pi / k_{p}$. The Fig. 1 shows the numerically generated fragment of a speckle pattern which contains three ropes each composed of a set of a vortex lines. Let us describe the numerical procedure for generating the interference pattern of the two counterpropagating speckle fields.

The standard model of the phase conjugation via stimulated Brillouin scattering (SBS) is the Bragg reflection from the sound grating with period $\lambda / 2$ moving with the speed of sound $v_{a c}$ [13]. Due to the conservation of momentum $\vec{p}=\hbar \vec{k}_{p}=\hbar \vec{k}_{s}+\hbar \vec{k}_{a c}$ the length of the wave vector of sound $k_{a c}$ is equal to doubled length of wave vector of pump light k_{p} with an accuracy about 10^{-5} [14]. The Doppler effect defines the small (of the order of 10^{-5}) frequency shift of the reflected (Stokes) wave $\omega_{a c}=2 \omega_{p} n v_{a c} / c$, where n is refractive index of medium, c is the speed of light in vacuum, and ω_{p}, ω_{S} is the frequency of the pump and Stokes light, respectively.

FIG. 1. Grayscale intensity plot for a small volume of a speckle pattern inside PC mirror in (X, Z) plane $(Y=23 \mu \mathrm{~m})$. The mean transverse size of a speckle is $D \sim 8 \mu \mathrm{~m}$. The mean longitudinal length of a speckle entity is of the order of the Rayleigh range $L_{R} \approx D^{2} / \lambda$ for $\lambda \sim 1 \mu \mathrm{~m}$. The size of the volume is $32 \mu \mathrm{~m}$ in transverse (X, Y) directions and $128 \mu \mathrm{~m}$ in longitudinal (Z) direction. The step of longitudinal modulation $\cos \left[\left(k_{p}+k_{s}\right) z \pm 2 \phi\right]$ induced by the interference of counterpropagating pump and Stokes waves is enlarged here eight times for visualization purposes. The characteristic π phase jump is clearly visible in between adjacent Bragg's cosine-modulated roll patterns.

The evolution in space of the two counterpropagating paraxial laser beams inside Brillouin active medium obeys to Maxwell equations with the cubic nonlinear polarization induced by electrostrictive effect [13]. The linearly polarized pump field E_{p} moves in a positive direction of Z axis, the reflected Stokes field E_{S} with the same polarization propagates in opposite direction(Fig. 1). The acoustic field Q is excited via electrostriction [13,15]. The three-wave equations for the interaction of E_{p}, E_{S} with adiabatic elimination of the $Q \approx E_{p} E_{S}^{*}$ are

$$
\begin{align*}
& \frac{\partial E_{p}(z, x, y, t)}{\partial z}+\frac{i}{2 k_{p}} \Delta_{\perp} E_{p}=-\frac{\gamma^{2} \omega_{p} k_{a}^{2}}{32 \rho_{0} n c \omega_{a c}}\left|E_{S}\right|^{2} E_{p} \tag{1}\\
& \frac{\partial E_{S}(z, x, y, t)}{\partial z}-\frac{i}{2 k_{S}} \Delta_{\perp} E_{S}=-\frac{\gamma^{2} \omega_{S} k_{a}^{2}}{32 \rho_{0} n c \omega_{a c}}\left|E_{p}\right|^{2} E_{S} \tag{2}
\end{align*}
$$

where $\gamma=\rho(\partial \epsilon / \partial \rho)_{S}$ is the electrostrictive coupling constant and ρ_{0} is the unperturbed density of medium [15]. Consider the phase conjugation with a random-phase plate which produces the chaotic transverse modulation of the phase of the incident E_{p} with a characteristic size of the transverse inho-

FIG. 2. The plot of the light intensity maxima at a given moment t in a small volume inside the PC mirror. The four pairs of spiral interference patterns with opposite handedness are located randomly in space. Their diameters and directions are changed smoothly due to diffraction. The step of longitudinal modulation $\cos \left[\left(k_{p}+k_{s}\right) z \pm 2 \phi\right]$ is enlarged here 16 times.
mogeneity of the order of 5-50 $\mu \mathrm{m}$ [13]. In such a case the complex envelope amplitude of the inhomogeneous speckle field E_{p} at the entrance to PC mirror is given as a multimode random field [16]:

$$
\begin{align*}
E_{p}(\vec{r}, z=0) \approx & E_{p}^{0} \sum_{0<j_{x}, j_{y}<N_{g}} A_{j_{x} j_{y}} \\
& \times \exp \left[i 2 \pi\left\{\frac{x j_{x}}{p_{x}} \kappa_{j_{x}}+\frac{y j_{y}}{p_{y}} \kappa_{j_{y}}+i \theta_{j_{x}, j_{y}}\right\}\right], \tag{3}
\end{align*}
$$

where random phases $\theta_{j_{x} j_{y}}$ are the random numbers from interval $[0, \pi], A_{j_{x}, j_{y}}$ are the real amplitudes of the spatial harmonics, p_{x}, p_{y} are maximal transverse sizes [in the (X, Y) plane], $\vec{r}=(x, y)=(r, \phi)$, and j_{x}, j_{y} are integers corresponding to $N_{g}=(16,32,64)$ plane waves with random phases $\theta_{j x, j y}$. The random numbers $\kappa_{j_{x}}=p_{x} / p_{j x}^{\prime}$ and $\kappa_{j_{y}}=p_{y} / p_{j y}^{\prime}$ having the uniform distribution in the small vicinity of a 1 are responsible for a random tilt of a plane wave constituting the spatial Fourier spectrum of the light transmitted through a randomphase plate. For the paraxial beam propagation the amplitude and phase structure of the complex field E_{p} have the following form [17] in an arbitrary Z plane:

$$
\begin{align*}
E_{p}(\vec{r}, z>0) \approx & E_{p}^{0} \exp \left(i k_{p} z\right) \sum_{0<j_{x} j_{y}<N_{g}} \exp \left[i \theta_{j_{x} j_{y}}\right] A_{j_{x} j_{y}} \\
& \times \exp \left[i 2 \pi\left\{\frac{x j_{x}}{p_{j x}^{\prime}}+\frac{y j_{y}}{p_{j y}^{\prime}}+\frac{z}{2 k_{p}}\left(\frac{j_{x}^{2}}{p_{j x}^{\prime 2}}+\frac{j_{y}^{2}}{p_{j y}^{\prime 2}}\right)\right\}\right] . \tag{4}
\end{align*}
$$

The interference pattern $I(\vec{r}, z)$ is responsible for the sound grating in a Brillouin PC mirror. For the grating produced by a linear superposition of the random plane waves we have

FIG. 3. Grayscale intensity plot for the variational ansatz [Eq. (7)] substituted into Eq. (5). The 128×2048 point arrays are used for the intensity distributions [Eq. (5)] in (X, Z) planes at fixed $Y=64$. The single sinusoidally modulated LG_{0}^{1} vortex line [see Eq. (7)] is shown for (a) $M=0.1 D$ and (b) $M=D$. Two LG_{0}^{1} distant vortex lines (c) with parallel, (d) and opposite (e) topological charges $\pm \ell$ constitute the rope when the distance between them is reduced to zero (d,e). The step of longitudinal modulation is enlarged here 32 times.

$$
\begin{equation*}
I(\vec{r}, z>0) \approx\left|E_{p}(\vec{r}, z)+E_{S}(\vec{r}, z)\right|^{2} \tag{5}
\end{equation*}
$$

where the phase-conjugated Stokes wave E_{s} is given by

$$
\begin{align*}
E_{s}(\vec{r}, z>0) \approx & E_{p}^{0} \exp \left(-i k_{s} z\right) \sum_{0<j_{x}, j_{y}<N_{g}} \exp \left[-i \theta_{j_{x}, j_{y}}\right] A_{j_{x}, j_{y}} \\
& \times \exp \left[-i 2 \pi\left\{\frac{x j_{x}}{p_{j x}^{\prime}}+\frac{y j_{y}}{p_{j y}^{\prime}}+\frac{z}{2 k_{s}}\left(\frac{j_{x}^{2}}{p_{j x}^{\prime 2}}+\frac{j_{y}^{2}}{p_{j y}^{\prime 2}}\right)\right\}\right] \tag{6}
\end{align*}
$$

provided that $E_{S} \approx E_{p}^{*}$ (noiseless PC mirror). Such an approach presumes the ideally perfect phase conjugation with ultimate reflection $R=1$ or interference of the noninteracting
fields $E_{S} \sim E_{p}^{*}$ when the right hand sizes of Eq. (1) and (2) are equal to zero.

The intensity snapshots given by Eq. (5) were obtained numerically by summation of series (4) and (6) on standard Intel platform with dual-core 1.86 Ghz processor and 1 Gbyte memory using standard educational software. The numerical simulations show that optical vortex lines intertwine and form ropes. The average length of a rope is of the order of Rayleigh range D^{2} / λ. This may be interpreted as a consequence of diffractive divergence within the angle λ / D (Fig. 1). The longitudinal modulation by the Bragg factor $\cos \left[\left(k_{p}+k_{S}\right) z \pm 2 \phi\right]$ is accompanied by an additional bending and twisting at characteristic wavelength λ_{K}. The latter is of the order of a several tenth of optical λ, resembling Kelvin modes of the vortex lines $[18,19]$. The handedness of helical
ropes changes randomly from one entity to another: the clockwise and counterclockwise ropes appear with the equal probability. Despite the statistical nature of a speckle pattern (Fig. 1) the ropes are structurally stable: they appear at a different locations and have a variable sizes but their morphology is reproduced from a given statistical realization to another one.

The physical interpretation of these numerically observed patterns is given in Fig. 3 using Eq. (5) with the electrical fields $E_{p}=E_{S}^{*}$ in the form of a two overlapping elementary LG_{0}^{1} optical vortices:

$$
\begin{align*}
E_{p} \approx & \exp \left[i k_{p} z-\left(x_{1}^{2}+y_{1}^{2}\right)+i \ell \phi_{1}\right] \sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)} \\
& +\exp \left[i k_{p} z-\left(x_{2}^{2}+y_{2}^{2}\right) \pm i \ell \phi_{2}\right] \sqrt{\left(x_{2}^{2}+y_{2}^{2}\right)}, \tag{7}
\end{align*}
$$

where the location of the vortex cores $\left[x_{1} D=x+M \cos \left(2 \pi z / \lambda_{K}\right)\right],\left[y_{1} D=y+M \sin \left(2 \pi z / \lambda_{K}\right)\right]$ and $\quad\left[x_{2} D=x+M \cos \left(2 \pi z / \lambda_{K}+\pi / 2\right)\right],\left[y_{2} D=y\right.$ $\left.+M \sin \left(2 \pi z / \lambda_{K}+\pi / 2\right)\right]$ changes sinusoidally with period λ_{K} along Z axis, ϕ_{1} and ϕ_{2} are the local azimuthal angles around vortex cores. Such vortex-vortex [Fig. 3(d)] and vortex-antivortex [Fig. 3(e)] pair interference pattern is used here as a variational ansatz in Eq. (5). Figure 3 reproduces qualitatively a some features of the numerically generated speckle patterns (Fig. 1).

In summary the nontrivial topology of the multiply connected optical speckle patterns was demonstrated numerically. Using the interference with the counterpropagating phase-conjugated speckle field we have shown the hidden
twisted geometry of the multimode wave field composed of the randomly tilted plane waves [16]. Noteworthy the ropes exist without phase-conjugated counterpart: the reflection from PC mirror makes these twisted entities visible due to the characteristic π phase jump in between the adjacent Bragg's sinusoidally modulated roll patterns (Fig. 1). Thus it seems probable that a rope entities exist in a wide class of a superpositional physical fields such as an electromagnetic or acoustical ones [11]. The other most evident examples are the blackbody radiation field in a cavity or a monochromatic field in a cavity with a rough mirrors. Taking into account the phenomena of a so-called nonlinear superposition which take place for collisions of the optical solitons, vortices [20], and formation of the optical vortex lattices [21] one might expect the finding of a stable ropes in a nonlinear fields. The relevant examples are photorefractive PC mirrors [2], ultracold matter, e.g., phase-conjugating PC mirrors based on nondegenerate four-wave mixing in a trapped gases $[3,8]$ and the situations of the slow [5,6,22] and the fast light [23,24] propagation in a resonant medium.

The reported result extends the set of the possible forms of the photon's wave function. In addition to the well-known photon wave functions in the form of the elementary optical vortex lines, e.g., LG beams which possess a helical wave fronts [1,4], the twisted entities each composed of the several vortex lines offer a particular form of the photon's wave function [25,26].

This work was supported in part by the Russian Fund of Basic Research Grant No. 08-02-01229.
[1] M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2001), Vol. 42, pp. 219276.
[2] A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev. A 56, R1713 (1997).
[3] J. W. R. Tabosa and D. V. Petrov, Phys. Rev. Lett. 83, 4967 (1999).
[4] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, Phys. Rev. Lett. 88, 257901 (2002).
[5] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[6] A. B. Matsko, Y. V. Rostovtsev, M. Fleischhauer, and M. O. Scully, Phys. Rev. Lett. 86, 2006 (2001).
[7] M. F. Andersen, C. Ryu, P. Clade, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 97, 170406 (2006).
[8] J. W. R. Tabosa and A. Lezama, J. Phys. B 40, 2809 (2007).
[9] A. Yu. Okulov, J. Phys. B 41, 101001 (2008).
[10] A. Yu. Okulov, JETP Lett. 88, 487 (2008).
[11] J.-L. Thomas and R. Marchiano, Phys. Rev. Lett. 91, 244302 (2003).
[12] N. B. Baranova, B. Y. Zeldovich, A. V. Mamaev, N. F. Pilipetsky, and V. V. Shkunov, Sov. Phys. JETP 83, 983 (1982).
[13] B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Prin-
ciples of Phase Conjugation (Springer-Verlag, New York, 1985).
[14] N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A. Y. Okulov, Sov. Phys. JETP 52, 847 (1980).
[15] R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[16] A. Yu. Okulov, J. Mod. Opt. 38, 1887 (1991).
[17] A. Yu. Okulov, J. Opt. Soc. Am. B 7, 1045 (1990).
[18] M. Klawunn and L. Santos, New J. Phys. 11, 055012 (2009).
[19] L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).
[20] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
[21] A. Yu. Okulov, J. Mod. Opt. 55, 241 (2008).
[22] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[23] B. D. Clader and J. H. Eberly, J. Opt. Soc. Am. B 24, 916 (2007).
[24] A. Yu. Okulov and A. N. Oraevskii, Sov. J. Quantum Electron. 18, 233 (1988).
[25] J. E. Sipe, Phys. Rev. A 52, 1875 (1995).
[26] E. M. Lifshitz, L. P. Pitaevskii, and V. B. Berestetskii, Quantum Electrodynamics, Landau and Lifshitz Course of Theoretical Physics, Vol. 4 (Butterworth-Heineman, Oxford, 1982), Chap. 1, Secs. 6 and 8.

[^0]: *okulov@kapella.gpi.ru; http://www.gpi.ru/~okulov

