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Twisting and Unknotting Operations

Yoshiyuki OHYAMA

ABSTRACT. We define a twisting move, an (1, k)-move, on a link diagram
and consider the question as to whether or not any two links are equivalent
by this move. Moreover we show that any knot can be trivialized by at most
twice twisting operations.

1. INTRODUCTION

In this paper, we define a twisting move on a link diagram, called
an (n,k)-move, that is a +k&-full twist operation of n parallel strings.
This move is related to unknotting operations closely. In other words
an (n,k)-move induces some of unknotting operations. Then it arises a
problem as to whether or not an (n, k)-move is an unknotting operation
when natural numbers n and k are given. Moreover, if an (n, k)-move
is an unknotting operation for some n and k, can any p-component link
be deformed into a trivial link by a finite sequence of (n, k)-moves?

As an answer of the above problem, we determine the number of
equivalence classes of g-component links for an equivalence relation gen-
erated by an (n,k)-move except for some cases.
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In Section 4, we show that there exists a natural number n such
that any knot can be deformed into a trivial knot by an (n,1)-move
and an (n — 1,1)-move. Namely, at most twice twisting operations can
trivialize any knot. This is an answer for a problem given by Y. Mathieu

[4].

2. PRELIMINARY RESULTS AND (n,k)-MOVES

R.H. Fox introduced the notion of congruence classes of knots in
[3], and Y. Nakanishi and §. Suzuki showed the following result.

Definition 2.1 ([3]) Let n and g be non-negative integers. The
knot.types k and A are said to be congruent modulo (n,q), written
k = A mod(n,q), if and only if there are knots ko, ky,k2,... ki inte-
gers ¢1,¢z,...,¢;, and trivial knots my,my, ..., m; such that

(1) ki—1 and m; are disjoint,

(2) k; is obtained from ki1 by 1/¢;n-surgery along m;,

(3) the linking number lk(k;_1,m;} = 0 mod q and

(4) ko represents k and k; represents A.

Theorem 2.2 ([7]) Let n be an integer greater than ! and ¢ non-

negative integer such that (n,q) # (2,1) nor (2,2). For congruence
modulo (n,q), there ezist infinitely many distinct classes.

Moreover, Nakanishi [8] [10] showed the following theorem in the
case of (n,q) = (2,1) and (2,2).

Theorem 2.3 ([8],[10]) All knot types are congruent modulo (2,1)
and modulo (2,2).

Fox’s congruence classes are concerned with oriented knots. We can
make the following definition for unoriented links.

Definition 2.4 Let n and k be non-negative integers. The link type
L' is said to be obtained from L by an (n,k)-move, if and only if there
s a trivial knot m which bounds a disk D, such that
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(1) L and m are disjoint,

(2) L intersects D transversely at n points,

(3) L' is obtained from L by :i:l/lls:-surgery along m = 8D.
Obviously an (n, k)-move is the following local move on a link dia-

gram and a (1, k)-move cannot change the link types.

Definition 2.4’ For any integers n(2 2) and k(> 1), an (n,k)-
move is a local move on a link diagram depicled in Fig. 2.1.

— U] e

n P S twist

Fig. 2.1.

Remark 2.5 An (n + 2,k)-move induces an (n, k)-move by joining
two end points as is shown in Fig. 2.2.
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Fig. 2.2,




292 Y. Ohyama

We consider the problem as to whether or not an (n,k)-move is an
unknotting operation. And if an (n, k)-move is an unknotting operation
for some n and k, can this move deform any g-component link into a
trivial link? At first we make the following definition for local moves on
a link diagram as H. Aida did in [1] and [2].

Definition 2.8 (1) Two locel move A, B on a link diagram are
locally equivalent, written A ~* B, if and only if each move can be
realized by a finile sequence of the other.

(2) Let L* be the set of all p-component links. Two links L1,Ly € L#
are said to be (n, k)-equivalent if and only if Ly is obtained from L, by
a finite sequence of (n, k)-moves. By |L*[(n,k)|, we denote the number
of (n, k)-equivalence classes for p-component links.

Next we consider the relation between (n,k)-moves and some of
unknotting operations.

We consider six replacements appearing in the Conway Third Ident-
ity. Let Ly, Ly, Ly and L4 be four links which differ only in one place as
is shown in Fig. 2.3.

L1 L2
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/ \/
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Fig. 2.3.
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Nakanishi [9] defined a A;;-move as a local move between link dia-
grams of L; and L;, and showed that each A;;-move is an unknotting
operation. In our notation, Proposition 1 of [9] is stated as follow.

Proposition 2.7 ([9]) A;;-moves are classified to the following up
to local equivalence.

(1) Ayz-move ~* Azq-move =~ Aj3-move ~¢ Ayy-move.

(2) A14-move ~t A, -move.

Moreover Nakanishi proved the following proposition for u-com-
ponent links.

Proposition 2.8 ([8]) For the equivalence relation generated by a

Ayz-move, the number of equivalence classes for u-component links is
241,

A Ay — (Agz—)move is a A-unknotting operation {6] and a A-
unknotting operation cannot change the linking number of a link.

A Ajj-move is closely related to (n, k)-moves.

Proposition 2.9 (1) A A4-move is generated by a finite sequence
of (2.2)- and (3,2)-moves.

(2) Ayz-move ~* (3,1)-move.

Proof.

(1) is immediate from the proof of Theorem 2.3 in the case of modulo
(2,1) 8], and we have (2) from Fig. 2.4.
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Fig. 2.4.

From Propositions 2.8 and 2.9, we have Corollary 2.10.
Corollary 2.10 |£#/(3,1)| = 2#71.

Murakami [5] defined a §-unknotting operation which is a local move
on a link diagram as illustrated in Fig. 2.5.
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Fig. 2.5.

By Fig. 2.6., we have the relation between a ¥-unknotting operation
and an (n, k)-move.

Proposition 2.11 Let (3,1) -move be an oriented (3,1)-move,
where we give a parallel orientation. Then a §-unknotting operation is
locally equivalent to a (3,1)’-move.
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From now, we consider an (n,k)-move from a view of local equiv-
alence and determine the number of equivalence classes for knots and
links.

Proposition 2.12 follows from Theorem 2.2.

Proposition 2.12. Let K be the set of all knots, then we have
|K/(n,k)| = oo for k(> 3), which denotes that there ezist infinitely
many distinct classes.

By the above Proposition, if ¥ is greater than two, an (n,k)-move
is not as unknotting operation, then it is enough to consider the cases
k=1and 2.

Theorem 2.13 If n is even, (2,1)-move ~* (n,1)-move, and if n
is odd, (3,1)-move ~% (n,1)-move.

Corollary 2.14 An (n,1)-move is an unknotting operation.
Proof of Theorem 2.13 is given in Section 3.

From Theorem 2.13 and Corollary 2.10, we can determine the num-
ber of equivalence classes for £~. :

Corollary 2.15 If n is even, |L#/(n,1)] = 1, and if n is odd,
|L#/(n, 1)] = 2871

Next we consider the case & = 2. If n is even, the proof of Theorem
2.3 in [10] shows the following.

Proposition 2.16 If n is even and is greater than or equal to 6,
an (n,2)-move is an unknotting operation.

Suppose that n is odd and that a knot K’ is obtained from a knot K
by an (n,2)-move. Let G and G’ be the Georitze matrices of K and K’,
respectively. Wu showed that G’ 2 G @ (—1) in the proof of Theorem
4 in [14]. Then if n is odd, an (n,2)-move cannot change the absolute
value of the determinant of a knot. Therefore we have Theorem 2.17.

Theorem 2.17 If n is odd and K is the set of all knots, then
|K/(n,2)] = oo.
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Therefore, we determined the number of equivalence classes for £#
except for an (n,2)-move where n is even.

3. PROOF OF THEOREM 2.13

By Remark 2.5, if n is even, an {n,1)-move induces a (2,1)}-move
and if n is odd, an (n,1)-move induces a (3, 1)-move obviously. Since
a (2, 1)-move is equivalent to a move changing a crossing, a (2,1)-move
induces an (n,1)-move. Theorem 2.3 holds for an (n, 1)-move if n is even.
Therefore it is enough to show that a (3,1)}-move induces an (n,1)-move
if n is odd.

We will prove it by induction on n. Suppose a (3, 1)-move induces
a (k,1)}-move where k is odd, then we show a (3,1)-move induces a
(k +2,1)-move. A (k+ 2,1)-move is illustrated as in Fig. 3.1.

l-full ts
twist

(a) (b)

Fig. 3.1.

By the hypothesis of induction, Fig. 3.1(a) is deformed into Fig.
3.2. by a finite sequence of a (3,1)-move.
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Fig. 3.2.

We call 2 move in Fig. 3.3. an unoriented I'-move. A (3,1)-move induces
an unoriented I'-move as in shown in Fig. 3.4.

Fig. 3.3.
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Fig. 3.4.

By performing an unoriented I'-move on Fig. 3.2., we have Fig. 3.5.
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Fig. 3.5.

A (3, 1)-move induces a (2,2)-move as shown in Fig. 3.6. Since k is odd,
Fig. 3.5. is deformed into a Fig. 3.1(b) by (2,2)-moves. This completes
the proof of Theorem 2.13.
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Fig. 3.6.
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4. MATHIEU’S PROBLEM

This section is concerned with the number of disks in Definition 2.4
which are necessary to deform any knot into a trivial knot. We call a
disk D in Definition 2.4 a surgery disk. Y. Mathieu [4] raised a following
question.

Question If K is any knot in §%, can we find a surgery disk which
trivializes K'? If more than one disk is necessary to trivialize the knot,
what about the minimal number of disks?

A. Yasuhara [13] and K. Miyazaki give a negative answer for a first
half of this question, independently. For a second half, we will show
Theorem 4.1. Theorem 4.1 shows that if we choose two surgery disks
suitably, we can trivialize any knot.

Theorem 4.1 For any knot K, there exists a natural number n
which satisfies the following sequence

KD =g

where K' is a knot and O is a trivial knot, and by K ) ', we

denote that K' is obtained from K by an (n,1)-move.

To prove Theorem 4.1, we consider a certain canonical diagram of
a knot which is given by S. Suzuki [11] at first and is arranged by M.
Yamamoto [12].

Let ¢1,02,03 and o4 denote the upper, left, lower and right sides of a
rectangle g respectively. Let 7;,v,...,7x denote trivial circles such
that the diagram of yo Uy U...U 9, is given as in Fig. 4.1.
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» —GEETE—
TI TZ Tu
o
O 4
a, B, o, £, B, a..
O3
Fig. 4.1,
We divide o3 into 2u + 1 subarcs oy, 01, a3,02,...,04, 5y and oyqr.

Lemma 4.2 ([12]) Let vo,71,---,7u be as above. For any knot K
of the unknotting number at most u, there is a diagram of K represented
bY Yo, 71, - - - » Tu and mutually disjoint strips S;,..., S, in R3, satisfying
the following conditions
(1) %NS =v%nas; =g,

(2} v; meets §; in an arc §; of 85},
(3) v; does not meet S; if i # j,
(4) 8S; does not cross vo,v1,...,%. other than a; in the diagram, and

(5) K = (vU.. .Uy, U351 U...U3S5,)—Int(BiU...UB,Us U...Ub,),
where 1,7 = 1,2,...,u.

An example of a canonical diagram is illustrated in Fig. 4.2.
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Fig. 4.2.

We pay attention to oy and (2 = 1,2,...,u) and slide +; into a
position as is shown in Fig. 4.3(b).
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Fig. 4.3.
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And let ¢; be a crossing point such that v; crosses v at ¢; as a overpass
(i = 1,2,...,u). If we change crossings at all ¢;, then that diagram is
deformed into a trivial knot diagram. Therefore we have Lemma 4.3.

Lemma 4.3 Let K be a knot and u the unknotting number of K.
Then there ezists a diagram K of K such that by performing a local
move in Fig. 4.4 on K, K is deformed tnto a trivial knot diagream.

Fig. 4.4.

A local move in Fig. 4.4. is generated by a (v + 1,1)-move and a (u,1)-
move as is shown in Fig. 4.5. Therefore we have the proof of Theorem
4.1.
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