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Abstract. The twistor space Z of an oriented Riemannian 4-manifold M

admits a natural 1-parameter family of Riemannian metrics ht compatible

with the almost-complex structures J, and J2 introduced, respectively, by

Atiyah, Hitchin and Singer, and Eells and Salamon. In the present note we

describe the (real-analytic) manifolds M for which the Ricci tensor of (Z , ht)

is ./„-Hermitian, n = 1 or 2. This is used to supply examples giving a negative

answer to the Blair and Ianus question of whether a compact almost-Kähler

manifold with Hermitian Ricci tensor is Kählerian.

1.  INTRODUCTION

Given a compact symplectic manifold M, one can consider the integrals

fMsdVg and JM(s-s*)dVg , ^(resp. s* ) being the scalar (resp. *-scalar) curva-

ture, as functionals on the set of metrics associated with the symplectic structure.

D. E. Blair and S. Ianus [3] proved that the critical points of these functionals

are the associated almost-Kähler metrics for which the Ricci tensor is Hermitian

with respect to the corresponding almost-complex structure. Since the Kahler

metrics satisfy this condition, Blair and Ianus raised the question of whether

a compact almost-Kähler manifold with Hermitian Ricci tensor is Kählerian.

A purpose of this note is to show that the twistor space of a compact oriented

Riemannian 4-manifold which is Einstein, self-dual, and with negative scalar

curvature supplies a negative answer to the question above.

The twistor space Z of an oriented Riemannian 4-manifold admits a natural

1-parameter family of Riemannian metrics ht (cf., e.g. [8, 9, 13]) compatible

with the almost-complex structures Jx and J2 on Z introduced, respectively,

by Aityah, Hitchin and Singer [1], and Eells and Salamon [7]. Motivated by

the Blair and Ianus result, we consider the problem when the Ricci tensor of

(Z , ht) is ./n-Hermitian, « = 1 or 2, and prove the following theorem:

Theorem. Let M be a connected oriented real-analytic Riemannian 4-manifold.

If the Ricci tensor of the twistor space (Z , hf)  is Jn-Hermitian, then either
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(i) M is Einstein and self-dual

or

(ii) M is self-dual with constant scalar curvature s = 12/1 and, for each point

of M, at least three eigenvalues of its Ricci operator coincide.

Conversely, if M is a (smooth) Riemannian 4-manifold satisfying (i) or (ii),

then the Ricci tensor of (Z, ht) is Jn-Hermitian.

The proof is based on an explicit formula for the Ricci tensor of (Z , h() in

terms of the curvature of M [4].

Remarks. ( 1 ) Let M be an oriented Riemannian 4-manifold. If M is Einstein,

self-dual, and with negative scalar curvature 5, then (ht, J2) for t = -12/s is

an almost-Kähler structure on the twistor space Z [12]. This structure is not

Kählerian since the almost-complex structure J2 is never integrable [7]. By the

theorem, the Ricci tensor of (Z, ht) is 72-Hermitian, so, if M is compact,

(Z, ht, J2) gives a negative answer to the Blair and Ianus question. Note that

the only known examples of such manifolds M are compact quotients of the

unit ball in C with the metric of constant negative curvature or the Bergman

metric (cf., e.g. [13]).

On the other hand the classification of compact connected self-dual Einstein

4-manifolds M with nonnegative scalar curvature s is well known: If s >

0, M is the unit sphere S or the complex projective space CP with their

standard metrics [9, 11]. If 5 = 0, the universal covering of M is a jO-surface

with a Ricci flat Kahler metric or M is flat [10].

(2) Let S and S be the unit spheres of dimensions one and three. Then

M = S x S with the product-metric is a non-Einstein manifold satisfying the

conditions (ii) of the theorem. Other examples of such manifolds M can be

obtained as warped-products of S   and S   (cf. [5]).

2. Preliminaries

Let M be an oriented Riemannian 4-manifold with metric g. Then g

induces a metric on the bundle A TM of 2-vectors by g(Ax f\A2,Al/\ AA) =

l/2-det(g(At, A.)). Let V be the Riemannian connection of (M, g). For the

curvature tensor R of V , we adopt the following definition R(A, B) = V[A B]-

[VA, VB]. The curvature operator £At is the self-adjoint endomorphism of

A2 TM defined by g(ß(A A B), C A D) = g(R(A, B)C, D). The Hodge

star operator defines an endomorphism * of A TM with * = Id. Hence

A2 TM = l\2+TM ® A2. TM where AÍ TM are the subbundles of A2 TM
corresponding to the (±l)-eigenvalues of * . Let (Ex , E2, E3, E4) be a local

oriented orthonormal frame of TM. Set

sx = Ex A E2 - £j A E4 , sx = Ex AE2 + E3 AE4,

(2.1 ) j2 = £,a£3-£4A£2, s2 = Ex AE} + E4AE2,

s3 = Ex A E4 - E2 A E3, I^=ExAE4 + E2AEi.
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Then (sx, s2, s3) (resp., (sx, s2, s3) ) is a local oriented orthonormal frame of

AÎ TM (resp., A+ TM). The block-decomposition of A% with respect to the

above splitting of A2 TM is

\s/6-Id + W+ 38
I tB s/6-Id + W_\'

where 5 is the scalar curvature of M ; s/6 • Id + £% and W = W+ + W_

represent the Ricci tensor and the Weyl conformai tensor, respectively. The

manifold M is said to be self-dual (anti-self-dual) if W_ = 0 (W+ = 0). It is

Einstein exactly when 3§ = 0.

The twistor space of M is the 2-sphere bundle n: Z —» M consisting of

the unit vectors of A_ TM. The Riemannian connection of M gives rise to

a splitting TZ = %A © 'V of the tangent bundle of Z into horizontal and

vertical components. We further consider the vertical space 2^ at o € Z as

the orthogonal complement of a in f\_T M, p = %(o).

Each point a € Z defines a complex structure Ka on TpM, p = it(a), by

(2.2) g(KaA,B) = 2g(a,AAB),        A,B€TpM.

This structure is compatible with the metric g and the opposite orientation of

M at p.

Denote by x the usual vector product in the oriented three-dimensional vec-

tor space A_ T M. Following [1] and [7], define two almost-complex structures

Jx and J2 on Z by

JnV = (-l)"cJX V    for V € 'Ta,

nr(JnX) = K,(x,X)   fotXeßr.

It is well known [1] that Jx is integrable (i.e. comes from a complex construc-

ture on Z ) iff M is self-dual. Unlike Jx , the almost-complex structure J2 is

never integrable [7].

As in [9], define a pseudo-Riemannian metric ht on Z by ht = it*g + tgv ,

where t ^ 0 and gv is the restriction of the metric of A TM on the vertical

distribution W. Then ht is compatible with the almost-complex structures /[

and J2.

3. Proof of the theorem

Lemma. The Ricci tensor cz of (Z , ht) is Hermitian with respect to Jn iff for

each point a e Z one has:

(3.1) (12 - ts(p) + 6tg(W_(o), a))3§(a) = 0,

where p = n(a) and s is the scalar curvature of M.

(3.2) IM^(-)II = const on the fibre Zp through a .

(3.3) g((6X)(X),o x V) = (-l)n+Xg((ÔA?)(KaX), V)
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for every X € TpM and V € "Va . Here 6M is the codifferential of M and Ka

is the complex structure on T M determined by o via (2.2).

Proof. If E € TZ , X = ntE and V is the vertical component of E, then [4]

(3.4) cz(E, E) = c(X, X) + tg((6m)(X), o x V) + (t2/4)\\A%(a x F)||2

- (t/2)\\ix oA%_f + (t/2)\\(ixoM)(o)\t + \\vf,

where c is the Ricci tensor of M, ix: A  TM -* TM is the interior product

and AAl_ is the restriction of M on A_ TM.

We first show that cz is Jn -Hermitian on horizontal vectors iff (3.1) holds

for every a 6 Z . In fact, it follows from (3.4) that cz is /n-Hermitian on the

horizontal space A%Aa iff

(3.5) 2c(X, X) - t\\R(x)X\\2 - t\\R(o x x)X\\2

= 2c(KaX, KaX) - t\\R(T)KaX\\2 - t\\R(a x x)KaX\\2

for X € TpM and x e Zp , xAo . Fix x € Zp , xAo and E € TpM, \\E\\ = 1 .

Since KaoKT = -Koxr, (Ex, E2, E3, E4) = (E, KaE, KrE, KaxrE) is an

oriented orthonormal basis of T M such that a = sx , x = s2, and a x x = s3,

where sx, s2, s3 are defined by (2.1). For X € T' M, denote

K( = * A £,-*,* A *,-£,, F-IA^ + ^IA^,, 1=1,... ,4.

Then

(3.6)

4

c(X,X)-c(KaX,KaX) = ^Tg(A?(Vi), Vt)
i=i

4

\R(x)X\\2 - \\R(x)KaX\\2 = J2 *(•#(*) , V,)g(AAi(x), V\ .
;=i

If X = YAi=xXlE¡, then

Vx = -X3s2 - X4sy, Vj ~ -^i + Jl ) ~ ¿3^2 ~ ^453 '

(3.7)
*2  — A-a 5-a  — /^4'^2 ' 2 — ^\\^\'^]) — ".^S * ~T ÀaS y i

Vs = ^\S2 _^2S3' ^3 = ~^^S\ -SX)+XXS2+X2S3,

V4 — XxSi + X2s2, V4 = a,(5| — sA) — X2s2 + Xxs3.

Substituting (3.6) and (3.7) into (3.5) and then varying (Xx, ... , X4), one sees

that the identity (3.5) holds iff

(3.8) (2 - tg(M(a), a)3B(a)) - tg(A%(o), z)38(x) = 0

for all x € Z xAo . Taking a point teZ such that xAo and g(3l(a), x) =

0, one obtains (3.1). Conversely, assume that the identity (3.1) holds for ev-

ery a € Z . Fix a point p € M. Then either 3§ = 0 or 12 - ts(p) +

6tg(W_(a), a) = 0  for all  a e Z .   In the second case,   12 - ts(p) = 0
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since trace W_ = 0 and therefore (W_)p = 0. So g(3ê(a), x) = 0 for ev-

ery a ,x € Z , oAx. In both cases (3.8) is fulfilled and cz is /^-Hermitian

on horizontal vectors.

It is obvious from (3.4) that cz is Jn-Hermitian on vertical vectors iff

\\A%(o)\\ = \\3l(x)\\ for every a, x € Z with n(a) = n(x) and oAx, which is

equivalent to (3.2). Formula (3.4) also shows that cz(JnE, JnV) = cz(E, V)

for all E€ATa, V e % iff (3.3) holds. Thus the lemma is proved.

To prove the theorem, first assume that the Ricci tensor cz of (Z , ht) is Jn-

Hermitian. Then the identity (3.1) of the lemma and the principle of analytic

continuation imply that either 38 = 0 or

(3.9) 12 - t(s o n)(a) + 6tg(W_(a), a) = 0   on Z .

We shall show that in the first case M is self-dual.  Consider W_  as a self-

adjoint endomorphism of A_ T M, p € M, and denote by px, p2, p3  its

eigenvalues. Since 38 = 0, 31(a) = (s/6)a + W_(a) for o € f\2_ TpM, and

the condition (3.2) of the lemma gives \px + s/6\ = \p2 + s/6\ = \p3 + s/6\.

Moreover, p x + p2 + p3 = trace W_ = 0. Hence either px = p2 = p3 = 0

or {px, p2, p3} = {s/3,s/3, -25/3}.   It follows that either \\W~_W = 0 or
2 2

\\W_\\ = 2s/3. So we have to consider only the case when \\W_\\ = 2s /3.

Since M is Einstein, 6W_ = 0 (cf., e.g. [2, §16.5]) and Proposition 5, (iii) of

[6] gives VW_ = 0. For every oriented Riemannian 4-manifold with ôW_ = 0,

one has [2, §16.73]

A||^l||2 = -s\\W_||2 + 18det^_ - 2||V^1||2,

which implies in our case 5 = 0. Hence W_ = 0.

Now assume that the identity (3.9) is satisfied. Then 5= 12/i since trace W_

= 0. Therefore g(W_(a), a) = 0 which shows that W_ = 0. Thus M(a) =

(2/t)o+A%l(o) for a € Z , and (3.2) of the lemma is equivalent to ||^(-)|| being

constant on the fibre through each point a e Z . Let C : T' M -> 7 M, p e M,

be the Ricci operator and (Ex, E2, E3, E4) an oriented orthonormal basis of

T M consisting of eigenvectors of C . Denote by X¡, i = 1, ... , 4, the cor-
_ 2

responding eigenvalues. Let (s¡, s¡) be the basis of A T M defined by (2.1).

Since Xx+X2 + X3 + X4 = s and &(XaY) = C(X)aY + XaC(Y)-(s/2)XaY,

one has 38(sx) = (Xx + X2 - s/2)sx, 38(s2) = (Xx + X3 - s/2)s2, 38(s3) =

(Xx + X4 - s/2)s3. Therefore \\&(-)\\ = const on Zp iff \XX + X2 - s/2\ =

\XX +X3 -5/2| = \XX +X4 — s/2\, i.e. iff at least three eigenvalues of C coincide.

Conversely, let M be a (smooth) Einstein self-dual 4-manifold. Then 31(a)

= (s/6)a , a € Z , ô3ê = 0 (cf., e.g. [2, §16.3]), and the three conditions of the

lemma obviously hold. Now, assume that M satisfies the condition (ii) of the

theorem. Then (3.1) is obvious and (3.2) follows from the arguments above.

Since s = 12/t and W_=0, one has Ô3Î = 28W = 2ÔW+  ([2, §16.5]), so

(S3?)(X) € A+ TpM. Hence, (3.3) holds and the theorem is proved.
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