TWISTOR SPACES WITH HERMITIAN RICCI TENSOR

JOHANN DAVIDOV AND OLEG MUŠKAROV

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. The twistor space Z of an oriented Riemannian 4-manifold M admits a natural 1-parameter family of Riemannian metrics h_t compatible with the almost-complex structures J_1 and J_2 introduced, respectively, by Atiyah, Hitchin and Singer, and Eells and Salamon. In the present note we describe the (real-analytic) manifolds M for which the Ricci tensor of (Z, h_t) is J_n -Hermitian, n = 1 or 2. This is used to supply examples giving a negative answer to the Blair and Ianus question of whether a compact almost-Kähler manifold with Hermitian Ricci tensor is Kählerian.

1. INTRODUCTION

Given a compact symplectic manifold M, one can consider the integrals $\int_M s \, dV_g$ and $\int_M (s-s^*) \, dV_g$, $s(\text{resp. } s^*)$ being the scalar (resp. *-scalar) curvature, as functionals on the set of metrics associated with the symplectic structure. D. E. Blair and S. Ianus [3] proved that the critical points of these functionals are the associated almost-Kähler metrics for which the Ricci tensor is Hermitian with respect to the corresponding almost-complex structure. Since the Kähler metrics satisfy this condition, Blair and Ianus raised the question of whether a compact almost-Kähler manifold with Hermitian Ricci tensor is Kählerian. A purpose of this note is to show that the twistor space of a compact oriented Riemannian 4-manifold which is Einstein, self-dual, and with negative scalar curvature supplies a negative answer to the question above.

The twistor space Z of an oriented Riemannian 4-manifold admits a natural 1-parameter family of Riemannian metrics h_i (cf., e.g. [8, 9, 13]) compatible with the almost-complex structures J_1 and J_2 on Z introduced, respectively, by Aityah, Hitchin and Singer [1], and Eells and Salamon [7]. Motivated by the Blair and Ianus result, we consider the problem when the Ricci tensor of (Z, h_i) is J_n -Hermitian, n = 1 or 2, and prove the following theorem:

Theorem. Let M be a connected oriented real-analytic Riemannian 4-manifold. If the Ricci tensor of the twistor space (Z, h_t) is J_n -Hermitian, then either

Received by the editors August 7, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53C25, 53C15.

(i) M is Einstein and self-dual

or

(ii) M is self-dual with constant scalar curvature s = 12/t and, for each point of M, at least three eigenvalues of its Ricci operator coincide.

Conversely, if M is a (smooth) Riemannian 4-manifold satisfying (i) or (ii), then the Ricci tensor of (Z, h_t) is J_n -Hermitian.

The proof is based on an explicit formula for the Ricci tensor of (Z, h_t) in terms of the curvature of M [4].

Remarks. (1) Let M be an oriented Riemannian 4-manifold. If M is Einstein, self-dual, and with negative scalar curvature s, then (h_t, J_2) for t = -12/s is an almost-Kähler structure on the twistor space Z [12]. This structure is not Kählerian since the almost-complex structure J_2 is never integrable [7]. By the theorem, the Ricci tensor of (Z, h_t) is J_2 -Hermitian, so, if M is compact, (Z, h_t, J_2) gives a negative answer to the Blair and Ianus question. Note that the only known examples of such manifolds M are compact quotients of the unit ball in \mathbb{C}^2 with the metric of constant negative curvature or the Bergman metric (cf., e.g. [13]).

On the other hand the classification of compact connected self-dual Einstein 4-manifolds M with nonnegative scalar curvature s is well known: If s > 0, M is the unit sphere S^4 or the complex projective space \mathbb{CP}^2 with their standard metrics [9, 11]. If s = 0, the universal covering of M is a K3-surface with a Ricci flat Kähler metric or M is flat [10].

(2) Let S^1 and S^3 be the unit spheres of dimensions one and three. Then $M = S^1 \times S^3$ with the product-metric is a non-Einstein manifold satisfying the conditions (ii) of the theorem. Other examples of such manifolds M can be obtained as warped-products of S^1 and S^3 (cf. [5]).

2. Preliminaries

Let M be an oriented Riemannian 4-manifold with metric g. Then g induces a metric on the bundle $\bigwedge^2 TM$ of 2-vectors by $g(A_1 \land A_2, A_3 \land A_4) = 1/2 \cdot \det(g(A_i, A_j))$. Let ∇ be the Riemannian connection of (M, g). For the curvature tensor R of ∇ , we adopt the following definition $R(A, B) = \nabla_{[A, B]} - [\nabla_A, \nabla_B]$. The curvature operator \mathscr{R} is the self-adjoint endomorphism of $\bigwedge^2 TM$ defined by $g(\mathscr{R}(A \land B), C \land D) = g(R(A, B)C, D)$. The Hodge star operator defines an endomorphism * of $\bigwedge^2 TM$ with $*^2 = Id$. Hence $\bigwedge^2 TM = \bigwedge_+^2 TM \oplus \bigwedge_-^2 TM$ where $\bigwedge_{\pm}^2 TM$ are the subbundles of $\bigwedge^2 TM$ corresponding to the (± 1) -eigenvalues of *. Let (E_1, E_2, E_3, E_4) be a local oriented orthonormal frame of TM. Set

(2.1)
$$s_{1} = E_{1} \wedge E_{2} - E_{3} \wedge E_{4}, \qquad \overline{s}_{1} = E_{1} \wedge E_{2} + E_{3} \wedge E_{4}, \\ s_{2} = E_{1} \wedge E_{3} - E_{4} \wedge E_{2}, \qquad \overline{s}_{2} = E_{1} \wedge E_{3} + E_{4} \wedge E_{2}, \\ s_{3} = E_{1} \wedge E_{4} - E_{2} \wedge E_{3}, \qquad \overline{s}_{3} = E_{1} \wedge E_{4} + E_{2} \wedge E_{3}.$$

Then (s_1, s_2, s_3) (resp., $(\overline{s}_1, \overline{s}_2, \overline{s}_3)$) is a local oriented orthonormal frame of $\bigwedge_{-}^{2} TM$ (resp., $\bigwedge_{+}^{2} TM$). The block-decomposition of \mathscr{R} with respect to the above splitting of $\bigwedge_{+}^{2} TM$ is

$$\mathcal{R} = \begin{bmatrix} s/6 \cdot Id + \mathcal{W}_+ & \mathcal{B} \\ t_B & s/6 \cdot Id + \mathcal{W}_- \end{bmatrix},$$

where s is the scalar curvature of M; $s/6 \cdot Id + \mathscr{B}$ and $\mathscr{W} = \mathscr{W}_+ + \mathscr{W}_-$ represent the Ricci tensor and the Weyl conformal tensor, respectively. The manifold M is said to be self-dual (anti-self-dual) if $\mathscr{W}_- = 0$ ($\mathscr{W}_+ = 0$). It is Einstein exactly when $\mathscr{B} = 0$.

The twistor space of M is the 2-sphere bundle $\pi: Z \to M$ consisting of the unit vectors of $\bigwedge_{-}^{2} TM$. The Riemannian connection of M gives rise to a splitting $TZ = \mathscr{H} \oplus \mathscr{V}$ of the tangent bundle of Z into horizontal and vertical components. We further consider the vertical space \mathscr{V}_{σ} at $\sigma \in Z$ as the orthogonal complement of σ in $\bigwedge_{-}^{2} T_{p}M$, $p = \pi(\sigma)$. Each point $\sigma \in Z$ defines a complex structure K_{σ} on $T_{p}M$, $p = \pi(\sigma)$, by

Each point $\sigma \in Z$ defines a complex structure K_{σ} on $T_{p}M$, $p = \pi(\sigma)$, by (2.2) $g(K_{\sigma}A, B) = 2g(\sigma, A \wedge B), \quad A, B \in T_{n}M.$

This structure is compatible with the metric g and the opposite orientation of M at p.

Denote by \times the usual vector product in the oriented three-dimensional vector space $\bigwedge_{-}^{2} T_{p}M$. Following [1] and [7], define two almost-complex structures J_{1} and J_{2} on Z by

$$J_n V = (-1)^n \sigma \times V \quad \text{for } V \in \mathscr{V}_{\sigma},$$

$$\pi_*(J_n X) = K_{\sigma}(\pi_* X) \quad \text{for } X \in \mathscr{H}_{\sigma}.$$

It is well known [1] that J_1 is integrable (i.e. comes from a complex constructure on Z) iff M is self-dual. Unlike J_1 , the almost-complex structure J_2 is never integrable [7].

As in [9], define a pseudo-Riemannian metric h_t on Z by $h_t = \pi^* g + t g^v$, where $t \neq 0$ and g^v is the restriction of the metric of $\bigwedge^2 TM$ on the vertical distribution \mathscr{V} . Then h_t is compatible with the almost-complex structures J_1 and J_2 .

3. Proof of the theorem

Lemma. The Ricci tensor c_Z of (Z, h_t) is Hermitian with respect to J_n iff for each point $\sigma \in Z$ one has:

(3.1)
$$(12 - ts(p) + 6tg(\mathscr{W}_{-}(\sigma), \sigma))\mathscr{B}(\sigma) = 0,$$

where $p = \pi(\sigma)$ and s is the scalar curvature of M.

(3.2)
$$\|\mathscr{R}(\cdot)\| = \text{const on the fibre } Z_p \text{ through } \sigma$$
.

(3.3)
$$g((\delta \mathscr{R})(X), \sigma \times V) = (-1)^{n+1} g((\delta \mathscr{R})(K_{\sigma}X), V)$$

for every $X \in T_p M$ and $V \in \mathcal{V}_{\sigma}$. Here $\delta \mathcal{R}$ is the codifferential of \mathcal{R} and K_{σ} is the complex structure on $T_p M$ determined by σ via (2.2).

Proof. If $E \in TZ$, $X = \pi_* E$ and V is the vertical component of E, then [4]

(3.4)
$$c_Z(E, E) = c(X, X) + tg((\delta \mathscr{R})(X), \sigma \times V) + (t^2/4) \|\mathscr{R}(\sigma \times V)\|^2$$

 $- (t/2) \|i_X \circ \mathscr{R}_-\|^2 + (t/2) \|(i_X \circ \mathscr{R})(\sigma)\|^2 + \|V\|^2,$

where c is the Ricci tensor of M, $i_X \colon \bigwedge^2 TM \to TM$ is the interior product and \mathscr{R}_- is the restriction of \mathscr{R} on $\bigwedge^2_- TM$.

We first show that c_Z is J_n -Hermitian on horizontal vectors iff (3.1) holds for every $\sigma \in Z$. In fact, it follows from (3.4) that c_Z is J_n -Hermitian on the horizontal space \mathcal{H}_{σ} iff

(3.5)
$$2c(X, X) - t \|R(\tau)X\|^{2} - t \|R(\sigma \times \tau)X\|^{2}$$
$$= 2c(K_{\sigma}X, K_{\sigma}X) - t \|R(\tau)K_{\sigma}X\|^{2} - t \|R(\sigma \times \tau)K_{\sigma}X\|^{2}$$

for $X \in T_p M$ and $\tau \in Z_p$, $\tau \perp \sigma$. Fix $\tau \in Z_p$, $\tau \perp \sigma$ and $E \in T_p M$, ||E|| = 1. Since $K_{\sigma} \circ K_{\tau} = -K_{\sigma \times \tau}$, $(E_1, E_2, E_3, E_4) = (E, K_{\sigma}E, K_{\tau}E, K_{\sigma \times \tau}E)$ is an oriented orthonormal basis of $T_p M$ such that $\sigma = s_1$, $\tau = s_2$, and $\sigma \times \tau = s_3$, where s_1, s_2, s_3 are defined by (2.1). For $X \in T_p M$, denote

$$V_i = X \wedge E_i - K_{\sigma} X \wedge K_{\sigma} E_i, \qquad \overline{V}_i = X \wedge E_i + K_{\sigma} X \wedge K_{\sigma} E_i, \qquad i = 1, \dots, 4.$$

Then

$$c(X, X) - c(K_{\sigma}X, K_{\sigma}X) = \sum_{i=1}^{4} g(\mathscr{R}(V_i), \overline{V}_i)$$
(3.6)

$$\|R(\tau)X\|^{2} - \|R(\tau)K_{\sigma}X\|^{2} = \sum_{i=1}^{4} g(\mathscr{R}(\tau), V_{i})g(\mathscr{R}(\tau), \overline{V}_{i}).$$

If
$$X = \sum_{i=1}^{4} \lambda_i E_i$$
, then

$$V_1 = -\lambda_3 s_2 - \lambda_4 s_3, \qquad \overline{V}_1 = -\lambda_2 (s_1 + \overline{s}_1) - \lambda_3 \overline{s}_2 - \lambda_4 \overline{s}_3, \qquad V_2 = \lambda_3 s_3 - \lambda_4 s_2, \qquad \overline{V}_2 = \lambda_1 (s_1 + \overline{s}_1) - \lambda_3 \overline{s}_3 + \lambda_4 \overline{s}_2, \qquad V_3 = \lambda_1 s_2 - \lambda_2 s_3, \qquad \overline{V}_3 = -\lambda_4 (\overline{s}_1 - s_1) + \lambda_1 \overline{s}_2 + \lambda_2 \overline{s}_3, \qquad V_4 = \lambda_1 s_3 + \lambda_2 s_2, \qquad \overline{V}_4 = \lambda_3 (\overline{s}_1 - s_1) - \lambda_2 \overline{s}_2 + \lambda_1 \overline{s}_3.$$

Substituting (3.6) and (3.7) into (3.5) and then varying $(\lambda_1, \ldots, \lambda_4)$, one sees that the identity (3.5) holds iff

(3.8)
$$(2 - tg(\mathscr{R}(\sigma), \sigma)\mathscr{B}(\sigma)) - tg(\mathscr{R}(\sigma), \tau)\mathscr{B}(\tau) = 0$$

for all $\tau \in Z_p$, $\tau \perp \sigma$. Taking a point $\tau \in Z_p$ such that $\tau \perp \sigma$ and $g(\mathscr{R}(\sigma), \tau) = 0$, one obtains (3.1). Conversely, assume that the identity (3.1) holds for every $\sigma \in Z$. Fix a point $p \in M$. Then either $\mathscr{B}_p = 0$ or $12 - ts(p) + 6tg(\mathscr{W}_{-}(\sigma), \sigma) = 0$ for all $\sigma \in Z_p$. In the second case, 12 - ts(p) = 0

since trace $\mathscr{W}_{-} = 0$ and therefore $(\mathscr{W}_{-})_{p} = 0$. So $g(\mathscr{R}(\sigma), \tau) = 0$ for every $\sigma, \tau \in Z_{p}, \sigma \perp \tau$. In both cases (3.8) is fulfilled and c_{Z} is J_{n} -Hermitian on horizontal vectors.

It is obvious from (3.4) that c_Z is J_n -Hermitian on vertical vectors iff $\|\mathscr{R}(\sigma)\| = \|\mathscr{R}(\tau)\|$ for every σ , $\tau \in Z$ with $\pi(\sigma) = \pi(\tau)$ and $\sigma \perp \tau$, which is equivalent to (3.2). Formula (3.4) also shows that $c_Z(J_nE, J_nV) = c_Z(E, V)$ for all $E \in \mathscr{H}_{\sigma}$, $V \in \mathscr{V}_{\sigma}$ iff (3.3) holds. Thus the lemma is proved.

To prove the theorem, first assume that the Ricci tensor c_Z of (Z, h_l) is J_n -Hermitian. Then the identity (3.1) of the lemma and the principle of analytic continuation imply that either $\mathscr{B} \equiv 0$ or

(3.9)
$$12 - t(s \circ \pi)(\sigma) + 6tg(\mathscr{W}_{-}(\sigma), \sigma) \equiv 0 \quad \text{on } Z.$$

We shall show that in the first case M is self-dual. Consider \mathscr{W}_{-} as a selfadjoint endomorphism of $\bigwedge_{-}^{2} T_{p}M$, $p \in M$, and denote by $\mu_{1}, \mu_{2}, \mu_{3}$ its eigenvalues. Since $\mathscr{B} = 0$, $\mathscr{R}(\sigma) = (s/6)\sigma + \mathscr{W}_{-}(\sigma)$ for $\sigma \in \bigwedge_{-}^{2} T_{p}M$, and the condition (3.2) of the lemma gives $|\mu_{1} + s/6| = |\mu_{2} + s/6| = |\mu_{3} + s/6|$. Moreover, $\mu_{1} + \mu_{2} + \mu_{3} = \text{trace } \mathscr{W}_{-} = 0$. Hence either $\mu_{1} = \mu_{2} = \mu_{3} = 0$ or $\{\mu_{1}, \mu_{2}, \mu_{3}\} = \{s/3, s/3, -2s/3\}$. It follows that either $||\mathscr{W}_{-}|| \equiv 2s^{2}/3$. Since M is Einstein, $\delta\mathscr{W}_{-} = 0$ (cf., e.g. [2, §16.5]) and Proposition 5, (iii) of [6] gives $\nabla\mathscr{W}_{-} = 0$. For every oriented Riemannian 4-manifold with $\delta\mathscr{W}_{-} = 0$, one has [2, §16.73]

$$\Delta \|\mathscr{W}_{-}\|^{2} = -s \|\mathscr{W}_{-}\|^{2} + 18 \det \mathscr{W}_{-} - 2 \|\nabla \mathscr{W}_{-}\|^{2},$$

which implies in our case s = 0. Hence $\mathcal{W}_{-} = 0$.

Now assume that the identity (3.9) is satisfied. Then s = 12/t since trace $\mathscr{W}_{-} = 0$. Therefore $g(\mathscr{W}_{-}(\sigma), \sigma) \equiv 0$ which shows that $\mathscr{W}_{-} = 0$. Thus $\mathscr{R}(\sigma) = (2/t)\sigma + \mathscr{R}(\sigma)$ for $\sigma \in \mathbb{Z}$, and (3.2) of the lemma is equivalent to $||\mathscr{R}(\cdot)||$ being constant on the fibre through each point $\sigma \in \mathbb{Z}$. Let $C: T_p M \to T_p M$, $p \in M$, be the Ricci operator and (E_1, E_2, E_3, E_4) an oriented orthonormal basis of $T_p M$ consisting of eigenvectors of C. Denote by λ_i , $i = 1, \ldots, 4$, the corresponding eigenvalues. Let (\overline{s}_i, s_i) be the basis of $\bigwedge^2 T_p M$ defined by (2.1). Since $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = s$ and $\mathscr{R}(X \wedge Y) = C(X) \wedge Y + X \wedge C(Y) - (s/2)X \wedge Y$, one has $\mathscr{R}(s_1) = (\lambda_1 + \lambda_2 - s/2)\overline{s}_1$, $\mathscr{R}(s_2) = (\lambda_1 + \lambda_3 - s/2)\overline{s}_2$, $\mathscr{R}(s_3) = (\lambda_1 + \lambda_4 - s/2)\overline{s}_3$. Therefore $||\mathscr{R}(\cdot)|| = \text{const}$ on Z_p iff $|\lambda_1 + \lambda_2 - s/2| = |\lambda_1 + \lambda_3 - s/2| = |\lambda_1 + \lambda_4 - s/2|$, i.e. iff at least three eigenvalues of C coincide.

Conversely, let M be a (smooth) Einstein self-dual 4-manifold. Then $\mathscr{R}(\sigma) = (s/6)\sigma$, $\sigma \in \mathbb{Z}$, $\delta \mathscr{R} = 0$ (cf., e.g. [2, §16.3]), and the three conditions of the lemma obviously hold. Now, assume that M satisfies the condition (ii) of the theorem. Then (3.1) is obvious and (3.2) follows from the arguments above. Since s = 12/t and $\mathscr{W}_{-} = 0$, one has $\delta \mathscr{R} = 2\delta \mathscr{W} = 2\delta \mathscr{W}_{+}$ ([2, §16.5]), so $(\delta \mathscr{R})(X) \in \bigwedge^2_+ T_p M$. Hence, (3.3) holds and the theorem is proved.

References

- 1. M. F. Atiyah, N. J. Hitchin and I. M. Singer, *Self-duality in four-dimensional Riemannian geometry*, Proc. Roy. Soc. London Ser. A **362** (1978), 425-461.
- 2. A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1978.
- 3. D. E. Blair and S. Ianus, *Critical associated metrics on symplectic manifolds*, in Nonlinear Problems in Geometry, Contemp. Math. **51** (1986), 23-29.
- 4. J. Davidov and O. Muškarov, On the Riemannian curvature of a twistor space, preprint series of the ICTP, Trieste, 1988.
- 5. A. Derdzinski, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z. 172 (1980), 273–280.
- 6. ____, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405-433.
- 7. J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589-640.
- 8. Th. Friedrich and R. Grunewald, On Einstein metrics on the twistor space of a four-dimensional Riemannian manifold, Math. Nachr. 123 (1985), 55-60.
- 9. Th. Friedrich and H. Kurke, Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature, Math. Nachr. 106 (1982), 271-299.
- N. J. Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geom. 9 (1974), 435-441.
- 11. ____, Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133-150.
- 12. O. Muškarov, Structures presque hermitiennes sur des espaces twistoriels et leur types, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 307-309.
- A. Vitter, Self-dual Einstein metrics, in Nonlinear Problems in Geometry, Comtemp. Math. 51 (1986), 113-120.

Institute of Mathematics, Bulgarian Academy of Sciences, ul. "Acad. G. Bontchev", bl.8, 1090-Sofia, Bulgaria