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Abstract: We explore the tree-level description of a class of N = 2 UV-finite SYM the-

ories with fundamental flavour within a topological B-model twistor string framework. In

particular, we identify the twistor dual of the Sp(N) gauge theory with one antisymmetric

and four fundamental hypermultiplets, as well as that of the SU(N) theory with 2N hy-

permultiplets. This is achieved by suitably orientifolding/orbifolding the original N = 4

setup of Witten and adding a certain number of new topological ‘flavour’-branes at the

orientifold/orbifold fixed planes to provide the fundamental matter. We further comment

on the appearance of these objects in the B-model on |||CP3|4. An interesting aspect of

our construction is that, unlike the IIB description of these theories in terms of D3 and

D7-branes, on the twistor side part of the global flavour symmetry is realised geometrically.

We provide evidence for this correspondence by calculating and matching amplitudes on

both sides.
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1. Introduction

Four-dimensional conformal field theories are relatively rare, and their existence depends

crucially on the presence of a large amount of symmetry. The most celebrated example

is N = 4 supersymmetric Yang-Mills (SYM) theory, which, especially via its strong-weak

duality with IIB string theory on AdS5 × S5 [1], has provided a very useful testbed for

understanding the physics of strongly-coupled gauge theory. In this duality, the exact

quantum conformal invariance of the theory is reflected in the AdS5 factor of the string

background, which encodes the unbroken four-dimensional conformal group SO(2, 4) of the

gauge theory.

A very different duality involving N = 4 SYM was proposed by Witten in 2003 [2].

The idea stems from the fact that certain scattering amplitudes in Yang-Mills theory, when

expressed in appropriate (spinor helicity) variables, turn out to take an unexpectedly simple

form. This indicates that there might exist some reformulation in which this simplicity is

evident, and in this context Witten proposed that it is useful to consider the open-string

topological B-model on supertwistor space |||CP3|4. The isometries of |||CP3|4 capture the

superconformal group PSU(2, 2|4) of the gauge theory, and the spectrum of the string

theory can be mapped to the field content of N = 4 SYM via the Penrose transform [3].

In this framework, gluon scattering amplitudes can be calculated by noting that they

are supported on certain simple algebraic curves in twistor space, the degree of which is

linked to the number of external negative helicity gluons. For instance, Maximally Helicity

Violating (MHV) amplitudes, which have two negative and any number of positive helicity

gluons, are supported on degree one curves in |||CP3|4. In [2] it was proposed that these

curves are wrapped by D1-instantons in the B-model, and, adapting a method originally

due to Nair [4], it was shown that appropriately integrating over the moduli space of these

D1-instantons leads to the correct expressions for tree-level amplitudes in N = 4 SYM.

Beyond tree level, however, the situation is very different. Apart from difficulties

in understanding the appropriate measure for higher-genus curves in supertwistor space,

at one loop it seems that one cannot avoid unwanted contributions from the closed B-

model sector which would correspond to conformal supergravity states in spacetime [5].

As the action for conformal supergravity is the square of the Weyl tensor whose kinetic

term is fourth order in derivatives, it is generally believed to be non-unitary and thus

a highly undesirable feature. Nonetheless, loop amplitudes in such a theory have been

investigated [6] using an alternative twistor string theory due to Berkovits [7] and it is

hoped that one might still be able to learn something about loop amplitudes in Yang-Mills

this way.

Despite the above shortcoming, the application of twistor-inspired techniques to gauge

theory has resulted in great progress in the understanding of perturbative field theory. At

tree-level, the realisation that amplitudes localising on degree d curves can be equivalently

calculated by integrating over the moduli space of d disconnected degree 1 curves [8 – 11],

underlies the so-called MHV (or CSW) rules proposed by Cachazo, Svrček and Witten [11].

The CSW rules elevate tree-level MHV amplitudes to effective vertices, which are then

glued together using simple scalar propagators to form tree amplitudes with successively
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greater numbers of negative helicity particles. Of particular interest is the fact that these

techniques are applicable to a far larger class of theories than N = 4 SYM, and include

gauge theories with reduced or no supersymmetry and Einstein (super-)gravity - see [11 –

15] and references therein.

Even more remarkable is the fact that, despite the apparent failure of the twistor string

duality at loop-level, the MHV rules can be straightforwardly applied at one loop in N = 4

SYM [16], N = 2, 1 SYM [17, 18], pure YM [19], a certain effective Higgs-YM action [20]

and N = 8 supergravity [21]. These results would seem to indicate that it is possible to

overcome the current difficulties at one-loop and eventually extend Witten’s prescription

to the quantum level not only for N = 4 SYM, but also for the other theories above. It is

possible that such a dual string theory would have to be an appropriate (non-topological?)

extension of the B-model, perhaps combined with a modification of the bosonic part of

the target space geometry away from |||CP3 to reflect the fact that conformal invariance is

typically lost at the quantum level. Finding such a quantum completion of the twistor

string framework would certainly deepen our understanding of perturbative gauge theory.

As an intermediate step towards this goal, it is important to map out the range of

four-dimensional theories that can potentially admit a twistor string description. If, to

restrict the question somewhat, we insist that the full quantum theory have a perturbative

string dual containing twistor space as part of the target manifold, we should clearly look

among the known quantum conformally invariant theories, and, if we require that the

conformal symmetry holds order-by-order in the coupling, we should focus in particular on

the subset of the above which are finite. The hope is that, by explicitly constructing the

twistor string duals of a wide range of such theories, which are expected to retain |||CP3 as

part of the geometry at loop level, and by understanding why this construction might not

work for other theories which look similar classically but which lack conformal invariance

at the quantum level, one may learn something about the properties of the elusive quantum

twistor string. In the process, one might also hope to gain further insight into the B-model

twistor string description (or any of the several alternatives [7, 22]) even at tree-level.

Following this programme, it was shown in [23] (see also [24]) that the N = 1 exactly

marginal deformations of N = 4 SYM can be incorporated into the B-model description

by turning on a particular closed string mode, which (via a certain open/closed correlation

function) effectively introduces non-anticommutativity between some of the fermionic co-

ordinates of |||CP3|4. Another class of known finite 4d gauge theories are the quiver theories

that arise as N = 1 and N = 2 orbifolds of N = 4 SYM and in [25, 26] it was shown that

these theories also admit a very natural twistor string description.1

In the present work we extend this investigation to other types of 4d gauge theories

by including matter transforming in the fundamental representation. These are the N = 2

SYM theories with gauge groups Sp(N) and SU(N), which are UV-finite when the number

of flavours is Nf = 4 and Nf =2N respectively, and where the Sp(N) theory also contains

1Twistor string duals have also been constructed for truncations of self-dual N = 4 SYM [27], lower

dimensions [28 – 32], chiral mass terms [33] as well as for a number of gravity theories including N = 1, 2

conformal supergravity [34, 35] and Einstein supergravity [36].
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a hypermultiplet in the antisymmetric representation. For brevity we will refer to these

simply as the Nf = 4 and Nf =2N theories.

In direct analogy with the stringy description of the Nf = 4 gauge theory, in order to

obtain a symplectic gauge group it will be necessary to perform an orientifold of the B-

model on |||CP3|4. Similarly, for the Nf =2N theory we will perform an orbifold projection.

Given the similarities of these techniques with previous orbifold constructions of [25, 26],

the above steps are relatively straightforward. The main novelty, compared to the previous

twistor string literature, is the presence of the fundamental flavours. We propose a natural

mechanism to incorporate this sector of the theory, leading to an additional term in the

B-model action, and show that the tree-level twistor string amplitudes precisely match

those calculated on the gauge theory side.

A parallel promising development in the twistor string programme has been the intro-

duction of effective actions on twistor space [37 – 39], which extend Witten’s holomorphic

Chern-Simons (hCS) action and, after appropriate gauge fixing, reproduce the 4d MHV-

rules prescription for Yang-Mills theory.2 By construction, this approach does not suffer

from the conformal supergravity problem. It is not yet known whether such actions can be

derived from a more fundamental (B-model or alternative) string description (in particular,

they do not seem to arise from simple summation over the effects of D-instantons). Such

an effective action for either of the N = 2 theories that we will consider in this work,

constructed by inserting the relevant matter multiplets (as described in [37]), and choosing

the gauge group appropriate for each case, would provide an alternative way to reproduce

the MHV amplitudes we will calculate. However, we do not follow that path since via such

an approach we would not expect to gain insight into the novel features that arise when

introducing fundamental flavours from a topological string point of view. Nevertheless, as

we will point out, some aspects of our construction will turn out to be similar to those

in [37].

The rest of this paper is organised as follows: In Section 2 we discuss some prelimi-

nary details related to formulating the spacetime action for the Nf = 4 theory. We then

review Witten’s construction of the twistor string for N = 4 SYM and proceed to give

the equivalent description for the theory under present study in section 3. In section 4 we

elaborate on the comparison between amplitudes calculated from the spacetime and twistor

points of view and demonstrate the agreement between the two pictures with a number of

specific examples. Section 5 extends the above to the case with Nf =2N . We describe the

construction of the spacetime action, obtain the dual twistor string description and finally

match the two by comparing amplitude ratios. We conclude in section 6 with a discussion

of our results and directions for future research.

2. Preliminaries for the Nf =4 theory

The aim of this section is to collect known facts on the Nf = 4 theory and it symmetries,

before moving on to considering its spacetime action. It is easy to check that the matter

2Recently, some aspects of this formalism were extended to self-dual N = 8 supergravity [40].
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content of this N = 2, Sp(N) theory (one hypermultiplet in the antisymmetric represen-

tation of Sp(N) and four hypermultiplets in the fundamental) is such that the one-loop

β-function vanishes [41, 42]. Since N = 2 supersymmetry implies one-loop exactness of

the β-function [43], perturbative finiteness is guaranteed. In the rank one case, where the

gauge group reduces to SU(2) and there is no antisymmetric hypermultiplet, this theory

was considered by Seiberg and Witten [44, 45], who found (for arbitrary hypermultiplet

masses) the curve describing its low energy dynamics. In the massless case, these results

can be used to argue that the gauge coupling does not run even at the nonperturbative

level.3 One of the intriguing outcomes of [45] was the conjecture that the Nf = 4 theory

enjoys an analogue of the Montonen-Olive (electric-magnetic) duality of N = 4 SYM, in

which SL(2, Z) mixes in a nontrivial way with SO(8) triality to produce a duality-invariant

spectrum.

2.1 Review of the IIB/F-theory embedding

The Nf = 4 theory has a very useful realisation in terms of a physical string theory

description, which first arose in Sen’s explorations of F-theory [47] on K3 [48]. In particular,

Sen considered a special elliptically fibred K3, the orbifold T 4/Z2, realised as a T 2 fibration

over the base T 2/Z2. Requiring that the axion-dilaton modulus have no dependence on

the internal torus, this configuration reduces to an orientifold [49] of type IIB4 on T 2, and

thus produces four orientifold fixed planes, each carrying −4 units of D7-brane charge.

Constancy of the axion-dilaton requires that four D7-branes (along with their mirrors)

be placed on each orientifold plane, resulting in an SO(8)4 non-abelian gauge symmetry.

This type IIB setup can also be obtained from the type I string by a T-duality on both

coordinates of the base [48].

Sen then argued that the F-theory moduli space close to one of the orbifold fixed

points, where T 2 locally reduces to R
2, can be accurately described by the physics of the

4d N = 2, SU(2) Seiberg-Witten theory with four fundamental hypermultiplets. Moreover,

Banks et al. [52] showed that this gauge theory can be naturally realised as the low energy

effective theory on the worldvolume of a probe D3-brane in the limit where the rest of the

orientifold singularities are taken to be very far away, and the moduli space of the theory

is captured by the dynamics of the worldvolume fields. By considering multiple coincident

D3-branes as probes [53, 54] the SU(2) ∼= Sp(1) gauge group can be extended to higher rank

to obtain an Sp(N) gauge theory, at the expense of introducing an extra hypermultiplet in

the antisymmetric representation of Sp(N).5

Let us summarise the setup and field content of the above physical-string configu-

ration: We will consider the low energy worldvolume action on a stack of N coincident

D3-branes (and their mirrors) living in the (x0, . . . , x3) directions. These probe the back-

ground generated by 4 D7s (and their mirrors) and a single O7-plane lying in (x0, . . . , x7).

3Certain discrepancies in matching the results of [45] to explicit instanton calculations were resolved

in [46].
4For related reviews on brane dynamics in the presence of orientifolds see e.g. [50, 51].
5The alternative extension to SU(N) will be discussed in section 5. However, it is not the natural

generalisation from the F-theory point of view.
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Component SO(1, 3) SU(2)a SU(2)A U(1)R Sp(N) SO(8)

A,G (2, 2) 1 1 0 N(2N + 1) 1

φ (1, 1) 1 1 +2 N(2N + 1) 1

φ† (1, 1) 1 1 −2 N(2N + 1) 1

λα,a (2, 1) 2 1 +1 N(2N + 1) 1

λ̄α̇,a (1, 2) 2 1 −1 N(2N + 1) 1

zaA (1, 1) 2 2 0 N(2N−1)−1 1

ζα,A (2, 1) 1 2 −1 N(2N−1)− 1 1

ζ̄α̇,A (1, 2) 1 2 +1 N(2N−1)− 1 1

qM
a (1, 1) 2 1 0 2N 8

ηM
α (2, 1) 1 1 −1 2N 8

η̄M
α̇ (1, 2) 1 1 +1 2N 8

Table 1: The on-shell field content of the Nf = 4 theory in component form. The representations

in the first column are actually in terms of the Euclidean Lorentz group SO(4) ∼ SU(2)L ×SU(2)R.

The fundamental fields carry an SO(8) flavour index M = 1, . . . , 8, while the antisymmetric fields

an SU(2) ‘flavour’ index A = 1, 2. Note that (z, ζ, ζ̄) transform in the irreducible second-rank

antisymmetric representation of Sp(N), which in the text we call “antisymmetric” for brevity. We

write SO(8) rather than the more accurate O(8) since we will not keep track of discrete groups.

The orientifold plane is added in such a way so as to preserve the same 8 supersymmetries

as the D3-D7 system and the 3-3 and 7-7 strings would generate respective SU(2N) and

SU(8) gauge symmetries. However, since all the branes are sitting at the orientifold fixed

plane, these project to Sp(N) and SO(8) because of the orientation reversal action on the

open string Chan-Paton indices, which imposes symmetric or antisymmetric conditions on

the gauge group matrices. Ramond-Ramond (RR) tadpole cancellation further restricts one

to only retain antisymmetric matrices for the D7s; one is then forced to consider symmetric

matrices for the D3s [49].

In the low-energy limit, the dynamical fields corresponding to 7-7 strings decouple and

SO(8) becomes a global symmetry of the system. The massless spectrum of 3-3 strings

fluctuating in the worldvolume (x0, . . . , x3) and overall transverse (x8, x9) directions yields

the degrees of freedom corresponding to the N = 2 vector multiplet in the adjoint (sym-

metric) representation of Sp(N). The fluctuations in the directions relatively transverse

to the D3s (x4, . . . , x7) furnish a hypermultiplet transforming in the antisymmetric tensor

representation of the gauge group, which captures the motion of the D3s in these direc-

tions. Therefore, the low energy D3 worldvolume action describes 4d N = 2 SYM with

gauge group Sp(N), four hypermultiplets in the fundamental and one in the antisymmetric

representation, sitting at the conformal point of its moduli space.

As far as the global symmetries are concerned, the presence of the D7-branes breaks the

D3 transverse group of rotations down to SO(4) × U(1)R ⊂ SO(6). Furthermore, we write

this SO(4) as SU(2)a×SU(2)A, SU(2)A being a flavour-like symmetry for the antisymmetric

fields; no other field transforms nontrivially under its action. The rest of the SO(6) global

symmetry subgroup accounts for the N =2 R-symmetry, U(2)R ∼= SU(2)a ×U(1)R and we
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remind the reader that the fundamental fields transform as vectors under the global SO(8)

flavour group. The precise transformation properties of all degrees of freedom under the

symmetries of the system are summarised in table 1, which is adapted from [55].

By considering a large number of coincident D3-branes and taking their near-horizon

limit, it is possible to obtain the supergravity dual of the Nf = 4 theory in terms of strings

in AdS5×S5/Z2, where Z2 is an orientifold action on the S5 [56, 57] (see also [58]). Instanton

effects in the AdS/CFT context have been studied in [59, 55, 60], while the plane-wave

limit of the theory has been investigated in [61, 62]. Higher derivative corrections were

considered in [63, 64], and the geometry of the holographic dual of the Higgs branch of

the theory was described in [65]. Recently, [66] used the AdS/CFT dual to discuss the

behaviour of strongly coupled Nf = 4 scattering amplitudes.

2.2 The spacetime action

We now turn to the construction of a Lagrangean for the above N = 2 theory by taking

its formulation in terms of N = 1 superfields as a starting point.6 This reads

L =
1

8π
Im Tr

[

τ

(∫

d2θ W αWα + 2

∫

d2θd2θ̄ e2V Φ†e−2V Φ

)]

+

∫

d2θd2θ̄ Q†Ie−2V QI

+

∫

d2θd2θ̄ Q′Ie2V Q′†
I + Tr

(∫

d2θd2θ̄ e2V Z†e−2V Z +

∫

d2θd2θ̄ e−2V Z ′e2V Z ′†

)

+
√

2

(∫

d2θ(Q′IΦQI + Tr
(
Z ′[Φ, Z]

)
) + h.c.

)

.

(2.1)

The N = 2 vector multiplet consists of the N = 1 vector and chiral superfields (V,Φ), the

antisymmetric hypermultiplet of the chiral and antichiral (Z,Z ′†) and the four fundamen-

tal hypermultiplets of the four chiral and four antichiral superfields (QI , Q′†I) respectively.

(Q†I , Q′I) are four antichiral and chiral superfields transforming in the conjugate funda-

mental representation and the SU(4) flavour index I runs from 1 to 4. The fundamental

representation of Sp(N) is pseudoreal, which means that it is related to its conjugate simply

by raising and lowering indices. The flavour symmetry is thus enhanced to SO(8). However

in this N = 1 notation this SO(8) flavour symmetry is not explicit. It is instead implicitly

realised via the subgroup SU(4) × U(1) ⊂ SO(8) and the decomposition 8s = 41 + 4̄−1,

which reflects the fact that we are considering four kinds of 3-7 and 7-3 strings. Also

hidden in (2.1) is the SU(2)A symmetry, which we will restore in due course together with

explicit SO(8) invariance. Lastly, the SU(2)a part of the N = 2 R-symmetry is also not

manifest at this stage. The complexified coupling is τ = ΘY M

2π + 4πi
g2 but, since we are only

interested in the perturbative behaviour of the theory, we can safely set the total derivative

terms to zero by requiring that ΘY M = 0. We will also ignore any total derivative terms

coming from integration by parts.

In component form we have (Aµ, λ,D) for V , (φ, χ,Fφ) for Φ and (q, η,Fq) for Q, with

similar superfield expansions for Q′†, Z and Z ′†. Since we are constructing this N = 2

6Our notation and conventions are summarised in appendix A. General reviews of superspace techniques

and N = 2 supersymmetric gauge theories can be found, for instance, in [67 – 71].
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action out of N = 1 quantities, the coupling appearing in front of the superpotential

terms can, in principle, be different to the coupling of the kinetic terms for the N = 2

vector multiplet. However, N = 2 supersymmetry requires that they all be equal [68].

After expanding the superfields and performing the Grassmann integration one obtains

the expression

L =
1

g2
Tr

(

−1

4
F 2 + (Dµφ)†(Dµφ) − iλ 6Dλ̄ − iχ̄ 6Dχ − i

√
2 [λ, χ]φ† − i

√
2 [λ̄, χ̄]φ

)

+ (Dµq)†I(Dµq)I + (Dµq′)I(Dµq′)†I − iη̄I 6DηI − iη′I 6Dη̄′I − i
√

2 q†IληI

+ i
√

2 η̄I λ̄qI − i
√

2 q′I λ̄η̄′I + i
√

2 η′Iλq′†I + Tr
(

(Dµz)†(Dµz) + (Dµz′)(Dµz′)†

− iζ̄ 6Dζ − iζ ′ 6Dζ̄ ′ − i
√

2 [λ, ζ]z† −i
√

2 [λ̄, ζ̄]z − i
√

2 [λ̄, ζ̄ ′]z′ −i
√

2 [λ, ζ ′]z′†
)

−
√

2
[(

η′IχqI + η′IφηI + q′IχηI

)
+ Tr

(
−[χ, ζ ′]z + ζ ′[φ, ζ] + [χ, ζ]z′

)
+ h.c.

]
− VS ,

(2.2)

where our convention for the covariant derivative is Dµ = ∂µ−iAa
µT a

R and 6Dα̇α = (σ̄α̇α)µDµ.

VS is the scalar potential obtained by integrating out the F- and D-terms. It is given by

VS = F
†
qFq + Fq′F

†
q′ + Tr

(

F
†
zFz + Fz′F

†
z′ +

1

g2
F
†
φFφ

)

+
1

2g2
D

2 , (2.3)

where the individual terms with their index structure made explicit are

(Fq)
i
I = −

√
2 (φ†)ijq

′†j
I , (Fq′)

I
i = −

√
2 q†Ij (φ†)ji

(Fz)
i
j = −

√
2

[

φ†, z′†
]i

j
, (Fz′)

i
j = −

√
2

[

z†, φ†
]i

j
(2.4)

and

(Fφ)ij = −g2
√

2
[

z′†, z†
]i

j
− g2

√
2

(

q′†iI q†Ij + q′†Ijq
†Ii

)

D
a = −Tr

(

T a[φ†, φ] + g2T a[z†, z] − g2T a[z′, z′†]
)

+ g2
(

q†IT aqI − q′IT aq′†I

)

.(2.5)

The (T a)ij ’s are the generators of the fundamental representation of Sp(N) and in obtaining

the full scalar potential one also needs to make use of the following identity

(T a)ij(Ta)
k
l =

1

2
(δi

lδ
k
j − ΩikΩjl) . (2.6)

To further reorganise the action (2.2), we recall that the twistor approach to gauge

theory amplitudes breaks the symmetry between positive and negative helicity states [2].

Here we implement this by splitting the action into a piece independent of the gauge

coupling and another piece which is of order g2. This is done by performing a series of

rescalings which read as follows: For the adjoint fields we have

(φ, φ†) →
(

ig
√

2φ,− ig√
2
φ†

)

, (λ, λ̄, ) → (g1/2λ, g3/2λ̄, ) , (χ, χ̄) → (g1/2χ, g3/2χ̄) ,

(2.7)
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for the antisymmetric ones

(z, z†) → (z, z†), (z′, z′†) → (iz′,−iz′†)

(ζ, ζ̄) →
(

− iζ

g1/2
√

2
, ig1/2

√
2ζ̄

)

, (ζ ′, ζ̄ ′) →
(

ζ ′

g1/2
√

2
, g1/2

√
2ζ̄ ′

)

, (2.8)

while for the fundamentals

(qI , q
†I) → (qI , q

†I), (q′
I
, q′

†
I) → (iq′I ,−iq′†I )

(ηI , η̄
I) →

(

− iηI

g1/2
√

2
, ig1/2

√
2η̄I

)

, (η′I , η̄′I) →
(

η′I

g1/2
√

2
, g1/2

√
2η̄′I

)

. (2.9)

We will also make the symmetries of table 1 explicit by appropriately arranging the an-

tisymmetric fields into SU(2)A doublets and collecting the fundamentals into SO(8) spinors

(which can be exchanged for vectors by SO(8) triality). We finally collect the hypermul-

tiplet scalars and the adjoint fermions into doublets of SU(2)a. The above statements are

summarised by the definitions

λa =

(

λ

−χ

)

, λ̄a =
(
λ̄,−χ̄

)
, λ̄a =

(

−χ̄

−λ̄

)

, λa = (χ, λ)

ηM =

(

ηI

η′I

)

, η̄M =
(
η̄I , η̄′I

)
, η̄M =

(

η̄′I
η̄I

)

, ηM =
(
η′I , ηI

)

ζ̄A =

(

ζ̄

ζ̄ ′

)

, ζA =
(
ζ, ζ ′

)
, ζA =

(

ζ ′

−ζ

)

, ζ̄A =
(
−ζ̄ ′, ζ̄

)

za
A =

(

z z′

−z′† z†

)

, zA
a =

(

z† −z′

z′† z

)

qa
M =

(

−q′I q′†I
−q†I qI

)

, qM
a =

(

−q′†I −qI

−q†I −q′I

)

. (2.10)

Having made the SO(8) flavour symmetry of the fundamental fields manifest in terms

of components, we can also collect them into 8 N = 2 ‘half-hypermultiplets’ QM =

(η̄M , qa
M , ηM ), each of which contains two bosonic and two fermionic fields. This type

of multiplet arises only for pseudoreal representations, allowing a description in terms of

half the usual field content of N = 2 supersymmetry [72, 73, 68]. Note that it is not possi-

ble to have a description in terms of full N = 2 hypermultiplets that manifestly preserves

the SO(8).

For the gauge field we introduce an anti-selfdual two-form Gµν as a Lagrange multiplier,

via which (up to a topological term which will not play a role in our perturbative study)

we can rewrite the Yang-Mills action in first order form [74]

− 1

4g2
TrFµνFµν → −1

2
Tr

(

GµνFµν − 1

2
g2GµνGµν

)

. (2.11)
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The final expression for the action, including the full quartic contributions arising from

the scalar potential, takes the form

L =Tr

[

−1

2
GF +

1

4
g2G2 + Dφ†Dφ + iλ̄a 6Dλa − λaλaφ

† + 2g2λ̄aλ̄aφ

]

+ Tr

[
1

2
Dza

ADzA
a

+iζ̄A 6DζA − za
A[λa, ζ

A] − 2g2zA
a[ζ̄A, λ̄a] + ζAζAφ − 2g2ζ̄Aζ̄Aφ†

]

+
1

2
Dqa

MDqM
a

− iη̄M 6DηM + qa
Mλaη

M − 1

2
ηMφηM − 2g2

(

η̄M λ̄aqM
a +

1

2
η̄Mφ†η̄M

)

+ g2

(

−1

2
qa

M{φ†, φ}qM
a +

1

4
qa

M [zb
A, zA

a]q
M

b

)

− g2

8

(

(qa
MqN

a)(q
b
NqM

b)

+(qa
Mqb

N )(qN
aq

M
b)

)

− g2 Tr

(
1

2
[φ†, φ]2 +

1

4
[za

A, zA
b][z

b
B , zB

a] + [za
A, φ][φ†, zA

a]

)

.

(2.12)

By taking the g → 0 limit one obtains the ‘selfdual’ truncation of the Lagrangean, which

has the same field content but only a subset of the interactions of the full theory. The

O(g2) terms can be thought of as perturbations around the selfdual theory.

In anticipation of the twistor approach, we will perhaps surprise the reader by once

again hiding the global SO(8) symmetry that we just made manifest. This is done by

decomposing the flavour index M → A′ ⊗ X according to the special maximal embedding

SO(8) ⊃ SU(2)A′ × Sp(2) where the indices run over A′ = 1, 2 and X = 1, . . . , 4. One

motivation for this is that each doublet indexed by A′ has the field content of a full N = 2

hypermultiplet, but the main reasoning behind it will become clear in the next section.

In the interim — and to facilitate comparison with the twistor analysis — we include the

action for this selfdual truncation, which takes the simple form

L = Tr

[

−1

2
GF + Dφ†Dφ + iλ̄a 6Dλa − λaλaφ

†

]

(2.13)

−Tr

[
1

2
DzaADzaA + iζ̄A 6DζA + zaA[λa, ζA] + ζAζAφ

]

−
(

1

2
DqaA′XDqaA′X + iη̄A′X 6DηA′X + qaA′XλaηA′X +

1

2
ηA′XφηA′X

)

.

This action is the Nf = 4 analogue of the selfdual truncation of N = 4 SYM introduced

by Siegel [75].

3. Twistor strings

We now turn our attention to constructing a twistor string dual to the gauge theory we

have just described. To begin with, we will briefly review the most relevant parts of the

twistor string dual for N = 4, SU(N) gauge theory in four dimensions [2],7 subsequently

modifying it appropriately for the Nf = 4 case.

7To be precise, Witten studied the U(N) theory but since that only involved gluon amplitudes it is

essentially the same to consider SU(N); the gluons don’t couple to the U(1) ‘photon’. Moreover, when

considering colour-stripped amplitudes the extra U(1) piece will not affect the results, even for external

scalars or fermions.
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3.1 The open B-model

In this section we collect a few well-known facts on the open topological B-model which

will be useful in what follows. This is not intended to be a thorough review, for which we

refer the reader to e.g. [76 – 79]. The B-model [80] arises as an axial-type twisting of the

N = (2, 2) supersymmetric 2d nonlinear σ-model, which turns out to only be consistent

when the target space is Calabi-Yau. For a bosonic target space, the worldsheet field

content of the theory consists of bosonic scalars φm, φm̄ providing the map to the target

manifold, and ghost-number one fermions ηm̄ and θm (plus a worldsheet one-form ρm
z̄ which

will not play a role in our analysis). The action of the BRST charge QB on these fields

is such that it can be precisely mapped to the Dolbeault operator ∂̄ on the target space

Calabi-Yau, and this identification leads to the following well-known relations between

worldsheet fields and the geometry of the target space

φm ∼ Zm , φm̄ ∼ Z̄m̄ , ηm̄ ∼ dZ̄m̄ , θm ∼ ∂

∂Zm
. (3.1)

We will only be interested in the BRST transformations of these fields in the presence of

a boundary, which are given by [81]

δBφm = 0 , δBφm̄ = iαηm̄ , δBηm̄ = 0 , δBθm = 0 . (3.2)

This implies (see e.g. [82, 83]) that imposing Neumann boundary conditions along a partic-

ular holomorphic direction (say m) requires that θm = 0, while imposing Dirichlet directions

along an antiholomorphic direction m̄ leads to ηm̄ = 0.

A generic open string vertex operator, giving rise to a local observable, can be written

as

V = θm1 · · · θmpη
n̄1 · · · ηn̄qV (φ, φ̄)i j

m1···mp

n̄1···n̄q
(3.3)

where i,j denote the Chan-Paton indices. BRST invariance of this operator requires that

V be a (0, q)-form with values in ∧pT (1,0) (times the Chan-Paton group). Since physical

open string vertex operators arise at ghost number one, in practice one needs to consider

two types of vertex operators

(a) V = ηm̄V i
jm̄ and (b) V ′ = θmV ′i

j
m

. (3.4)

Recalling the identifications in (3.1), we see that these states correspond to either matrix-

valued (0, 1)-forms or tangent vectors on the target manifold. Therefore, when considering

space-filling (‘D5’) branes on the Calabi-Yau [81], by imposing Neumann-Neumann (NN)

boundary conditions on all open strings, the physical open string spectrum is just given

by a (0, 1) form A = dZ̄m̄Am̄. The target space interactions can be encoded in the cubic

holomorphic Chern-Simons theory

S =
1

2

∫

CY
Ω ∧ Tr

(

A · ∂̄A +
2

3
A ∧A ∧A

)

(3.5)

which is written with the help of the (3, 0) holomorphic volume form of the Calabi-Yau.

In the following we will assume the straightforward generalisation of the above state-

ments to the super-Calabi-Yau case.
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3.2 Review of the dual for N = 4 SYM

In [2], Witten showed that the tree level n-gluon MHV amplitudes, that is the amplitudes

with n−2 positive and 2 negative helicity gluons (when all external particles are taken to be

outgoing) can be reconstructed from an open string theory in supertwistor space. Essential

to this was the observation that these amplitudes localise on holomorphically embedded,

degree-one curves of genus zero in |||CP3|4, and the string theory in question is the open

string sector of the topological B-model with |||CP3|4 target space, which is well defined

since the latter is a super-Calabi-Yau. The isometries of |||CP3|4 encode the PSU(2, 2|4)
superconformal symmetry of the N = 4 theory in a linear way, while the open string sector

is realised by introducing Euclidean ‘D5’-branes wrapping the bosonic directions of |||CP3|4

(Z, Z̄) but only the holomorphic part of the fermionic directions ψI (I = 1, . . . , 4). This can

be interpreted as a localisation of the D5s in the transverse fermionic coordinates and in [2]

this locus was taken to be at ψ̄Ī = 0. Since this imposes Dirichlet boundary conditions only

on the antiholomorphic fermionic directions ψ̄Ī (which would not have been possible had

they been bosonic), it follows that θm, θI = 0 and from (3.4) we see that the only physical

field is a nonabelian (0, 1)-form A = dZ̄m̄A(Z, Z̄, ψ)m̄, which in addition is independent of

the antiholomorphic fermionic coordinates. Therefore the superfield expansion of A is

A = A + ψIλI +
1

2!
ψIψJφIJ +

1

3!
ǫIJKLψIψJψK λ̃L +

1

4!
ǫIJKLψIψJψKψLG , (3.6)

where we will from now on suppress the gauge indices and form structure.

As mentioned above, the open string field theory of the B-model reduces to a holo-

morphic version of Chern-Simons theory [81], which can be straightforwardly extended to

super-Calabi-Yau manifolds, yielding the following action [2]

S =
1

2

∫

D5
Ω ∧ Tr

(

A · ∂̄A +
2

3
A ∧A∧A

)

, (3.7)

where in this case

Ω =
1

4!
Ω′ǫIJKLdψIdψJdψKdψL

(

with Ω′ =
1

4!
ǫIJKLZIdZJdZKdZL

)

, (3.8)

is the globally defined holomorphic volume form.8 The classical equations of motion fol-

lowing from (3.7) are

∂̄A + A ∧A = 0 , (3.9)

while an infinitesimal gauge transformation takes the form9

δA = ∂̄ǫ + [A, ǫ] . (3.10)

8Note that, as mentioned in [2], Ω does not actually define a top form in the fermionic directions and

ideally should be promoted to a so-called integral form, which does. A thorough discussion of integration

on supermanifolds in similar contexts appears in [84], where more references can be found. However, as

in [2], the choice of Ω in (3.8) appears to be sufficient for our purposes, and we will content ourselves with

this näıve choice in the following.
9Here and in the following we use the standard commutator of forms [αp, βq ] = αp ∧βq − (−1)pqβq ∧αp.
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By linearising around the trivial solution A = 0, the above reduce to ∂̄A = 0 and A′−A =

∂̄ǫ respectively, which show that A is in the ∂̄ cohomology class H1 and thus a good physical

state of the open B-model. As is further explained in [2], the ψIs carry an additional U(1)S
(+1) charge, under which the B-model is anomalous and the superfield A is neutral. The

component fields (A,λI , φIJ , λ̃I , G) carry charge (0,−1,−2,−3,−4) under this symmetry

and are then (0, 1)-forms with values in the line bundle O(−k), where −k is the appropriate

S-charge. Each component field in (3.6) is then an element of the sheaf cohomology class

H1( |||CP3,O(−k))10 and the Penrose transform [3] maps these fields to the space of solutions

of massless free wave equations for fields of helicity 1 − k/2 in Minkowski space. In this

fashion one recovers the spectrum of N = 4 SYM.

The action (3.7) thus contains all the fields of N = 4 SYM and at least some of

the interactions. It does not contain all the interactions, however. Rather, it describes

the subset corresponding to the so-called selfdual sector of N = 4 SYM, as can be seen

via a nonlinear form of the Penrose transform, which precisely maps the hCS action to

this selfdual truncation [85]. In order to recover the full set of interactions it is necessary

to introduce nonperturbative objects, called ‘D1-instantons’ in [2], which are Euclidean

2-branes wrapping the curves on which the desired amplitudes are supported. We will

postpone a review of these aspects to section 4.1, and concentrate for the moment on

obtaining the analogue of the above construction for the Nf = 4 theory.

3.3 Orientifolding the twistor string

Having reviewed how the spectrum and selfdual interactions of N = 4 SYM can be recov-

ered from the B-model on |||CP3|4, we now begin the analogous construction for the Nf = 4

theory. It is clear from the above that the problem can be split into two steps: First, we

will need to recover a B-model target space action corresponding to the selfdual sector of

the gauge theory, and then, introducing D1-instantons wrapping appropriate curves, we

can proceed to reproduce the non-selfdual amplitudes of the theory. In the following we

will focus on the former part, while the second step will be considered in section 4.

Following the intuition gained from the IIB description of the Nf = 4 theory, reviewed

in section 2.1, and the twistor description of quiver gauge theories in [25, 26], it is clear that

some sort of fermionic orientifold projection will be necessary in our approach.11 We begin

by considering the N = 4 setup of the previous section, choosing the number of ‘D5’ branes

to be 2N . This produces an SU(2N) gauge group, and accordingly the indices of Ai
j run

over i, j = 1, . . . , 2N . Conformal invariance of the dual gauge theory requires us to choose

the orientifold action such as to leave the bosonic part of |||CP3|4 fixed.12 However, we would

like to reduce the amount of supersymmetry, which implies that the orientifold should act

10Actually, as noted in [2], the class is really H1( |||CP3′,O(−k)) where |||CP3′ is a suitable open set of

supertwistor space. However, we will ignore such subtleties here.
11Orientifolds in a topological string context were first considered (for the A-model) in [86].
12Although we should emphasise that, in order to discuss a specific spacetime signature, we will eventually

need to pick a contour (e.g. RP3) within |||CP3, which can be imposed via a bosonic orientifold-type operation

(albeit a trivial one from our perspective, being already present for N = 4 [2]). We thank Dave Skinner for

a relevant discussion.
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on the fermions ψI asymmetrically, in order to break the SU(4)R symmetry. Therefore,

we begin by splitting the four fermionic coordinates ψI of |||CP3|4 into I = {a,A}, with

a = 1, 2 and A = 3, 4. The appropriate orientifold action is the combination of a Z2

orbifold (acting trivially on the Chan-Paton indices), the worldsheet parity transformation

ω̂ and an action on the Chan-Paton indices brought about by acting with an antisymmetric

hermitian matrix γ̃ = iΩ, where Ω2N×2N is the Sp(N) invariant tensor (see appendix A)

(a) ψa → ψa , ψA → −ψA

(b) Ai
j → Ωik(AT ) l

k Ωlj = (AT )i j ≡ A i
j ,

(3.11)

which is a superorientifold operation in |||CP3|4.13 Note that the orbifold action (a) breaks

the fermionic coordinate symmetry SU(4)R → SU(2)a × SU(2)A.14 Also note that it leaves

the holomorphic volume form (3.8) invariant, indicating that the target space is still super-

CY and that we can legitimately define a proper B-model action. In (b) we have used Ω

to raise and lower indices.

Requiring A to be invariant under this operation (which, on lowering indices, trans-

lates to Aij = Aji), and considering its action on the various component fields in the

expansion (3.6), it is easy to see that one obtains the following decomposition

Â = (A + ψaλa + ψ1ψ2φ + ψ3ψ4φ† + ǫcdψ
3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G)

+ ψA(ζA + ψazAa + ǫABψ1ψ2ζ̃B) (3.12)

= V + ψAZA

= V + Z ,

where in the first line we have collected the terms (V) which are symmetric (when both

indices are either up or down) under the orientifold operation of (3.11). Since these have

N(2N + 1) gauge degrees of freedom, we immediately conclude that they transform in

the adjoint representation of Sp(N). Similarly in the second line we have displayed the

terms (Z) which are antisymmetric under said operation and therefore have N(2N −1)−1

degrees of freedom and transform in the (second-rank) antisymmetric tensor representation

of Sp(N).

By repeating the analysis performed for the N = 4 theory and studying the lin-

earised classical equations of motion around the trivial solution Â = 0, one obtains the

superorientifold-invariant elements of the (Dolbeault) cohomology, which via the Penrose

transform map to part of the spectrum of the Nf = 4 theory [2]. In a helicity basis this is

V = (A,λa, {φ, φ†}, λ̃a, G)
︸ ︷︷ ︸

1-forms of S-charge (−k) in twistor space

Penrose←→ (A,λa, {φ, φ†}, λ̄a, G)
︸ ︷︷ ︸

fields of helicity (1−k/2) in Mink. space

Z =
︷ ︸︸ ︷

(0, ζA, zaB , ζ̃A, 0)
Penrose←→

︷ ︸︸ ︷

(0, ζA, zaB , ζ̄A, 0) (3.13)

13In writing (b) we have assumed that, as in the physical string case [49], ω̂ has eigenvalue −1 on the

(0, 1)-form vertex operator A. This minus combines with the i2 from γ̃ = iΩ to give an overall plus in (b).
14We choose the subscripts having in mind the eventual identification of these symmetries with their

spacetime counterparts.
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Direction Dc–Dc Dc–Df Df–Df

Z,Z̄ NN NN NN

ψa NN NN NN

ψA NN ND DD

ψ̄ā,ψ̄Ā DD DD DD

Table 2: Boundary conditions for open strings in the B-model setup.

and we have, therefore, obtained the adjoint and antisymmetric sector of the Nf = 4 theory.

However, to complete the derivation of the spectrum on the twistor side, we still need to

recover the fundamental degrees of freedom, to which we now turn our attention.

3.4 Flavour-branes and the fundamental sector

By analogy with the IIB string description, it should be clear that incorporating the funda-

mental fields of the Nf = 4 theory will require the introduction of a new object in twistor

space. We will implement this by adding a new kind of brane to our configuration, which

we will call a ‘flavour’-brane, as it roughly corresponds to a D7-brane in the physical string

setup, in the sense that strings stretching between the ‘D5’s and the flavour-branes will

lead to the fundamental hypermultiplets.

Recall from section 2.1 that in the IIB picture the D7-branes were located on the ori-

entifold plane defined by (x8, x9) → −(x8, x9). We will similarly take the flavour-branes

to lie on the fixed point set of our orientifold action (ψA → −ψA), by imposing Dirichlet

conditions in the ψ3, ψ4 directions. We will also keep the Dirichlet condition on the anti-

holomorphic ψ̄Ā directions. Since these new branes still extend along the bosonic directions

of |||CP3|4 (as well as the fermionic ψa directions), from now on we will drop the possibly

misleading ‘D5’ terminology and label the branes discussed in the last section (which led

to the gauge group Sp(N)) as ‘Dc’ (for colour) and the new branes as ‘Df ’ (for flavour).

We summarise the boundary conditions satisfied by open strings stretching between the

branes in our setup in table 2.

Having chosen the boundary conditions defining a Df brane, we will now need to decide

on a) how many of them to introduce and b) how the orientifold and orbifold groups act

on the Chan-Paton indices associated with these branes. For the first question, it turns

out that (as will become clear shortly) introducing two Df branes, which along with their

mirrors lead to a 4 × 4 Chan-Paton group, is what is necessary to reproduce the Nf = 4

theory. We will call the corresponding indices X,Y, . . . = 1, . . . , 4. As for the second

question, recall that for the Dc branes we chose the orientifold action γ̃c = iΩ2N×2N ,

but the action of the orbifold was trivial: γc = I2N×2N . With an eye to the results we

want to obtain, we will again choose the orientifold action antisymmetric (γ̃f = iΩ4×4),

but this time we take γf = −I4×4. Thus, the full specification of our orientifold action
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(extending (3.11)) is given by:

(a) ψa → ψa , ψA → −ψA

(b) J → Ω(r)J (T )Ω(r)

(c) J → γ(r)J γ
(−1)
(r) ,

(3.14)

where the generic B-model state J can take any of the four possible choices of Chan-Paton

indices (i.e. J i
j,J i

X ,J X
i,JX

Y ), γ(r) is either γc or γf depending on the index it is acting

upon, and similarly Ω(r) corresponds to either Sp(N) or Sp(2).

This completes the definition of our proposal for the twistor dual of the Nf = 4 theory.

Now let us check whether we can recover the expected spectrum on the spacetime side. Of

course the discussion in section 3.3 remains unchanged, so we already know that the c − c

strings of our construction reproduce the correct vector and antisymmetric hypermultiplet

spectrum.

First, we will look at the f − f strings, which will provide us with information on the

Chan-Paton group corresponding to the four Df branes. We thus need to confront the

problem of interpreting the Dirichlet boundary conditions in the holomorphic ψA direc-

tions. Unlike what happens for the antiholomorphic fermions, simply interpreting these as

imposing ψA = 0 (so that observables do not depend on ψA) does not seem to provide the

correct degrees of freedom. The resolution comes through realising that one has to apply

a fermionic analogue of dimensional reduction, which is part of a more general question of

properly defining sub-supermanifolds of supermanifolds. Some aspects of this, which turn

out to be sufficient for our purposes, have been discussed in [87], whose approach we will

follow (and where further references can be found). In brief, the results of [87] indicate

that a reasonable definition of fermionic dimensional reduction is to restrict the fermionic

dependence of the original supermanifold so that fields on the sub-supermanifold can only

depend on them in certain combinations. For example, one of the cases considered in [87]

was the reduction |||CP3|4 → |||CP3⊕1|0, where the notation [88] means that all four ψI have

been combined into a single nilpotent bosonic coordinate y = ψ1ψ2ψ3ψ4.15

A simple way to impose such constraints on the fermionic dependence is in terms of

a suitable set of integral constraints, and indeed the particular reduction above was first

performed in [89] using such an approach. However, with this choice (as well as another case

considered in [87]) one is led to a completely bosonic truncation of the N = 4 spectrum,

while our Df branes are still expected to preserve N = 2 supersymmetry, so we will need

to slightly adapt those embeddings to our setting. Given the symmetries of our system,

we propose that the supermanifold reduction defining the Df branes is |||CP3|4 → |||CP3⊕1|2,

where the nilpotent coordinate is ψ3ψ4 and the ψ1,ψ2 coordinates are unrestricted.16

As discussed above, the NN directions will provide a (0,1)-form living on the Df

branes, which we denote by KX
Y . The above definition of dimensional reduction can be

implemented by imposing the following eight equations (which are a subset of the truncation

15 |||CP3⊕1|0 is an example of a thickening of |||CP3 [87].
16Such maps of supermanifolds, where one exchanges pairs of odd coordinates for even nilpotent coordi-

nates, have also appeared, in a slightly different (superspace) context, in [90].
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conditions considered in [89])

∫

d4ψψ1ψ2ψAK =

∫

d4ψψaψAK =

∫

d4ψψAK = 0 . (3.15)

These conditions restrict the ψ dependence of K to take the following form

KX
Y = dZ̄m̄

(

K(Z, Z̄, ψa)m̄
X
Y + ψ3ψ4L(Z, Z̄, ψa)m̄

X
Y

)

. (3.16)

It is easy to check that requiring invariance under the orientifold action results in a sym-

metric truncation of the Chan-Paton matrix defined by the X,Y indices and thus K is a

4 × 4 matrix transforming in the adjoint of an Sp(2) group. Thus we have specified the

(0,1)-form part of the f − f spectrum.

However, as can be seen in (3.4), the existence of holomorphic DD directions implies

that the (0, 1)-forms do not exhaust the possible vertex operators that can be written down

at ghost number one. One can now also have states of the form

BAθA ∼ BA(Z, Z̄, ψa, ψA)
∂

∂ψA
. (3.17)

Motivated by dimensional reduction in the physical string case, and in particular by the

desire to have the same counting of states before and after the reduction, we will assume

that the fermionic dependence of these DD f−f states arises by considering the complement

of the eight equations in (3.15).17 This will restrict the general expansion for B to

BA(Z, Z̄, ψ)XY

∂

∂ψA
= ψBBA

B(Z, Z̄, ψa)XY

∂

∂ψA
. (3.18)

Requiring invariance under the orientifold action (under which we also have ∂/∂ψA →
−∂/∂ψA) once again restricts the Chan-Paton indices to be those of Sp(2). It is straightfor-

ward to check that ψBBB(Z, Z̄, ψa) provides 4 fermionic and 4 bosonic degrees of freedom,

which, together with K, give the expected counting of states for the 8d N = 1 theory on the

D7-brane (note that in this counting we suppress the index corresponding to the expansion

of B in a basis of T (1,0), in the same way that we have been suppressing the form index z̄

for the (0,1)-form states). These states, not being (0,1)-forms, are clearly unsuitable for a

straightforward application of the Penrose transform to four dimensions. This is not unex-

pected, since their natural dual interpretation would be as states of the eight-dimensional

D7-brane theory. We will further comment on such a potential interpretation at the end

of this section.

It should also be pointed out that, again because they are not (0,1)-forms, there

seems to be no obvious way to include the B states in a holomorphic Chern-Simons-type

action (which would still need to be integrated over a (3,3)-cycle), and in particular we

cannot write down the action on the Df worldvolume including these terms by dimensional

17This becomes clearer if one chooses to reduce along all four ψI directions, as in [89]. In that case

one imposes 14 equations in the NN sector, so the (0,1)-strings provide just two degrees of freedom. The

remaining states should then arise from the DD sector, therefore we would want to impose just two equations

on that sector.
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reduction (unlike the case for bosonic DD directions, see e.g. [91]). Perhaps a suitable

generalisation of the hCS action, along with a more rigorous definition of our integration

measure, would be able to accommodate this more general case, but since for the purposes

of this paper we will only need to know the Dc brane action, which is what is expected to

have a relation to the 4d theory that we are interested in, we will not pursue this question

further here.

Clearly the choice of the above geometric embedding of the Df branes within |||CP3|4

has been based on rather heuristic arguments, and, although it certainly seems to provide

a consistent picture, we cannot claim that it is the unique possibility. It would certainly be

desirable to obtain a more fundamental understanding of this embedding starting from the

basic definition of Dirichlet boundary conditions on the B-model worldsheet. Leaving this

for future work, we will now turn to the last aspect of our construction, i.e. the strings

stretching between the Dc and Df branes.

Therefore, we finally consider the c − f and f − c strings. Recall that these are the

real reason to introduce the Df branes, since they will provide the desired fundamental

matter. Looking at table 2, and recalling that (topological) DN strings do not have zero

modes and thus do not provide B-model states, the only contributions arise from the NN

sector. Suppressing the (0, 1)-form index, these can be usefully written as an expansion in

ψA

Qi
X = P (Z, Z̄, ψa)i X + ψAQA(Z, Z̄, ψa)i X + ψ3ψ4R(Z, Z̄, ψa)i X (3.19)

and similarly for the f − c field QX
i. Note that, due to the orientifold action (3.14.b), the

c − f and f − c states are related by the condition

QX
i = ΩijQj

Y ΩY X . (3.20)

It is easy to check that the other components of (3.14) impose P i
X = Ri

X = 0 and thus

dictate that the c − f and f − c states are given by

Qi
X = ψAQi

AX , QX
i = ψAQX

A i , (3.21)

where we can expand

Qi
AX = ηi

AX + ψaqi
aAX + ψ1ψ2η̃i

AX (3.22)

and similarly for QX
Ai. Recall that here i is an Sp(N) gauge group index, A is an index of

SU(2)A and (as we previously derived) X is an index of Sp(2). The particular form of Q

is not new: As shown in [92, 37], this is the precise twistor field content (for each value

of X) corresponding to an N = 2 hypermultiplet!18 We conclude (and will make more

precise shortly) that our orientifolding procedure has produced a hypermultiplet Qi
AX in

the fundamental representation of Sp(N).

Let us now investigate its transformation properties under the two global groups, given

by the indices A and X. As we reviewed in section 2.2, the fundamental hypermultiplets

18To be more precise, these references describe a hypermultiplet as consisting of two fermionic half-

hypermultiplets, while in our case they naturally appear in SU(2)A doublets, at the cost of losing manifest

SO(8) invariance.
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should also transform in the fundamental representation of the global SO(8) flavour group.

However at the end of that section we explicitly decomposed the SO(8) into its SU(2)×Sp(2)

subgroup. The reason for that should now be evident: In the twistor string model we have

constructed, the SU(2) arises geometrically as the symmetry under which the ψA coordi-

nates transform as doublets, while the remaining Sp(2) arises as the Chan-Paton group

of the flavour-branes. We will explore some of the implications of this decomposition of

the flavour group shortly, but it is clearly an unavoidable consequence of the fundamental

fields in (3.21) being linear in ψA. However, we can immediately comment on another con-

sequence of this linear behaviour: It provides a very natural explanation for the fermionic

nature of Qi
AX which had to be assumed in the constructions of [92, 37].

We conclude that, by defining our flavour-branes to lie at the orientifold fixed point,

and extending the orientifold action to act nontrivially on their Chan-Paton indices, we have

reproduced the fundamental part of the spectrum of the Nf = 4 theory. This description

has several peculiarities relative to the physical string description, not least of which is

the fact that the relative sizes of the D3 and D7 branes in the IIB setup seem to be

interchanged: Our Df branes extend (have NN b.c.’s) along a subspace of that of the

Dc branes and could perhaps be thought of as defects in the worldvolume theory of the

latter. On the other hand, what is perhaps more relevant in comparing to the spacetime

picture is the super-dimension of our branes, defined as the difference between the number

of bosonic and fermionic NN directions.19 Although this deserves further study, we note

that it also seems to be consistent with an observation in [95] that (for non-topological

strings on supermanifolds) the number of fermionic NN directions contributes to the brane

tension inversely to that of bosonic NN directions, and thus a brane extending along fewer

fermionic directions can be thought of as having larger mass. Although these results do not

apply directly in our setting, we take them as an indication that the geometric embedding

of the Df branes is the correct one.

Another perhaps surprising feature of our model is the fact that both the Dc and

Df branes were chosen to satisfy symplectic projection conditions on their Chan-Paton

indices, leading to Sp(N) and Sp(2) worldvolume gauge groups respectively. This seems

to conflict with the arguments of [49] which (applied to the orientifolded D3-D7 system)

would require opposite projections for the two types of branes, leading to Sp(N) and SO(8)

gauge groups. However, that analysis was based on subtle properties of the 3 − 7 string

DN sector, which is absent in this case. Therefore it would seem that the B-model is too

simple to accommodate such an effect, but confirmation of this will have to wait for a

better worldsheet understanding of our orientifold prescription.20

Given that, in the physical string setup, our Df branes correspond to IIB D7-branes,

with an associated eight-dimensional worldvolume SYM theory, it is fascinating to speculate

that our twistor string model might, via a suitable higher-dimensional generalisation of the

19For instance, [93] argues for the equivalence of the A-model on certain (m|n)-dimensional supermanifolds

to that on bosonic (m − n)-dimensional manifolds. See also [94] for similar observations in the context of

mirror symmetry.
20It is likely that the notions of B-parity and B-orientifolds, developed for (untwisted) (2,2) models in [96]

(see also [97]), properly extended to the supermanifold case, will be of help in this regard.
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Penrose transform, also have another dual description in terms of an eight-dimensional

spacetime theory. Under this duality, the worldvolume theory of the twistor Df brane

would presumably map to some integrable subsector of 8d Yang-Mills. A preliminary

remark in this direction is that a natural definition of selfduality for 8d Yang-Mills [98]

also seems to require the same breaking of (Lorentz) SO(8) to Sp(2)×Sp(1) that we observe

on the twistor side. Although it would be very interesting to understand this connection

better, we will from now on focus on the standard four-dimensional Penrose transform that

connects the spectrum and field equations of the Dc brane worldvolume theory to those of

a suitable generalisation of 4d selfdual Yang-Mills.21

3.5 The final twistor action

In the last two sections we defined a B-model setup with certain numbers of branes that

reproduced the spectrum of the Nf = 4 theory. The resulting superfields can be naturally

embedded into the holomorphic Chern-Simons action in the following way22

S =
1

2

∫

Dc

Ω ∧
(

Tr

[

Â · ∂̄Â +
2

3
Â ∧ Â ∧ Â

]

+ QX · ∂̄QX + QX ∧ Â ∧ QX

)

=
1

2

∫

Dc

Ω ∧
(

Tr

[

V · ∂̄V +
2

3
V ∧ V ∧ V + Z · ∂̄Z + 2Z ∧ V ∧ Z

]

+ QX · ∂̄QX + QX ∧ V ∧ QX

)

. (3.23)

The classical equations of motion can then be easily found to be

∂̄V + V ∧ V + Z ∧ Z +
1

2
QX ∧QX = 0

∂̄Z + [V,Z] = 0

∂̄QX + V ∧QX = 0 (3.24)

and by linearising these around the trivial solutions V = 0, Z = 0, Q = 0 one obtains

∂̄V = ∂̄Z = ∂̄Q = 0 . (3.25)

In addition, (3.23) has the following three gauge invariances, related to three different

(0, 0)-form gauge parameters ǫi
j , εi

j and ei
X

(a) δV = ∂̄ǫ + [V, ǫ] , δZ = [Z, ǫ] , δQX
i = QX

jǫ
j
i , δQi

X = −ǫi
jQj

X , (3.26)

(b) δZ = ∂̄ε + [V, ε] , δV = [Z, ε] , (3.27)

21In doing this we will assume that the Penrose transform can be applied just to the Dc brane theory,

comprising the c − c strings plus their interactions with the c − f and f − c strings, ignoring interactions

with the Df worldvolume theory. In the physical string setting such interactions are frozen at low energies

essentially due to the difference in spatial extent of the D3 and D7-branes. It would be interesting to

identify a mechanism providing such a decoupling in our topological string setting.
22Here we write the fundamental part of the action by analogy with that for the antisymmetric fields.

However, note the different relative coefficient of the interaction terms, which is due to their different Sp(N)

transformation properties.
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and

(c) δQi
X = ∂̄ei

X + V i
je

j
X , δQX

i = ∂̄eX
i − eX

jVj
i , δV i

j =
1

2
(Qi

XeX
j − ei

XQX
j) .

(3.28)

The first of these is the ordinary gauge invariance while the other two are clearly very un-

usual, and are due to the fact that on the twistor side Z and Q are (0,1) forms.23 Essentially

the same transformations have been discussed in [37], where they arise as symmetries of the

(non-cubic) twistor space effective action which, in the formalism there, would correspond

to full (non-selfdual) N = 2 SYM with matter.

As such, the linearised equations of motion and these symmetries are enough to put

the superfields V,Z and Q in the appropriate cohomology classes for their component fields

to map to spacetime states. In particular, the components of Q then map to Minkowski

space fields of helicity (1
2 , 0,−1

2 ) via the Penrose transform

Q = (0, ηAX , qaAX , η̃AX , 0)
︸ ︷︷ ︸

1-forms of S-charge (−k) in twistor space

Penrose←→ (0, ηAX , qaAX , η̄AX , 0)
︸ ︷︷ ︸

fields of helicity (1 − k/2) in Mink. space

.

We have thus obtained the complete spectrum of the Nf = 4 theory from twistor string

theory. Expanding (3.23) in components and integrating out the fermionic variables gives

ShCS =

∫

CP3

Ω′ ∧
(

Tr[G ∧ F + φ† ∧ D̄φ − λ̃a ∧ D̄λa + λa ∧ λa ∧ φ† ]

+ Tr

[

− 1

2
zaA ∧ D̄zaA − ζ̃A ∧ D̄ζA − zaA ∧ λa ∧ ζA + ζA ∧ ζA ∧ φ

]

+η̃AX ∧ D̄ηAX − 1

2
qaAX ∧ D̄qaAX − qaAX ∧ λa ∧ ηAX +

1

2
ηAX ∧ φ ∧ ηAX

)

,

(3.29)

where the covariant derivatives are defined as D̄ = ∂̄+[A, ] for tensor fields and D̄ = ∂̄+A∧
for fundamental ones. This looks very much like the selfdual truncation of the Nf = 4

theory that we obtained in (2.13), which we present again to facilitate the comparison

S4d =

∫

d4x Tr

[

−1

2
GF + Dφ†Dφ + iλ̄a 6Dλa − λaλaφ

†

]

− Tr

[
1

2
DzaADzaA + iζ̄A 6DζA + zaA[λa, ζA] + ζAζAφ

]

−
(

1

2
DqaA′XDqaA′X + iη̄A′X 6DηA′X + qaA′XλaηA′X +

1

2
ηA′XφηA′X

)

.

As we have already mentioned, there should exist a nonlinear generalisation of the Penrose

transform in the spirit of [85], relating these two actions exactly. Moreover, note that by

comparing the two we readily observe that even though there is both an SU(2)A and an

23In fact (a) and (b) can be straightforwardly derived from the transformation of Â (δÂ = ∂̄E + [Â, E]),

by splitting Â = V+Z and E = ǫ+ε into symmetric and antisymmetric parts and considering the symmetry

properties of the resulting terms.
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SU(2)A′ symmetry for the gauge theory, we only see a single SU(2)A on the B-model side.

This is a hint that these two symmetries are identified in the twistor string description, a

claim which we will verify during the comparison of amplitudes between the two theories.

In summary, we have introduced four Df branes parallel to the superorientifold plane

which account for the Sp(2) part of the flavour symmetry. Via the Penrose transform, this

yields the right spectrum for the fundamental hypermultiplets in the Nf = 4 theory and

mimics the behaviour of the D7-branes in the physical string setup. As we further discuss

in the conclusions, it would be intriguing if there were a mechanism which exactly fixes the

number of Df branes in the B-model to four (two plus two mirrors), e.g. some analogue of

the RR charge cancellation condition in string theory. The existence of such a mechanism

would suggest (as expected perhaps) that our construction is only consistent at loop level

for the precise case when the dual gauge theory is finite.

4. Comparison of amplitudes

Having reproduced the spectrum of the Nf = 4 theory, we will now establish the duality on

firmer grounds by calculating amplitudes in both the gauge theory and topological string

theory, and by showing precise agreement (up to a constant normalisation factor).

4.1 Review of the standard amplitude prescription

We will begin by briefly summarising the prescription of [2] for the calculation of colour-

stripped partial amplitudes in N = 4 SYM. As we indicated above, this reduces to the

evaluation of particular correlators on the worldvolume of D1-instantons wrapping curves

of a certain degree in |||CP3|4 and then integrating over the moduli space of such curves. For

tree-level MHV amplitudes, the D1-instantons are localised [2] on |||CP1s in |||CP3|4 with the

embedding given by

µα̇ + xαα̇λα = 0 and ψI + θI
αλα = 0 , (4.1)

where Zm = (λα, µα̇) and ψI are the supertwistor space coordinates, while the moduli

xαα̇ and θI
α correspond to the coordinates of 4d Minkowski space and (on-shell) N = 4

superspace respectively.

Following an idea due to Nair [4], the gauge theory amplitudes are reproduced by

correlation functions of chiral currents on the worldvolume of these D1-instantons. Since

the insertion of these objects explicitly breaks the isometries of |||CP3|4, one must integrate

over the moduli space of instantons of the appropriate degree. The prescription for the

calculation of tree-level MHV amplitudes, and therefore integration over degree one, genus

zero curves, is then

A(n) = g2

∫

d4x d8θ 〈
∫

CP1

J1w1 · · ·
∫

CP1

Jnwn〉 , (4.2)

where Ji are D1 worldvolume free-fermion currents coupling to the external D5-brane fields

(including both the colour and flavour-branes in our case), while the wi’s are the twistor

space equivalents of wavefunctions for the external particles. The lower index i = 1, . . . , n

indicates the position of the external particle in the n-point scattering process, as well as

– 22 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
8

the point onto which these localise on the holomorphic curve in twistor space. The factor

of g2 is identified with the D1-instanton expansion parameter. The calculation for the

product of the currents boils down to yielding a gauge group factor, which we will strip

off, as well as the following denominator part of the MHV amplitudes24

〈J1 · · · Jn〉stripped =
1

〈12〉〈23〉 . . . 〈n1〉 . (4.3)

The numerator of the amplitude is produced by the twistor wavefunctions wi, which, upon

integration over the positions of vertex operators for each on-shell external particle, result

in a colour-stripped coefficient vi(ψi) equal to the one in the superfield expansion of A
in (3.6) [99]. These contribute a number of factors of ψ, which are then integrated over the

moduli space of D1-instantons via the embedding relation ψI
i = θαIλiα. Since the fermionic

part of the measure on moduli space for genus zero, degree one holomorphic curves is d8θ,

the MHV amplitude is non-zero only if the Grassmann integral is saturated, that is, if

the total S-charge of the external states participating in the scattering process is S = −8.

Conversely, if a process involves external states with total charge S = −8, it is then MHV.

Since in the case under study these amplitudes can include external fermions or scalars

satisfying this condition in addition to gluons, it is perhaps more appropriate to refer to

them as ‘analytic’ [100] rather than MHV, and we will mostly use the latter notation in

the following. Finally we note that the integral over the bosonic moduli yields a δ-function

of momentum conservation, which we omit. This prescription successfully reproduces all

amplitudes localising on holomorphic, degree one, genus zero curves in N = 4 SYM.

The above can also be extended to amplitudes which localise on higher degree,

genus zero holomorphic curves. For generic scattering states this degree is given by

d = −1
4

∑n
i=1 Si − 1, where the sum is over the S-symmetry charges of the n external

particles. For gluon scattering these correspond to next-to-MHV (NMHV) and higher

(Nq−2MHV) amplitudes and the appropriate degree is given by d = q − 1, where q is the

number of negative helicity gluons. Although the original string-motivated prescription

of [2] made use of one connected degree–d instanton, in practice it turned out to be more

useful to consider instead a sum of d disconnected (degree one) D1-instantons, leading to

the MHV-rules prescription [11]. The equivalence of these prescriptions (as well as inter-

mediate pictures of multiple D1-instantons of degrees adding up to d) is strongly suggested

by the work of [101].

4.2 Extension to the Nf = 4 theory

The above prescription can be straightforwardly extended to the twistor model for the Nf =

4 theory that we constructed in section 3. The starting point is to consider D1-instantons

localised along holomorphic curves in the orientifold of |||CP3|4, which now includes the

two types of ‘D5’ branes, which we have denoted Dc and Df . Assuming that the D1

worldvolume currents couple to the external Df fields in the same way as to the Dc’s,

we will take the formula (4.2) as our starting point. The difference in this case is that

24Here we use the widespread notation 〈12〉 = 〈λ1λ2〉 = λα
1 λ2α and [12] = [λ̃1λ̃2] = −λ̃1α̇λ̃α̇

2 , with

2(pi · pj) = 〈λiλj〉[λ̃iλ̃j ]. See also appendix B.
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the twistor wavefunctions wi will now associate the appropriate term in the superfield

expansion of the V,Z of (3.12) and Q of (3.22) with each on-shell external particle.25

The fact that the gauge group is now Sp(N) rather that SU(N) does not introduce

major complications, due to the fact that we consider colour stripped partial amplitudes,

effectively factoring out all information about the gauge group. In the usual approach to

organising amplitudes in U(N) gauge theories,26 this amounts to considering definite order-

ings for the external scattering states and then summing over all non-cyclic permutations

to obtain the full amplitude. The structure of the group theory piece leads to identities,

which dramatically simplify the calculation by allowing the evaluation of a great number of

partial amplitudes by simply exchanging negative helicity spinor factors. A similar proce-

dure can be applied to the Sp(N) case. Naturally, from a given colour stripped result, one

can recover different full amplitudes depending on the gauge group choice. Since Sp(N)

gauge theory amplitudes seem to have no real phenomenological importance and since

agreement of partial amplitudes between the gauge and twistor theory sides is enough to

establish their correspondence, we will not explicitly calculate the full answer, although

it is straightforward to recover it using simple group theory facts.27 We would like to

note at this point that we will not only strip the gauge group indices but also the Sp(2)

indices X, which appear in the definitions of the fundamental fields. The motivation for

this is that they are global non-geometric indices and the partial amplitude calculation is

insensitive to how one chooses to contract them. In obtaining the full amplitude involving

external fundamental fields, one should of course be careful to properly consider all possible

contractions that lead to an Sp(2) scalar quantity.

In order to demonstrate that the standard twistor prescription for tree-level analytic

amplitudes can be applied, essentially unmodified, to the Nf = 4 theory, we will now move

on to explicit calculations of partial amplitudes. We will do this for a large set of amplitudes

of different combinations involving external particles transforming in the adjoint, antisym-

metric and fundamental representations of the Sp(N) gauge group.28 The first nontrivial

analytic amplitudes appear at 4-point but we will also evaluate a few 5-point amplitudes to

provide further evidence for the duality. In the following subsections we will explicitly dis-

play the result on the twistor string side. In order to get the result purely from gauge theory

one needs to extract the Feynman rules from the Lagrangean (2.12) and then add up the

contributions from all channels for the process under consideration. In appendix B we list

these Feynman rules in spinor helicity formalism, as well as various identities we have em-

ployed in order to obtain the spacetime answer. Since we do not have a precise map between

the actions on the two sides of the correspondence, we cannot hope to exactly match the

25The reader worried about only integrating over the moduli space of |||CP1s in an orientifolded theory,

which should also include RP2 topologies [102], should recall that these contributions are non-planar and

will be absent at tree-level. They should, however, play a role in any eventual loop level calculation.
26See for example the reviews [103, 104].
27Pseudoreality of Sp(N) will make this step slightly more subtle compared to U(N), since there exist

extra identities relating different orderings of the external particles.
28We do not need to calculate gluon scattering processes since the stripping procedure guarantees that

the partial amplitudes will go through as in the U(N) case.
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resulting amplitudes. We therefore calculate ratios of the latter and find exact agreement

up to a relative constant normalisation factor. In particular, in our conventions we find that

the spacetime answer is obtained from the twistor result by multiplying by a factor of 32i.

4.3 ‘Pre-analytic’ amplitudes

Before proceeding with the analytic results, we will briefly look at the amplitudes that

have a total value of S = −4, which we will call pre-analytic. These are 〈λa, λb, ηA, ηB〉,
〈λa, ηA, λb, ηB〉, 〈λa, λb, ζA, ζB〉 and 〈λa, ζA, λb, ζB〉 and on the twistor side they correspond

to amplitudes that localise on degree zero curves in twistor space, i.e. points. This means

that all particles are attached to the same point in twistor space and λi = λj ∀ i, j. There-

fore 2(pi ·pj) = 〈λiλj〉[λ̃iλ̃j ] = 0, and thus scattering amplitudes with n ≥ 4, which depend

on such nontrivial kinematic invariants, must vanish [2].

From the spacetime point of view this result is less obvious and one needs to calculate

all the corresponding amplitudes explicitly. These come from interaction vertices which

originate exclusively from the selfdual truncation of the Nf = 4 theory (2.13). In fact,

this observation extends to all other theories admitting a tree-level twistor string descrip-

tion. Moreover, since we only focus on the colour-stripped (and Sp(2)-stripped) partial

amplitudes, it suffices to calculate processes involving either fundamental or antisymmet-

ric matter fields; the amplitude is insensitive to their gauge transformation properties. We

will therefore only discuss the following examples involving the fundamental fermions η.

A. The amplitude 〈λa
1
, λb

2
, ηA,3, ηB,4〉

There are two channels contributing to this amplitude, namely
λa

1
ηB,4

qc
C

qd
D

λb
2

ηA,3

+

λa
1

ηB,4

φ† φ

λb
2

ηA,3

One can easily verify by explicit calculation, using the Feynman rules provided in

appendix B, that they indeed cancel each other to give zero.

B. The amplitude 〈λa
1
, ηA,2, λb

3
, ηB,4〉

The contributions to this process are

λa
1

ηB,4

qc
C

qd
D

ηA,2 λb
3

+

λa
1

ηB,4

qc
C qd

D
ηA,2 λb

3

and similarly we find that after summing both parts the total vanishes.
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This demonstrates (at four-point level) that all pre-analytic amplitudes, which are the ones

that can be constructed from the interactions in the selfdual truncation of the theory, vanish

after summation over channels. The same phenomenon occurs for the selfdual truncation of

N = 4 SYM [2]. In that case, as for the selfdual truncation of pure (non-supersymmetric)

Yang-Mills [105], this fact is explained by noting that the theory is classically integrable

and is thus equipped with an infinite set of (nonlocal) conserved charges.29 The corre-

sponding Ward identities are then expected to constrain tree-level amplitudes so severely

that they are forced to vanish (brief discussions on this can be found in [110, 111]). Thus,

the vanishing of pre-analytic amplitudes that we observe strongly suggests that the selfdual

sub-sector of the Nf = 4 theory (which is a very different supersymmetric extension of pure

selfdual Yang-Mills from the N = 4 case) also describes a classically integrable system. It

would be interesting to check this by explicitly constructing the relevant conserved currents.

4.4 The amplitudes 〈φ, φ, φ†, φ†〉 and 〈φ, φ†, φ, φ†〉
We now turn to the analytic amplitudes of the theory. We start with two simple examples

involving only external adjoint scalars. There are two possible orderings in this case and

we will calculate both, to show that these indeed give rise to different partial amplitudes.

On the twistor side, following the prescription (4.2) that we have discussed in some detail,

we can read off and plug in the wavefunctions appropriate to the 〈φ, φ, φ†, φ†〉 amplitude

from (3.12)

v1(φ) = ψ1
1ψ

2
1 , v2(φ) = ψ1

2ψ
2
2

v3(φ
†) = ψ3

3ψ
4
3 , v4(φ

†) = ψ3
4ψ

4
4 . (4.4)

The result is then given by the integral

〈φ, φ, φ†, φ†〉Twistor = g2

∫

d8θ
ψ1

1ψ
2
1ψ

1
2ψ

2
2ψ

3
3ψ

4
3ψ

3
4ψ

4
4

〈12〉〈23〉〈34〉〈41〉 =
g2

16

〈12〉〈34〉
〈23〉〈41〉 . (4.5)

In obtaining the above we have used the anti-commutativity property of Grassmann vari-

ables and the embedding relation ψI
i = θαIλiα to arrive at

∫

d2θ1ψ
1
i ψ

1
j =

∫

d2θ1θ
α1θβ1λα,iλβ,j =

1

2
ǫαβλα,iλβ,j =

1

2
〈ji〉 . (4.6)

On the spacetime side we have contributions from two diagrams

〈φ, φ, φ†, φ†〉4d =

φ1 φ†
4

Aµ

Aν

φ2 φ†
3

+

φ1 φ†
4

φ2 φ†
3

(4.7)

29For the pure selfdual YM case these can be found (for instance) via the Ward construction [106];

see [107] for a discussion and more references. For N = 4-extended selfdual YM an associated linear system

was discussed in [108] and more recently its hidden symmetries were explored in [109].

– 26 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
8

and explicit calculation shows that the final result is 〈φ, φ, φ†, φ†〉4d = 32i〈φ, φ, φ†, φ†〉Twistor

as claimed.

For the alternative ordering 〈φ, φ†, φ, φ†〉 we have

v1(φ) = ψ1
1ψ

2
1 , v2(φ

†) = ψ3
2ψ

4
2

v3(φ) = ψ1
3ψ

2
3 , v4(φ

†) = ψ3
4ψ

4
4 . (4.8)

On the twistor side the amplitude is

〈φ, φ†, φ, φ†〉Twistor = g2

∫

d8θ
ψ1

1ψ
2
1ψ

3
2ψ

4
2ψ

1
3ψ

2
3ψ

3
4ψ

4
4

〈12〉〈23〉〈34〉〈41〉 =
g2

16

〈13〉2〈24〉2
〈12〉〈23〉〈34〉〈41〉 (4.9)

The spacetime side receives contributions from three Feynman diagrams

〈φ, φ†, φ, φ†〉4d =

φ1 φ†
4

Aµ

Aν

φ†
2

φ3

+

φ1 φ†
4

Aµ Aν

φ†
2

φ3

+

φ1 φ†
4

φ†
2

φ3

(4.10)

By explicit evaluation we once again find that 〈φ, φ†, φ, φ†〉4d = 32i〈φ, φ†, φ, φ†〉Twistor.

4.5 The amplitude 〈ηA′ , λa, λ̄b, η̄B′〉
Let us also examine some more detailed results concerning analytic amplitudes with non-

trivial dependence on the SU(2) indices a,A, which also involve external fundamental

particles. As an example we consider 〈ηA′ , λa, λ̄b, η̄B′〉. The wavefunctions can once again

be read off from (3.12) and (3.22) to give

v1(ηA) = ψA
1 , v2(λ

a) = ǫdaψ
d
2

v3(λ̃
b) = ǫcbψ

3
3ψ

4
3ψ

c
3, v4(η̃B) = ψB

4 ψ1
4ψ

2
4 . (4.11)

The evaluation of the resulting integral is highly simplified by the use of various identities,

collected in appendix A. The answer is

〈ηA, λa, λ̃b, η̃B〉Twistor = g2ǫcbǫda

∫

d8θ
ψA

1 ψd
2ψ3

3ψ
4
3ψ

c
3ψ

B
4 ψ1

4ψ
2
4

〈12〉〈23〉〈34〉〈41〉 =
g2

16
ǫabǫ

AB

(〈34〉
〈12〉+

〈34〉2
〈23〉〈14〉

)

.

(4.12)

On the other hand, the diagrams contributing to the gauge theory calculation are the

following

〈ηA′ , λa, λ̄b, η̄B′〉4d =

ηA′,1 η̄B′,4

Aµ

Aν

λa
2 λ̄b

3

+

ηA′,1 η̄B′,4

qc
C qd

D
λa

2 λ̄b
3

(4.13)
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and explicit calculation using Feynman rules leads to 〈ηA′ , λa, λ̄b, η̄B′〉4d =

32i〈ηA, λa, λ̃b, η̃B〉Twistor.

Here we come to a crucial point: When matching the spectra for the full Nf = 4 the-

ory, we had already noticed that agreement could only be obtained if we decomposed the

global flavour index in terms of its special maximal subgroups SO(8) ⊃ SU(2)A′ × Sp(2)

and then somehow related the SU(2)A′ part to the flavour group for the antisymmetric hy-

permultiplets SU(2)A. The requirement of matching amplitudes with external fundamental

particles reaffirms this suggestion, since in order to get agreement the two symmetries need

to be identified! This implies that the twistor string does not reproduce a gauge theory

with flavour group SO(8) but a theory which has had the latter explicitly broken down to

SU(2) × Sp(2). Moreover, this SU(2) should then be realised geometrically on the gauge

theory side; recall that in the IIB description the flavour group for the antisymmetric

hypermultiplet fields was related to part of the rotations of the D3 worldvolume in the

transverse 6d space. The geometric realisation on the twistor side is explicit and obvious

in terms of the SU(2)A symmetry rotating the fermionic coordinates ψA. This result is

quite intriguing and we will briefly return to it in the conclusions.

4.6 Further analytic amplitudes

By now, the general strategy implemented for calculating 4-point amplitudes on both sides

of the correspondence should be clear to the reader. Therefore, we will simply display the

twistor answer for several other analytic amplitudes which we have verified to match those

arising from the gauge theory calculation, up to the same relative normalisation factor of

32i. These amplitudes are

〈λa, φ†, λ̄b, φ〉 =
g2

16
ǫab

〈23〉
〈12〉 (4.14)

〈za
A, zb

B , zc
C , zd

D〉 =
g2

16

(

− 〈12〉〈34〉
〈23〉〈14〉 ǫadǫbcǫ

ADǫBC − 〈14〉〈23〉
〈12〉〈34〉 ǫabǫcdǫ

ABǫCD (4.15)

+ǫabǫcdǫ
ADǫBC + ǫadǫbcǫ

ABǫCD

)

〈φ†, za
A, zb

B , φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉 ǫabǫ

AB (4.16)

〈za
A, ζC , ζ̄D, zb

B〉 = −g2

16
ǫab

(

ǫABǫCD 〈13〉〈34〉
〈23〉〈14〉 + ǫACǫBD 〈13〉

〈12〉

)

. (4.17)

We recall that the partial amplitudes involving fundamental external particles can be ob-

tained directly from the antisymmetric ones by (pair-wise) substitution of states. For

example one has that 〈qa
A, qb

B , qc
C , qd

D〉 = 〈za
A, zb

B , zc
C , zd

D〉 = 〈qa
A, qb

B, zc
C , zd

D〉 and

so on.

These results strongly indicate that our proposed twistor duality for the Nf = 4

theory, as well as the assumption that (4.2) is applicable for amplitude calculations, are

valid. However, the structure of 4-point analytic amplitudes is relatively trivial. A more

concrete affirmation is given by examining and finding agreement for 5-point amplitudes.
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This would allow us to confidently state that we are indeed considering the correct twistor

string theory dual. We have indeed explicitly checked this for the following two examples

〈λa, zb
B , zc

C , λd, φ†〉 =
g2

16
ǫBC

( 〈25〉〈35〉
〈23〉〈45〉〈15〉 ǫadǫbc −

〈25〉〈35〉〈14〉
〈12〉〈34〉〈45〉〈15〉 ǫabǫcd

)

(4.18)

〈φ, qa
A, qb

B, ηC , ηD〉 = −g2

16
ǫab

( 〈13〉
〈34〉〈15〉 ǫ

ADǫBC − 〈13〉〈25〉
〈23〉〈45〉〈15〉 ǫABǫCD

)

. (4.19)

Once again, the results from the gauge theory side turn out to match those on the twistor

side up to the normalisation factor of 32i.

5. The Nf = 2N theory

We now turn our attention to another class of N = 2 UV-finite gauge theories, namely

the theories with gauge group SU(N) and flavour group SU(Nf ), where Nf = 2N . As

discussed in the introduction, this is the alternative way of extending the SU(2), Nf = 4

theory of Seiberg and Witten [45] beyond rank one. Here, we will identify the twistor string

dual to this Nf = 2N theory. Since we have done most of the work in order to describe

the Nf = 4 case, we will omit some of the details in this case.

5.1 Physical string theory description

We will begin by reviewing the 10-dimensional string theory description which realises this

gauge theory, in the same vein as for our Nf = 4 treatment. Unlike the previous case,

this theory does not have a natural connection to F-theory, but can instead be engineered

as the low energy worldvolume theory on a stack of N fractional D3-branes probing the

background generated by Nf fractional D7-branes in Minkowski space with four orbifolded

directions R
1,5 × R

4/Z2. The latter are taken to be (x4, . . . , x7), with Z2 acting on them

as (x4, . . . , x7) → (−x4, . . . ,−x7). We take the D3s to lie along (x0, . . . , x3), and the D7s

to be in (x0, . . . , x7). The D3-D7 system preserves 8 supercharges and the orbifold action

has been chosen such that it does not break the supersymmetry any further [112, 113].

Once more, the 3-7 (7-3) strings provide the matter hypermultiplets transforming in the

fundamental (conjugate-fundamental) representation of the gauge group and in the probe

limit their SU(Nf ) Chan-Paton index takes values in a global symmetry group. Similarly,

in this limit the ‘heavy’ 7-7 strings decouple and one obtains a 4d N = 2, SU(N) gauge

theory with Nf fundamental hypermultiplets.

We are interested in the case where the D3s and D7s are located at the same point in

the transverse (x8, x9) directions (so there are no masses for the matter fields) and where all

D3s are coincident (that is, no vevs). This is very reminiscent of the way we constructed the

Nf = 4 theory. There are, however, some crucial differences: Firstly, there is no orientifold

plane in this case and hence no gauge symmetry enhancement at any point on the moduli

space; the gauge groups corresponding to the open string degrees of freedom remain SU(N).

Secondly, the number of flavours corresponding to the conformal point is chosen via a very

different mechanism: On the supergravity side the solution exhibits a naked singularity,
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Component SO(1,3) SU(2)a SU(2)A U(1)R SU(N) SU(2N)×U(1)

A,G (2, 2) 1 1 0 N2 − 1 1

φ (1, 1) 1 1 +2 N2 − 1 1

φ† (1, 1) 1 1 −2 N2 − 1 1

λα,a (2, 1) 2 1 +1 N2 − 1 1

λ̄α̇,a (1, 2) 2 1 −1 N2 − 1 1

qI
a, q

†
aI (1, 1) 2 1 0 N,N 2N−1, 2N+1

ηI
α, η̄

′I
α (2, 1) 1 1 −1 N 2N−1

η̄α̇I , η
′
α̇I (1, 2) 1 1 +1 N 2N+1

Table 3: The on-shell field content of the Nf = 2N theory in component form. Once again,

the Lorentz representations are given in terms of SO(1, 3) → SO(4) ∼ SU(2)L × SU(2)R. The

fundamental fields carry an SU(2N) index I = 1, . . . , 2N .

a usual feature in the gravity description of non-conformal theories. For the case of non-

compact orbifolds, however, the appearance of an enhançon [114] prevents the theory from

being trusted all the way to the singular point since new, light degrees of freedom appear at

the enhançon radius. At that point, the SQCD energy scale diverges. The excision of the

region between the enhançon radius and the naked singularity corresponds to discarding

energy scales where nonperturbative effects become relevant. This also prevents one from

obtaining a supergravity dual to the gauge theory à la Maldacena.30 This system therefore

only describes the perturbative regime of the gauge theory, which is however precisely

the one that we want to reproduce from a twistor string perspective. For Nf = 2N the

enhançon radius vanishes, the gauge coupling stops running, and the theory sits at the

conformal point in its moduli space [118]. In the following we will focus on this conformal

Nf = 2N case.

Let us now take a look at the open string massless spectrum of the theory. This

is very similar to the one we studied for Nf = 4 and is summarised in table 3. The

orbifold projection discards the 3-3 open string modes responsible for the antisymmetric

hypermultiplets in the Nf = 4 theory. This can be intuitively seen from the inability of the

fractional D3s to move away from the orbifold-fixed plane and therefore the antisymmetric

hypermultiplet modes, which were accounting for those degrees for freedom, are now absent.

Also note that no field transforms nontrivially under the SU(2)A. The reason we

include this symmetry in table 3 is to precisely highlight the similarities and differences

with the massless spectrum of the Nf = 4 theory. The absence of the antisymmetric

hypermultiplet is a sign that the discussion related to the geometric realisation of an SU(2)

subgroup of the full flavour symmetry in the spacetime picture will not make an appearance

in this context.

30The impossibility of obtaining a supergravity dual even for the conformal Nf = 2N theory can also be

seen by noting (e.g. [115]) that (unlike the Nf = 4 theory) the two coefficients a and c of the four-dimensional

anomaly are not equal to leading order in 1/N , violating a requirement of [116, 117].
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5.2 The spacetime action

We will now repeat the same steps as for the analysis of the Nf = 4 theory. Without

further delay, let us write down the corresponding N = 2 Lagrangean in terms of N = 1

superfields

L =
1

8π
Im Tr

[

τ

(∫

d2θ W αWα + 2

∫

d2θd2θ̄ e2V Φ†e−2V Φ

)]

+

∫

d2θd2θ̄ Q†Ie−2V QI

+

∫

d2θd2θ̄ Q′Ie2V Q′†
I +

√
2

∫

d2θ
(
Q′IΦQI + h.c.

)
, (5.1)

where the Is are now fundamental SU(Nf ) indices and therefore I = 1, . . . , 2N . The

evaluation of the kinetic part of the action will follow directly from the previous case by

setting the antisymmetric fields to zero and keeping in mind the new global flavour group.

After expanding the superfields and performing the Grassmann integration the result reads

L =
1

g2
Tr

(

−1

4
F 2 + (Dµφ)†(Dµφ) − iλ̄ 6Dλ − iχ̄ 6Dχ − i

√
2 [λ, χ]φ† − i

√
2 [λ̄, χ̄]φ

)

+ (Dµq)†I(Dµq)I + (Dµq′)I(Dµq′)†I − iη̄I 6DηI − iη′I 6Dη̄′I − i
√

2 q†IληI

+ i
√

2 η̄I λ̄qI − i
√

2 q′I λ̄η′I + i
√

2 η′Iλq′†I −
√

2
(
η′IχqI + η′IφηI + q′IχηI

)

−
√

2
(

q†I χ̄η̄′I + η̄Iφ†η̄′I + η̄I χ̄q′†I

)

− VS .

(5.2)

Once again VS denotes the scalar potential obtained by integrating out the auxiliary F-

and D-terms, whose contributing terms are now given by

(Fq)
i
I = −

√
2 (φ†)ijq

′†j
I (5.3)

(Fq′)
I
i = −

√
2 q†Ij (φ†)ji (5.4)

(Fφ)ji = −g2
√

2 q†Ii q′†jI (5.5)

D
a = −Tr

(

T a[φ†, φ]
)

+ g2
(

q†IT aqI − q′IT aq′†I

)

, (5.6)

where the (T a)ij’s are the generators of the fundamental representation of SU(N). In the

calculation of these terms we have, in principle, the introduction of 1/N contributions from

the coupling of the fundamental fields to the ‘photon’

(T a)ij(Ta)
k
l = δi

lδ
k
j − 1

N
δi
jδ

k
l . (5.7)

These, however, will decouple along with the rest of the colour information during the

stripping process. We then perform the field redefinitions (2.7) and (2.9), and once again

combine fields in SU(2)a doublets. The adjoint fermions are redefined as in (2.10), while

for the fundamental scalars we now have

(qa)iI =

(

qi
I

−q′†iI

)

, (q†a)
I
i =

(

q†Ii,−q′Ii

)

(q†a)Ii =

(

−q′Ii
−q†Ii

)

, (qa)
i
I =

(

q′†iI , q
i
I

)

. (5.8)
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The full action, including the quartic terms, now becomes

L =Tr

[

−1

2
GF +

1

4
g2G2 + Dφ†Dφ + iλ̄a 6Dλa − λaλaφ

† + 2g2λ̄aλ̄aφ

]

−η′IφηI − 2g2η̄Iφ†η̄′I

− Dq†aIDqaI − iη̄I 6DηI − iη′I 6Dη̄′I + q†aIλaηI − η′IλaqaI + 2g2η̄I λ̄aqaI − 2g2q†aI λ̄aη̄
′
I

− g2

2
Tr[φ†, φ]2 + g2q†aI{φ†, φ}qaI −

g2

2

[

(q†aIqaJ)(q†bJqbI) + (q†Ia qbJ)(q†aJqb
I)

]

+
g2

2N

[

(q†aIqbI)(q
†J
a qb

J) + (q†aIqb
I)(q

†J
b qaJ)

]

.

(5.9)

In light of the twistor picture that we will discuss in a moment, it seems natural to once

again choose a special maximal embedding of SU(2) into SU(2N), namely SU(2N) ⊃
SU(N)×SU(2)A′ and therefore we will decompose I → K⊗A′, with K = 1, . . . , N . Finally,

after the appropriate chiral rescalings (analogous to (2.7), (2.9)) the selfdual truncation of

the above is simply

L = Tr

[

−1

2
GF + Dφ†Dφ + iλ̄a 6Dλa − λaλaφ

†

]

− Dq†aA′KDqaA′K (5.10)

−iη̄A′K 6DηA′K − iη′A
′K 6Dη̄′A′K − η′A

′KφηA′K + q†aA′KλaηA′K − η′A
′KλaqaA′K .

5.3 The twistor action

Let us now see how we can reproduce the spectrum of this Nf = 2N theory on the twistor

side and obtain the appropriate twistor action. We will not provide exhaustive details for

this construction, since the arguments follow our previous analysis of the Nf = 4 theory

very closely. To proceed, we simply orbifold two of the fermionic directions of |||CP3|4,

namely

ψa → ψa , ψA → −ψA (5.11)

and place N Dc branes spanning the bosonic and holomorphic fermionic directions, as well

as N (rather than 2N , which might seem more natural at first) Df branes on the orbifold

plane ψ3 = ψ4 = 0 (as before, this is loose language for “branes satisfying DD boundary

conditions in the ψ3,ψ4 directions”). The orbifold action on the Chan-Paton indices will

again be given by γc = IN×N and γf = −IN×N . The invariant piece of the c− c superfield

A is

Ã = (A + ψaλa + ψ1ψ2φ + ψ3ψ4φ† + ǫcdψ
3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G) , (5.12)

which, via the arguments of the previous sections, will be mapped to the spectrum of an

N = 2 vector multiplet in the adjoint of the gauge group SU(N). Leaving aside the f − f

sector (the only difference from the Nf = 4 case being that the Chan-Paton indices will

be in SU(N), parametrised by K = 1 . . . N) we will focus on the c − f and f − c strings.

Arguing similarly to section 3.4, we find that the states surviving the orbifold projection

are now the following (0,1)-forms

Qi
K = ψAQi

AK , Q†K
i = ψAQ†K

Ai . (5.13)

– 32 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
8

The † here simply denotes that these superfields transform in conjugate representations of

the gauge group SU(N), namely the fundamental and conjugate fundamental respectively.

We can further decompose QA and Q†
A into their components (suppressing gauge indices

from now on)

QAK = ηAK + ψaqaAK + ψ1ψ2η̃′AK ,

Q†K
A = η′KA + ψaq†KaA + ψ1ψ2η̃K

A . (5.14)

The details related to identifying the BRST cohomology pertaining to the fundamental

superfields Q, presented for the Nf = 4 theory in section 3, will go through intact for this

case as well. The above expressions therefore provide the correct field content to reproduce

the spacetime spectrum for the fundamental hypermultiplets. It should now be clear that

N Df branes suffice to provide the 2N hypermultiplets, although in a form where the

SU(2N) global group is not manifest.

The final twistor description is given by the hCS action

S =

∫

Dc

Ω ∧
(

1

2
Tr

[

Ã · ∂̄Ã +
2

3
Ã ∧ Ã ∧ Ã

]

+ Q†K · ∂̄QK + Q†K ∧ Ã ∧ QK

)

, (5.15)

where Ã is as shown in (5.12). In component form this can be expanded into

ShCS =

∫

CP3

Ω′ ∧
(
Tr[G ∧ F + φ† ∧ D̄φ − λ̃a ∧ D̄λa + λa ∧ λa ∧ φ†]

+ η̃KA ∧ D̄ηAK + η′KA ∧ D̄η̃′AK − q†aKA ∧ D̄qaAK

+ η′KA ∧ φ ∧ ηAK − q†aKA ∧ λa ∧ η′AK + η′KA ∧ λa ∧ qaAK

)
.

(5.16)

The similarity with (5.10) is obvious, once one identifies A with A′. As we have already

mentioned for the Nf = 4 theory, we expect a nonlinear form of the Penrose transform

to map the above action to the selfdual truncation of the spacetime Lagrangean, given

by (5.10). As expected, we cannot assign a geometric meaning to the spacetime SU(2)A′

in this case, even though the twistor string description of SU(2)A is explicitly geometric.

Note, however, that in the component action (5.16) (but not in (5.15)) we can trivially

undo the SU(2N) ⊃ SU(N)× SU(2) decomposition to exhibit the full global flavour group

SU(2N) × U(1). On the other hand, to apply the twistor amplitude prescription (which

explicitly involves the ψA coordinates) one is obliged to work with this symmetry non-

manifest, and restore it at the end by combining the relevant sets of amplitudes.31

Before proceeding to compare amplitudes, we should emphasise the similarities between

this construction for Nf = 2N and that for the Nf = 4 theory which we explored in

section 3: The two theories differ only by the presence of the orientifold and the number

of Df branes that are introduced. In the case of rank one (where the orientifold imposes

no condition, since SU(2) ∼= Sp(1)) they reduce to the same theory — the Seiberg-Witten

SU(2) SYM with four massless flavours. This simple picture is in contradistinction with

31Instead, we chose to compute gauge theory amplitudes in decomposed form and compare with the

twistor results.
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the IIB embeddings of these two theories, where (for instance) even the corresponding

orbifold actions are taken in different spacetime directions, and it is difficult to see how

they become equivalent for rank one. Presumably the twistor string is able to be so concise

in its description of this pair of theories because (unlike their IIB string duals) it is only

required to know about perturbative gauge theory physics.

5.4 Comparison of amplitudes

Finally, we move on to compare partial amplitudes on both sides of the correspondence.

In fact, the similarity in field content between the Nf = 4 and Nf = 2N theories means

that the partial amplitude calculations are almost identical, since the only novelty, apart

from the absence of the antisymmetric hypermultiplet, is the behaviour of the fundamental

scalars and fermions due to the SU(N) gauge group. For example, it is easy to see that the

partial amplitude involving adjoint external particles is exactly the same as for the Nf = 4

theory. Moreover, it is straightforward to replace the appropriate fundamental fields and

vertices to find the same agreement between the twistor and spacetime results, including

the relative normalisation factor of 32i.

As such, we only display two amplitudes. These involve fundamental external particles

and, at 4 and 5-point respectively, are

〈q†aA, qb
B , q†cC , qd

D〉Twistor =
g2

16

(

−〈12〉〈34〉
〈23〉〈14〉 ǫadǫbcǫ

ADǫBC − 〈14〉〈23〉
〈12〉〈34〉 ǫabǫcdǫ

ABǫCD (5.17)

+ǫabǫcdǫ
ADǫBC + ǫadǫbcǫ

ABǫCD
)

〈φ, qa
A, q†bB, ηC , η′D〉Twistor = −g2

16
ǫab

( 〈13〉
〈34〉〈15〉 ǫ

ADǫBC − 〈13〉〈25〉
〈23〉〈45〉〈15〉 ǫ

ABǫCD

)

. (5.18)

A straightforward gauge theory calculation exactly reproduces these results.

6. Conclusions and outlook

In this paper we have extended the correspondence between 4d UV-finite supersymmetric

gauge theories and B-model twistor string theory at tree level, by identifying the twistor

string duals for theories containing fundamental matter. These theories were N = 2, Sp(N)

SYM with Nf = 4 and N = 2, SU(N) SYM with Nf = 2N fundamental hypermultiplets,

both sitting at the superconformal point of their moduli space. We initially studied the

physical string realisation of these theories and examined the open string massless spec-

trum, which allowed us to properly identify all the symmetries of the system. We then

used this information to construct their proper spacetime Lagrangean description. On

the twistor side, we performed a superorientifold and superorbifold projection respectively,

which yielded the non-fundamental part of the spectrum. The fundamental degrees of free-

dom were introduced via new objects in the topological B-model on supertwistor space,

which we baptised flavour-branes (Df ). These wrap all the bosonic but only half of the

holomorphic fermionic directions spanned by Witten’s Euclidean ‘D5’-branes providing the

colour degrees of freedom (Dc).
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We then proceeded to compare amplitudes on both sides of the proposed correspon-

dence. We found precise agreement for a number of 4– and 5-point amplitudes, involving

external particles transforming in the adjoint, fundamental, and, in the Nf = 4 case, an-

tisymmetric representations of the gauge group. These results provide strong evidence for

the robustness of the twistor string duals, and even though we only calculated analytic

(‘MHV’) processes in this work, we believe that the agreement should continue to hold for

tree level amplitudes supported on holomorphic curves of higher degree.

In the process of performing the identification between the two sides, the embedding

of the flavour-branes into the hCS theory of the colour-branes forced us to provide a

geometric realisation for an SU(2) subgroup of the flavour group, and in the Nf = 4 case

to identify that with the flavour symmetry of the antisymmetric hypermultiplet fields. At

first glance, this decomposition of the flavour group might seem slightly ad hoc; we could

have chosen any other subgroup which contains SU(2). However, our choice is consistent

with reproducing the same gauge group on the Df branes as the one appearing on the Dc

branes in the B-model, namely Sp(N) and SU(N) for the two cases. The fact that, in the

Nf = 4 case, this decomposition leads to both kinds of branes coming with the same type

of gauge group (i.e. both symplectic) is not unreasonable, if one remembers that they wrap

the same number of bosonic directions in |||CP3.

For the Nf = 4 theory, we found that the twistor string side actually describes a gauge

theory with global flavour symmetry broken down to SO(8) → SU(2)A × Sp(2). This was

due to two unrelated (from the gauge theory point of view) SU(2) groups being identified

with the same geometric SU(2)A on the twistor string side, and as such the twistor string

does not seem to describe precisely the theory that we set off to recover. This could be so

for a number of reasons: One possibility is clearly that we have not found the most generic

twistor string description of the Nf = 4 theory, and that, despite the apparent rigidity of

our construction, further investigation might reveal a way to disentangle these two symme-

tries. A second possibility is that this is indeed the correct symmetry group of the IIB setup

once the effects of interactions between the fundamental and antisymmetric hypermultiplet

sectors are taken into account (recall that the claim that the D3-D7 brane configuration

accurately describes the Nf = 4 theory is based mainly on inspection of the spectrum).

Checking this would entail establishing whether open string interactions involving the an-

tisymmetric hypermultiplet in the physical string picture preserve the global SO(8) flavour

group or not. A final possibility is that the twistor string actually maps to an enriched

version of the original physical brane construction. For example, this could arise by taking

the instantons on the D7 worldvolume theory away from the zero thickness limit, which,

if localised in the relative transverse directions between the D3s and D7s, could break the

global symmetry precisely in the required fashion.32 In this case, the mechanism leading

to the geometric interpretation of the SU(2)A symmetry would be analogous to the usual

embedding of the gauge group into the spin connection. However, one is then forced to

explain why the twistor string only manages to capture the dynamics of this rather special

configuration, as well as to reconcile such a solution (which would seem to move the theory

32We would like to thank K.S. Narain for suggesting such a possibility.
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towards the Higgs branch) with the apparently unbroken conformal invariance. It would

be intriguing to uncover the answer to this question, which we will, however, not address

at present. We should emphasise that in the Nf = 2N theory the full flavour symmetry is

accurately (though not manifestly, given the decomposition SU(2N) → SU(2)A × SU(N))

captured by the twistor side and a spacetime geometric interpretation of the SU(2)A on the

IIB side is not forced, essentially due to the absence of the antisymmetric hypermultiplet.

As discussed in the introduction, the main reason for studying twistor string duals of

finite theories is to potentially understand what, if anything, makes them special on the

twistor side. It is clear that generic non-finite theories are not expected to have a dual with a
|||CP3 component at the quantum level, while the duals of the theories we have considered in

this work should have a |||CP3 description also at loop level. Unfortunately, since our under-

standing of twistor string theory is confined to tree level, at this stage we have not been able

to identify what is the distinguishing feature of our finite theories as far as twistor strings

are concerned. For example, for the theory considered in sections 2, 3 and 4, we could just

as well have added one flavour-brane (and its mirror) instead of two, and the construction

would have worked out in a very similar fashion, reproducing the amplitudes of an N = 2

theory with two (rather than four) fundamental hypermultiplets, clearly not a finite theory.

The challenge, therefore, is to find a condition (similar to the RR charge cancellation re-

quirement which enforces Nf = 4 on the physical string side) which constrains the number

of flavour-branes we can add to the B-model on |||CP3|4.33 An immediate obstacle is that

our Df branes, whose number we would like to fix, have an Sp(2) gauge group, while in the

physical string context, orientifold planes leading to symplectic (rather than orthogonal)

groups on the corresponding branes have positive RR charges, and thus are not relevant in

situations where the total brane charge has to cancel. However, in our topological context,

this could perhaps be circumvented by recalling the arguments of Vafa [120] that topolog-

ical anti-branes can be derived from branes by formally taking N → −N . This, combined

with the observation [121] that — as far as gauge invariant quantities are concerned —

in gauge theory Sp(N) can be thought of as SO(−N), indicates that our Df ’s might be

best thought of as anti-branes, whose negative ‘charge’ could potentially cancel that of the

orientifold plane. Similar comments apply to the Nf = 2N theory as well, although the

details will be different since in this case requiring finiteness fixes the relative number of

colour and flavour-branes rather than the absolute number of Df ’s. Finding a mechanism

that produces the above restrictions should give considerable insight on how to properly

complete the twistor string description of finite gauge theories at the quantum level.34

We should note that, although (as discussed above) our tree-level construction (and

33We note that (bosonic) topological string orientifolds in the twistor string context have been considered

in [119]. However, in that context the ensuing restriction on the number of colour branes (and thus the

rank of the N = 4 SYM gauge group) was deemed an unpleasant feature, and most consideration was given

to orientifolds of lower-dimensional subspaces of |||CP3|4. Perhaps the arguments in [119] could be revisited

with our current goal of restricting the number of flavour branes in mind.
34And, applied in the other direction, might play a role in establishing the UV-finiteness of other gauge

or even gravity theories admitting a twistor string description (a class which might, perhaps via a suitable

extension of the self-dual results of [40], potentially include N = 8 supergravity).
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the ensuing amplitude calculations) applies to gauge theories with different numbers of

flavours than those required for finiteness, for Sp(N) gauge theories there seems to be a

restriction to even numbers of flavours, since we required (for N = 2) the decomposition

4N → (2, 2N) of the fundamental of SO(4N) under SO(4N) → SU(2) × Sp(N). At tree

level (where finiteness constraints should not arise) we might expect the twistor string to

also describe theories with e.g. Nf = 3, leading to an SO(6) flavour group, which would not

fit in the above framework. Perhaps a different geometric embedding of the flavour-branes

can account for such flavour groups.

Passing to other open directions suggested by our work, it is interesting to remark

(extending the discussion in [45] to higher rank) that the (massless as well as massive)

Nf = 4 theory is expected to enjoy an analogue of the SL(2, Z) Montonen-Olive symmetry

of N = 4 SYM, which combines with Spin(8) triality to form the full duality group of

the theory. The SL(2, Z) duality of the N = 4 theory motivated the authors of [119] to

propose a strong-weak duality relating the B-model with the A-model on the same (super)

Calabi-Yau. (Further discussion on the origin of this type of topological string duality can

be found in [122].) It is intriguing to ask whether the duality group of the Nf =4 theory

fits within this framework, and therefore whether there exists an A-model version of the

setup we have constructed. Also, the fact that the F-theory perspective we reviewed in

section 2.1 provides a natural explanation of the duality properties of the Nf = 4 theory

hints that perhaps a topological F-theory [123] point of view might provide some additional

insight in this case. Furthermore, given that the standard B-model N = 4 SYM setup

on |||CP3|4 has been conjecturally related (via the above S-duality plus mirror symmetry

arguments [124]) to a B-model on the superquadric L5|6 ∈ |||CP3|3× |||CP3|3 [125, 126], it is

natural to ask whether flavour-branes could also be incorporated in the latter geometry,

which should capture the dynamics of full (rather than self-dual) Yang-Mills theory

without the need for D1-instantons.

From a gauge theory point of view, one of the main interesting features of the theories

with fundamental matter we have considered is their richer vacuum structure as compared

to N = 4 SYM, in particular the presence of Higgs branches. In the IIB embeddings we have

reviewed, this moduli space acquires geometric meaning, in terms of the directions along

which the various branes can be separated. Perhaps the similarities of our constructions

to the physical string realisations can provide clues on how to move off the superconformal

point from the twistor string perspective as well.

In conclusion, we have demonstrated that the topological B-model description of

twistor strings is rich enough to accommodate finite four-dimensional theories with funda-

mental matter, and that the precise descriptions of these theories bear a strong resemblance

to, but also intriguing differences from, the standard embeddings of these theories within

physical string theory. Apart from suggesting that a thorough analysis of boundary condi-

tions and associated D-branes for topological strings on supermanifolds (which was beyond

the scope of this work) would be a worthwhile enterprise, we believe that our results rein-

force the expectation that, by deciphering the (still mysterious) connection between twistor

and physical strings, the current obstacles in establishing the twistor string duality at the

quantum level can eventually be overcome.
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A. Notation and conventions

In this short appendix we set up the notation and conventions used throughout this paper.

Spacetime: We take the signature of spacetime to be (+ − −−) and the raising and

lowering of spacetime spinor indices to be performed by

ψα = ǫαβψβ , ψα = ǫαβψβ

ψ̄α̇ = ǫα̇β̇ψ̄β̇ , ψ̄α̇ = ǫα̇β̇ψ̄β̇ . (A.1)

We also have the following relations between the superspace variables

θ2 = θαθα = −2θ1θ2, θαθβ = −1

2
ǫαβθ2

θ̄2 = θ̄α̇θ̄α̇ = 2θ̄1̇θ̄2̇, θ̄α̇θ̄β̇ = −1

2
ǫα̇β̇ θ̄2 . (A.2)

The appropriate definitions for the ǫ-tensors are

ǫαβ = ǫα̇β̇ =

(

0 1

−1 0

)

, (A.3)

where the above satisfy ǫαβǫβγ = δα
γ and ǫα̇β̇ǫβ̇γ̇ = δγ̇

α̇. Superspace integration then obeys
∫

dθ θ = 1 ,

∫

d2θ θαθβ = −1

2
ǫαβ (A.4)

and so on. During the evaluation of amplitudes in twistor space, one also encounters more

complicated Grassmann integrals. The following identities dramatically simplify these

superspace integrations (recall here that ψI = −θI
αλα)

∫

d4θ ψa
i ψ1

j ψ
2
j ψ

b
k =

1

4
ǫab〈ij〉〈jk〉 (A.5)

∫

d4θ ψA
i ψ3

j ψ
4
j ψ

B
k =

1

4
ǫAB〈ij〉〈jk〉 (A.6)

∫

d4θ ψa
i ψb

jψ
c
kψ

d
l =

1

4

(

ǫadǫbc〈ij〉〈kl〉 − ǫabǫcd〈il〉〈jk〉
)

(A.7)
∫

d4θ ψA
i ψB

j ψC
k ψD

l =
1

4

(
ǫADǫBC〈ij〉〈kl〉 − ǫABǫCD〈il〉〈jk〉

)
. (A.8)
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These expressions also lead to a useful ǫ-tensor identity

∫

d4θ ψa
i ψb

jψ
c
kψ

d
l = −

∫

d4θ ψa
i ψc

kψ
b
jψ

d
l

⇒ 1

4

(

ǫadǫbc〈ij〉〈kl〉 − ǫabǫcd〈il〉〈jk〉
)

= −1

4

(

ǫadǫcb〈ik〉〈jl〉 − ǫacǫbd〈il〉〈kj〉
)

⇒ ǫadǫbc + ǫabǫcd = ǫacǫbd . (A.9)

We additionally make use of the following relations

(σ̄µ)α̇α = ǫαβǫα̇β̇σµ

ββ̇
, θσµθ̄θσν θ̄ =

1

2
θ2θ̄2ηµν

χσµψ̄ = −ψ̄σ̄µχ , (χσµψ̄)† = ψσµχ̄ . (A.10)

Gauge and flavour groups: The defining relation for elements of the Sp(N) algebra is

that

M = −ΩMT Ω−1 (A.11)

for a hermitian matrix M , where Ωij is the invariant tensor of Sp(N). The fundamental

and conjugate-fundamental indices are then raised and lowered using this tensor, which is

defined via

Ωij = Ωij = −(Ω−1)ij = iσ2 ⊗ 1N×N , where σ2 =

(

0 −i

i 0

)

and the indices are contracted following the ‘NW-SE’ rule. A useful property of matrices

M i
j satisfying (A.11) is that they become symmetric once their upper index is lowered

using Ωij. Contraction of the invariant tensor gives ΩikΩkj = −δi
j, so that raising and

lowering a contracted Sp(N) index in a given expression results in the appearance of an

extra minus sign. In particular, in traces of products of Sp(N) generators, the raising

and lowering of indices can be used to relate different permutations to each other which

is of importance when relating colour-stripped sub-amplitudes to the full amplitudes. For

example it is straightforward to see that

Tr(T aT bT c) = −Tr(T aT cT b) and Tr(T aT bT cT d) = Tr(T aT dT cT b) ,

where a, b, c, d here are adjoint indices. Furthermore, pseudoreality of the Sp(N) vector

representation means that fundamental and conjugate fundamental fields can be related

simply by raising and lowering indices. Our assignment of signs for this is that

Qi = −ΩijQj . (A.12)

Finally, as noted in equation (2.6), the contraction of two Sp(N) generators gives

(T a)ij(Ta)
k
l =

1

2
(δi

lδ
k
j − ΩikΩjl) . (A.13)

More details on Sp(N) can be found, for instance, in [127].
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Because of the Sp(1) ∼= SU(2) isomorphism, the Sp(N) conventions above for the

contraction of the invariant tensor are the ones that we use for all other SU(2) symmetries

(apart from the 4d Lorentz SU(2)s discussed in the previous section). In particular we take

ǫab = ǫab =

(

0 −1

1 0

)

(A.14)

for raising and lowering SU(2)a indices, which leads to ǫabǫ
bc = −δc

a. Similar remarks apply

for SU(2)A. Note, therefore, that for the Grassmann integration in supertwistor space these

conventions imply ∫

dψψ = 1 ,

∫

d2ψψaψb =
1

2
ǫab . (A.15)

Our conventions for the SU(N) gauge and flavour indices are the usual ones to be found

in e.g. [128].

B. Feynman rules and useful identities

In this appendix we present the Feynman rules and some related identities, which we use

for the calculation of amplitudes in sections 4 and 5.4.

Spinor identities. In 4d, on-shell null momenta decompose in terms of two commuting,

two-component, positive and negative helicity spinors pαα̇ = λαλ̃α̇. These are referred to

as holomorphic and antiholomorphic spinors respectively and we define the following inner

products

λαµα = 〈λµ〉 and − λ̃α̇µ̃α̇ = [λ̃µ̃] . (B.1)

These products are antisymmetric so that 〈λµ〉=−〈µλ〉, [λ̃µ̃]=−[µ̃λ̃] and 〈λλ〉=[λ̃λ̃] = 0.

One can switch between spinor helicity and Lorentz notations using the generalised

Pauli matrices (σµ)αα̇ ≡ (1, ~σ) and (σ̄µ)α̇α ≡ ǫαβǫα̇β̇(σµ)ββ̇ through

qαα̇ = σµ
αα̇qµ , qµ =

1

2
(σ̄µ)α̇αqαα̇ . (B.2)

Some useful σ-matrix identities include

(σµ)αα̇(σ̄µ)β̇β = 2δβ
αδβ̇

α̇ , (σµ)αα̇(σ̄ν)α̇α = 2ηµν . (B.3)

The momentum inner product can be easily shown to be given by the expression

p · q =
1

2
〈λµ〉[λ̃µ̃] , (B.4)

which differs by a sign from the usual QCD literature but is in-line with the majority of

the twistor string literature. Momentum conservation for an n-point amplitude can be

implemented in the spinor helicity formalism as35

n∑

i=1

〈ji〉[ik] = 0 . (B.5)

The Schouten identity is also extremely useful

〈ij〉〈kl〉 + 〈ik〉〈lj〉 + 〈il〉〈jk〉 = 0 . (B.6)

35Here we use the common abbreviation of 〈λi λj〉 = 〈i j〉.
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Field Helicity Wave-function

Scalar 0 1

Fermion i + λ̃i α̇ = −[i|
Fermion i − λα

i = 〈i|
Anti-fermion j + λ̃α̇

j = |j]
Anti-fermion j − λj α = |j〉
Vector p = λλ̃ + ǫ+

αα̇ =
√

2 µαλ̃α̇

µαλα
= −

√
2 |µ〉[λ̃|

〈µλ〉

Vector p = λλ̃ − ǫ−αα̇ =
√

2 λαµ̃α̇

µ̃α̇λ̃α̇
= −

√
2 |λ〉[µ̃|

[µ̃λ̃]

Table 4: Wavefunctions corresponding to outgoing external fields of given helicity. Note that to

define the vector wavefunctions we employ an arbitrary reference vector q = µµ̃.

Field Schematic form Value

Adjoint scalar

p

φ φ† i
p2

q, z scalars

p

(qa
A, za

A) (qb
B, zb

B) ǫabǫAB
i

p2

Adjoint fermion

p

λa λ̄b ǫab ipαα̇

p2

Adjoint antifermion

p

λ̄a λb −ǫab ipαα̇

p2

η, ζ fermions

p

(ηA, ζA) (η̄B , ζ̄B) ǫAB
ipαα̇

p2

Vector

p

Aµ Aν −ig2 ηµν

p2 .

Table 5: Propagators for the various fields in our theory.

Feynman rules. Tables 4–6 list the Feynman rules for the Nf = 4 theory — the ones

for the Nf = 2N theory can be obtained straightforwardly from these. In table 4 we give

the wavefunctions for external particles. Table 5 shows some examples of propagators,

while table 6 includes a few sample vertices. The remaining vertices can of course be easily

derived from the action. The vertices for the Nf = 2N theory are almost identical to the

ones listed here. The main differences are that the antisymmetric fields are absent in that

case, and that the fundamental scalars are complex as opposed to real fields. In these

expressions (as well as for our amplitude calculations), all external momenta are taken to

be outgoing.
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Schematic form Value

(qa
A, za

A)

(qb
B , zb

B)

φ

φ†
ig2ǫabǫ

AB

(qa
A, za

A)

(qb
B , zb

B)

(qd
D, zd

D)

(qc
C , zc

C)

i
(
2ǫabǫcdǫ

ADǫBC + ǫadǫbcǫ
ADǫBC

+2ǫadǫbcǫ
ABǫCD + ǫabǫcdǫ

ABǫCD
)

φ

φ

φ†

φ†

ig2

Aµ

(η̄B , ζ̄B) (ηA, ζA)

−iǫABσµ

qc
C

(ηA, ζA) λa
iǫacǫ

AC

qd
D

λ̄b (η̄B , ζ̄B)

2ig2ǫbdǫ
BD

Aµ

φ, 1 φ†, 2

−i(pµ
2 − pµ

1 )

Table 6: Some of the interaction vertices of the Nf = 4 theory.
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[31] O. Lechtenfeld and C. Sämann, Matrix models and D-branes in twistor string theory, JHEP

03 (2006) 002 [hep-th/0511130].

[32] A.D. Popov, σ-models with N = 8 supersymmetries in 2 + 1 and 1 + 1 dimensions, Phys.

Lett. B 647 (2007) 509 [hep-th/0702106].

[33] D.-W. Chiou, O.J. Ganor and B.S. Kim, A deformation of twistor space and a chiral mass

term in N = 4 super Yang-Mills theory, JHEP 03 (2006) 027 [hep-th/0512242].

[34] C.-H. Ahn, N = 1 conformal supergravity and twistor-string theory, JHEP 10 (2004) 064

[hep-th/0409195].

[35] C.-h. Ahn, N = 2 conformal supergravity from twistor-string theory, Int. J. Mod. Phys. A

21 (2006) 3733 [hep-th/0412202].

[36] M. Abou-Zeid, C.M. Hull and L.J. Mason, Einstein supergravity and new twistor string

theories, hep-th/0606272.

[37] R. Boels, L. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, JHEP

02 (2007) 014 [hep-th/0604040].

[38] R. Boels, L. Mason and D. Skinner, From twistor actions to MHV diagrams, Phys. Lett. B

648 (2007) 90 [hep-th/0702035].

[39] R. Boels, A quantization of twistor Yang-Mills theory through the background field method,

hep-th/0703080.

[40] L.J. Mason and M. Wolf, A twistor action for N = 8 self-dual supergravity,

arXiv:0706.1941.

[41] P.S. Howe, K.S. Stelle and P.C. West, A class of finite four-dimensional supersymmetric

field theories, Phys. Lett. B 124 (1983) 55.

[42] A. Parkes and P.C. West, Finiteness in rigid supersymmetric theories, Phys. Lett. B 138

(1984) 99.

[43] M.T. Grisaru and W. Siegel, Supergraphity. 2. Manifestly covariant rules and higher loop

finiteness, Nucl. Phys. B 201 (1982) 292 [Erratum ibid. 206 (1982) 496].

[44] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and

confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19

[Erratum ibid. B 430 (1994) 485] [hep-th/9407087].

[45] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2

supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099].

[46] N. Dorey, V.V. Khoze and M.P. Mattis, On N = 2 supersymmetric QCD with 4 flavors,

Nucl. Phys. B 492 (1997) 607 [hep-th/9611016].

– 44 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C125016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C125016
http://arxiv.org/abs/hep-th/0502076
http://jhep.sissa.it/stdsearch?paper=10%282005%29058
http://arxiv.org/abs/hep-th/0505161
http://arxiv.org/abs/hep-th/0508137
http://jhep.sissa.it/stdsearch?paper=03%282006%29002
http://jhep.sissa.it/stdsearch?paper=03%282006%29002
http://arxiv.org/abs/hep-th/0511130
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB647%2C509
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB647%2C509
http://arxiv.org/abs/hep-th/0702106
http://jhep.sissa.it/stdsearch?paper=03%282006%29027
http://arxiv.org/abs/hep-th/0512242
http://jhep.sissa.it/stdsearch?paper=10%282004%29064
http://arxiv.org/abs/hep-th/0409195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA21%2C3733
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA21%2C3733
http://arxiv.org/abs/hep-th/0412202
http://arxiv.org/abs/hep-th/0606272
http://jhep.sissa.it/stdsearch?paper=02%282007%29014
http://jhep.sissa.it/stdsearch?paper=02%282007%29014
http://arxiv.org/abs/hep-th/0604040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB648%2C90
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB648%2C90
http://arxiv.org/abs/hep-th/0702035
http://arxiv.org/abs/hep-th/0703080
http://arxiv.org/abs/0706.1941
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB124%2C55
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB138%2C99
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB138%2C99
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB201%2C292
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB426%2C19
http://arxiv.org/abs/hep-th/9407087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB431%2C484
http://arxiv.org/abs/hep-th/9408099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB492%2C607
http://arxiv.org/abs/hep-th/9611016


J
H
E
P
1
1
(
2
0
0
7
)
0
8
8

[47] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022].

[48] A. Sen, F-theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150].

[49] E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d-manifolds,

Phys. Rev. D 54 (1996) 1667 [hep-th/9601038].

[50] A. Dabholkar, Lectures on orientifolds and duality, hep-th/9804208.

[51] A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999)

983 [hep-th/9802067].

[52] T. Banks, M.R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387

(1996) 278 [hep-th/9605199].

[53] M.R. Douglas, D.A. Lowe and J.H. Schwarz, Probing F-theory with multiple branes, Phys.

Lett. B 394 (1997) 297 [hep-th/9612062].

[54] O. Aharony, J. Sonnenschein, S. Yankielowicz and S. Theisen, Field theory questions for

string theory answers, Nucl. Phys. B 493 (1997) 177 [hep-th/9611222].

[55] E. Gava, K.S. Narain and M.H. Sarmadi, Instantons in N = 2 Sp(N) superconformal gauge

theories and the AdS/CFT correspondence, Nucl. Phys. B 569 (2000) 183

[hep-th/9908125].

[56] A. Fayyazuddin and M. Spalinski, Large-N superconformal gauge theories and supergravity

orientifolds, Nucl. Phys. B 535 (1998) 219 [hep-th/9805096].

[57] O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, 1 field

theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159].

[58] I.P. Ennes, C. Lozano, S.G. Naculich and H.J. Schnitzer, Elliptic models, type IIB

orientifolds and the AdS/CFT correspondence, Nucl. Phys. B 591 (2000) 195

[hep-th/0006140].

[59] M. Gutperle, Heterotic/type-I duality, d-instantons and a N = 2 AdS/CFT correspondence,

Phys. Rev. D 60 (1999) 126001 [hep-th/9905173].

[60] T.J. Hollowood, Instantons, finite N = 2 Sp(N) theories and the AdS/CFT correspondence,

JHEP 11 (1999) 012 [hep-th/9908201].

[61] D.E. Berenstein, E. Gava, J.M. Maldacena, K.S. Narain and H.S. Nastase, Open strings on

plane waves and their Yang-Mills duals, hep-th/0203249.

[62] J. Gomis, S. Moriyama and J.-w. Park, Open + closed string field theory from gauge fields,

Nucl. Phys. B 678 (2004) 101 [hep-th/0305264].

[63] R. de Mello Koch and R. Tatar, Higher derivative terms from threebranes in F-theory, Phys.

Lett. B 450 (1999) 99 [hep-th/9811128].

[64] R. de Mello Koch, A. Paulin-Campbell and J.P. Rodrigues, Non-holomorphic corrections

from threebranes in F-theory, Phys. Rev. D 60 (1999) 106008 [hep-th/9903029].

[65] Z. Guralnik, S. Kovacs and B. Kulik, Holography and the Higgs branch of N = 2 SYM

theories, JHEP 03 (2005) 063 [hep-th/0405127].

[66] Z. Komargodski and S.S. Razamat, Planar quark scattering at strong coupling and

universality, arXiv:0707.4367.

– 45 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB469%2C403
http://arxiv.org/abs/hep-th/9602022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB475%2C562
http://arxiv.org/abs/hep-th/9605150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C1667
http://arxiv.org/abs/hep-th/9601038
http://arxiv.org/abs/hep-th/9804208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C71%2C983
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C71%2C983
http://arxiv.org/abs/hep-th/9802067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB387%2C278
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB387%2C278
http://arxiv.org/abs/hep-th/9605199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB394%2C297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB394%2C297
http://arxiv.org/abs/hep-th/9612062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB493%2C177
http://arxiv.org/abs/hep-th/9611222
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB569%2C183
http://arxiv.org/abs/hep-th/9908125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB535%2C219
http://arxiv.org/abs/hep-th/9805096
http://jhep.sissa.it/stdsearch?paper=07%281998%29013
http://arxiv.org/abs/hep-th/9806159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB591%2C195
http://arxiv.org/abs/hep-th/0006140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C126001
http://arxiv.org/abs/hep-th/9905173
http://jhep.sissa.it/stdsearch?paper=11%281999%29012
http://arxiv.org/abs/hep-th/9908201
http://arxiv.org/abs/hep-th/0203249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB678%2C101
http://arxiv.org/abs/hep-th/0305264
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB450%2C99
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB450%2C99
http://arxiv.org/abs/hep-th/9811128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C106008
http://arxiv.org/abs/hep-th/9903029
http://jhep.sissa.it/stdsearch?paper=03%282005%29063
http://arxiv.org/abs/hep-th/0405127
http://arxiv.org/abs/0707.4367


J
H
E
P
1
1
(
2
0
0
7
)
0
8
8
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[85] A.D. Popov and C. Sämann, On supertwistors, the Penrose-ward transform and N = 4

super Yang-Mills theory, Adv. Theor. Math. Phys. 9 (2005) 931 [hep-th/0405123].

[86] S. Sinha and C. Vafa, SO and Sp Chern-Simons at large-N , hep-th/0012136.
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[99] F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory,

PoS(RTN2005)004 [hep-th/0504194].

[100] V.V. Khoze, Gauge theory amplitudes, scalar graphs and twistor space, hep-th/0408233.

[101] S. Gukov, L. Motl and A. Neitzke, Equivalence of twistor prescriptions for super Yang-Mills,

hep-th/0404085.

[102] G.M. Cicuta, Topological expansion for SO(N) and Sp(2N) gauge theories, Lett. Nuovo

Cim. 35 (1982) 87.

[103] M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200

(1991) 301 [hep-th/0509223].

[104] L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359.

[105] C.N. Yang, Condition of selfduality for SU(2) gauge fields on euclidean four-dimensional

space, Phys. Rev. Lett. 38 (1977) 1377.

[106] R.S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977) 81.

[107] A.D. Popov, Self-dual Yang-Mills: symmetries and moduli space, Rev. Math. Phys. 11

(1999) 1091 [hep-th/9803183].

[108] I.V. Volovich, Supersymmetric Yang-Mills equations as an inverse scattering problem, Lett.

Math. Phys. 7 (1983) 517.

[109] M. Wolf, On hidden symmetries of a super gauge theory and twistor string theory, JHEP 02

(2005) 018 [hep-th/0412163].

[110] H. Ooguri and C. Vafa, N = 2 heterotic strings, Nucl. Phys. B 367 (1991) 83.

[111] D. Cangemi, Self-dual Yang-Mills theory and one-loop maximally helicity violating

multi-gluon amplitudes, Nucl. Phys. B 484 (1997) 521 [hep-th/9605208].

[112] J. Polchinski, N = 2 gauge-gravity duals, Int. J. Mod. Phys. A 16 (2001) 707

[hep-th/0011193].

[113] M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D

65 (2002) 126005 [hep-th/0106014].

– 47 –

http://jhep.sissa.it/stdsearch?paper=11%282003%29069
http://arxiv.org/abs/hep-th/0204157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB132%2C55
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C38%2C91
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C38%2C91
http://arxiv.org/abs/hep-th/9506070
http://jhep.sissa.it/stdsearch?paper=03%282007%29048
http://arxiv.org/abs/hep-th/0511284
http://arxiv.org/abs/hep-th/0509198
http://jhep.sissa.it/stdsearch?paper=11%282004%29005
http://arxiv.org/abs/hep-th/0303135
http://arxiv.org/abs/hep-th/0606179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB236%2C381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB236%2C381
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RTN2005)004
http://arxiv.org/abs/hep-th/0504194
http://arxiv.org/abs/hep-th/0408233
http://arxiv.org/abs/hep-th/0404085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NCLTA%2C35%2C87
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NCLTA%2C35%2C87
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C200%2C301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C200%2C301
http://arxiv.org/abs/hep-th/0509223
http://arxiv.org/abs/hep-ph/9601359
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C38%2C1377
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA61%2C81
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHE%2C11%2C1091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHE%2C11%2C1091
http://arxiv.org/abs/hep-th/9803183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C7%2C517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C7%2C517
http://jhep.sissa.it/stdsearch?paper=02%282005%29018
http://jhep.sissa.it/stdsearch?paper=02%282005%29018
http://arxiv.org/abs/hep-th/0412163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB367%2C83
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C521
http://arxiv.org/abs/hep-th/9605208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA16%2C707
http://arxiv.org/abs/hep-th/0011193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://arxiv.org/abs/hep-th/0106014


J
H
E
P
1
1
(
2
0
0
7
)
0
8
8

[114] C.V. Johnson, R.C. Myers, A.W. Peet and S.F. Ross, The enhancon and the consistency of

excision, Phys. Rev. D 64 (2001) 106001 [hep-th/0105077].

[115] T.J. Hollowood, V.V. Khoze and M.P. Mattis, Summing the instanton series in N = 2

superconformal large-N QCD, JHEP 10 (1999) 019 [hep-th/9905209].

[116] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087].

[117] S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999)

025006 [hep-th/9807164].

[118] M. Bertolini, P. Di Vecchia, M. Frau, A. Lerda and R. Marotta, N = 2 gauge theories on

systems of fractional D3/D7 branes, Nucl. Phys. B 621 (2002) 157 [hep-th/0107057].

[119] A. Neitzke and C. Vafa, N = 2 strings and the twistorial Calabi-Yau, hep-th/0402128.

[120] C. Vafa, Brane/anti-brane systems and U(N |M) supergroup, hep-th/0101218.

[121] R.L. Mkrtchyan, The equivalence of Sp(2N) and SO(−2N) gauge theories, Phys. Lett. B

105 (1981) 174.

[122] N. Nekrasov, H. Ooguri and C. Vafa, S-duality and topological strings, JHEP 10 (2004) 009

[hep-th/0403167].

[123] L. Anguelova, P. de Medeiros and A. Sinkovics, On topological F-theory, JHEP 05 (2005)

021 [hep-th/0412120].

[124] M. Aganagic and C. Vafa, Mirror symmetry and supermanifolds, hep-th/0403192.

[125] E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978) 394.

[126] J. Isenberg, P.B. Yasskin and P.S. Green, Nonselfdual gauge fields, Phys. Lett. B 78 (1978)

462.

[127] H. Georgi, Lie algebras in particle physics, Addison-Wesley (1982).

[128] M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley

(1995).

– 48 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C106001
http://arxiv.org/abs/hep-th/0105077
http://jhep.sissa.it/stdsearch?paper=10%281999%29019
http://arxiv.org/abs/hep-th/9905209
http://jhep.sissa.it/stdsearch?paper=07%281998%29023
http://arxiv.org/abs/hep-th/9806087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C025006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C025006
http://arxiv.org/abs/hep-th/9807164
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB621%2C157
http://arxiv.org/abs/hep-th/0107057
http://arxiv.org/abs/hep-th/0402128
http://arxiv.org/abs/hep-th/0101218
http://jhep.sissa.it/stdsearch?paper=10%282004%29009
http://arxiv.org/abs/hep-th/0403167
http://jhep.sissa.it/stdsearch?paper=05%282005%29021
http://jhep.sissa.it/stdsearch?paper=05%282005%29021
http://arxiv.org/abs/hep-th/0412120
http://arxiv.org/abs/hep-th/0403192
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB77%2C394
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB78%2C462
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB78%2C462

