
TwitInfo: Aggregating and Visualizing Microblogs
for Event Exploration

Adam Marcus, Michael S. Bernstein, Osama Badar,
David R. Karger, Samuel Madden, Robert C. Miller

MIT CSAIL
32 Vassar St., Cambridge MA

{marcua, msbernst, badar, karger, madden, rcm}@csail.mit.edu

ABSTRACT

Microblogs are a tremendous repository of user-generated
content about world events. However, for people trying
to understand events by querying services like Twitter, a
chronological log of posts makes it very difficult to get a
detailed understanding of an event. In this paper, we present
TwitInfo, a system for visualizing and summarizing events
on Twitter. TwitInfo allows users to browse a large collec-
tion of tweets using a timeline-based display that highlights
peaks of high tweet activity. A novel streaming algorithm
automatically discovers these peaks and labels them mean-
ingfully using text from the tweets. Users can drill down
to subevents, and explore further via geolocation, sentiment,
and popular URLs. We contribute a recall-normalized ag-
gregate sentiment visualization to produce more honest sen-
timent overviews. An evaluation of the system revealed
that users were able to reconstruct meaningful summaries
of events in a small amount of time. An interview with a
Pulitzer Prize-winning journalist suggested that the system
would be especially useful for understanding a long-running
event and for identifying eyewitnesses. Quantitatively, our
system can identify 80-100% of manually labeled peaks, fa-
cilitating a relatively complete view of each event studied.

Author Keywords

Twitter, Visualization, Exploration, Event Detection

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: Misc.

General Terms

Design, Human Factors

INTRODUCTION

Twitter captures a moment-by-moment pulse of the public
consciousness. Unfortunately, the format of the raw data
from Twitter is a flood of opinions, information and emotion,
and is very difficult to synthesize into a coherent timeline
of events or sentiment. To address the limitations of raw
Twitter feeds, researchers have built a number of one-off

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

visualizations for a variety of domains, including political
events [7, 24], media events [23], and crisis scenarios [27,
29]. Others have focused on building visualization over large
static collections of tweets [6]. However, these are generally
domain specific, and operate only on archived tweet data.

To address these limitations, we present TwitInfo, a plat-
form for exploring Twitter in real-time. Given a search
query related to an event, TwitInfo identifies and labels
event peaks, provides a focus+context visualization of long-
running events, and provides an aggregate view of user sen-
timent. The system extracts the posts that match keywords
in the query and provides a graphical timeline interface that
labels peaks of high-volume posts as subevents and high-
lights important terms and tweets in the conversation around
each subevent. Users can zoom into this timeline to visu-
alize more peaks and subevents. TwitInfo also includes a
sentiment analysis engine that displays the crowd’s senti-
ment about various subevents, and additionally shows the
geographic distribution of posted messages. When there are
frequently occurring links in a cluster of tweets which might
provide a bigger picture, TwitInfo also displays these links
in the user interface.

TwitInfo addresses two major technical problems inherent
in scaling such visualizations to realtime performance on an
unconstrained dataset: identifying subevents and summariz-
ing sentiment. To identify peaks in conversation around a
given topic in realtime, TwitInfo adapts signal processing
techniques to social streams. Existing sentiment visualiza-
tions have the potential to mislead users because positive and
negative sentiment classifiers have differing precision and
recall (Figure 2). We introduce a normalization procedure
to ensure that these visualizations produce correct results.

In this paper we make the following contributions:

1. We describe streaming algorithms to generate labeled
event peaks and visualizations of arbitrary topics in real
time from the Twitter stream. This approach allows users
to track events as they unfold, like a sporting event or
election, rather than restricting users to post-hoc analy-
sis. TwitInfo marries the signal processing literature with
social streams to make realtime end-user event tracking
feasible.

2. We present an automatic peak detection and labeling algo-
rithm with subevent drill down, which is the first to allow

focus+context exploration for social streams. TwitInfo is
the first interface to provide navigable peak labels for so-
cial streams; our evaluation shows that these peaks were
the main tool users chose to explore the interface. Users
used peak labels to understand events, and most identi-
fied labels as the most memorable and helpful element.
We found that TwitInfo’s event detection algorithm, which
identifies subevents, has recall and precision of 80-95%.

3. We identify a problem with aggregate visualizations of
sentiment analysis over a collection of documents. The
problem arises when positive and negative classifiers have
different recall rates, which can lead to skew in the re-
ported proportion of documents that are positive or neg-
ative. We present a technique for properly normalizing
these statistics.

4. We describe a formative evaluation of the interface with
12 users and one professional journalist. We find that
non-expert participants successfully used the interface to
rapidly summarize complex, nebulous event timelines.

We start with a motivating scenario for TwitInfo. We go on
to discuss related approaches, describe the system in detail,
and present our algorithms. Finally, we evaluate the algo-
rithms and user interface, and discuss future work.

MOTIVATING SCENARIO

It’s June 2009 and Ellen has caught wind of protests in Iran
concerning the outcome of the election. A few traditional
news media articles have come out based on eyewitness re-
ports, but the media are barred from covering events. In-
stead, many individuals utilize the Twitter microblogging
service to broadcast updates and report on events on the
ground. Ellen wants to get a bigger picture. Her key ques-
tions are: what were the major events of the protests, what
were people located inside the country saying, and how do
people generally feel about each event? Performing a Twit-
ter search for the #iranElection hashtag (used by many peo-
ple to identify the subject of their posts) produces a list of
thousands of individual messages that are not grouped or or-
ganized in any meaningful way.

Instead, Ellen visits the TwitInfo website to view a timeline
of tweets containing the term #iranElection. Whenever there
is a peak in activity, TwitInfo highlights the peak and labels
it with commonly occurring words like the protest location.
She wants to know how individuals in Israel, whose citizens
are interested in Iranian affairs, are reacting to the event. So,
she turns to the map interface and zooms in to Tel Aviv, then
reads several comments on the events. Ellen hypothesizes
that public sentiment about the election will shift over time,
so she uses TwitInfo’s sentiment aggregation interface to ex-
amine overall opinion at each peak in the timeline includ-
ing a discussion that has just popped up. Ellen centers in
on one protest event of interest, and follows a popular link
mentioned in tweets for deeper exploration.

RELATED WORK

We now review related work on Twitter analytics, temporal
exploration interfaces and topic detection algorithms.

The growth of microblogging has led to an expanding body
of research. Java et al. studied the topological and geo-
graphical distribution of Twitter [16]. Kwak et al. found that
Twitter exhibited network properties more like a news media
than a social network [17]. Naaman et al. detailed a division
between informers, who spread information, and meform-
ers, who discuss their own affairs [19]. Starbird, Vieweg and
colleagues have contributed analyses of microblog usage and
information lifecycles during crisis situations [27, 29].

A particularly relevant branch of microblogging research an-
alyzes reactions to news events on Twitter. Many of the pa-
pers in this category involve hand-creating timelines, graphs
and visualizations very similar to those that TwitInfo pro-
duces automatically and interactively. Diakopoulous and
Shamma did inspirational work in this vein, demonstrat-
ing the use of timeline analytics to explore the 2008 Pres-
idential debates through Twitter sentiment [7]. Shamma et
al. later demonstrated a similar analysis at the President
Obama’s Inauguration, finding that tweet volume increases
and @replies drop during important moments [24]. Starbird
et al. tracked tweets from different geographical areas on
a timeline as the Red River flood proceeded [27]. Gaffney
performed a retrospective analysis of the recent Iran elec-
tion, in which Twitter played a pivotal role in news report-
ing [11]. Jansen et al. found that tweet sentiment analysis
could provide useful insights into product opinion, an idea
we leverage for the sentiment visualization in TwitInfo [15].
Our goal in TwitInfo is to make these kinds of analyses easier
and faster, without requiring programming knowledge.

More recently, Diakopoulos et al. presented Vox Civitas [6],
a timeline-based visualization of events discussed on mi-
croblogs. Vox Civitas displays sentiment over time, and can
be used to annotate a video of the event with tweet-generated
commentary. Dörk et al. [8] present a timeline-based visu-
alization used as a backchannel for events discussed on mi-
croblogs. Like both systems, TwitInfo generates an event-
summarization dashboard, but contributes a streaming algo-
rithm for event detection and timeline annotations that our
user study finds to be effective for exploring large collections
of tweets. TwitInfo also contributes a method for correcting
a common problem that arises in displaying aggregate senti-
ment as estimated by automated classifiers.

TwitInfo builds on recent work on exploratory interfaces for
temporal exploration. Most closely related are Statler [23]
and Eddi [4], which both provide timeline visualizations of
Twitter data. Statler focuses on media events, and Eddi on
only one user’s feed; our goal with TwitInfo is to extend and
generalize these interfaces to an arbitrary topic of interest on
Twitter. To do this, we draw on other work exploring tempo-
ral visualization (for a survey, see Silva [26]). Leskovec et
al.’s Memetracker pursued similar goals, tracking prominent
phrases through blogs and news media [18] rather than Twit-
ter. Zoetrope allows the user to graph web content trends like
temperature or images over time [1]. TwitInfo also takes in-
spiration from Continuum’s [2] notion of hierarchical time-
lines, allowing users to expand subevents in the timeline for
further exploration. Opinion Space [9] investigated visual

layouts for browsing many user comments. In the future, we
plan to integrate its ideas for treating tweets with sentiment
or opinion separately from information-sharing tweets.

We build on work related to topic and event detection. Swan
and Allen developed a χ2 significance test for identifying
bursty extracted noun phrases [28] in a stream, but it is not
appropriate for Twitter’s needs. We need an online algorithm
that can update as tweets stream in, and tweets are so short
that noun agreement may not occur naturally. Newsjunkie
developed algorithms for users who wish to find novel con-
tent in their stream [10]. BlogScope [3] pursues many of the
same goals as TwitInfo, but is focused on blogs, and does not
go into detail about peak detection algorithms. One body
of work that does address such scenarios is TCP conges-
tion control [14], which has minimal memory requirements
and works in an online fashion to determine outlier delays in
packet transmission. We base our approach on this notion.

Finally, it is worth touching on some related non-academic
projects. Twitter Sentiment1 is a site which displays a mes-
sage frequency timeline, sentiment pie chart, and sentiment-
coded tweets. The site inspired many visual elements in
TwitInfo, and we utilize their approach to extract sentiment
from tweets, but they fall victim to the aggregate sentiment
normalization issues we solve with TwitInfo. Google News
Timeline2 facilitates exploration of news media in given time
ranges, but does not visually signal to the user which items to
focus on, and does not provide intuition into which articles
are selected for a given period. Systems such as Flipboard3

make news socially relevant by providing a magazine-like
interface for exploring news sources extracted from your
social networks on Twitter and Facebook, but do not pro-
vide context about events of interest. Twitter is planning a
real-time analytics framework4, but this does not seem to be
geared at relaying news or informing end-users.

THE TWITINFO SYSTEM

In this section we describe TwitInfo, beginning with the
user’s initial event query, then detailing the exploration in-
terface and the creation of nested events.

Creating the Event

TwitInfo users define an event by specifying a Twitter key-
word query. For example, for a soccer game users might
enter search keywords soccer, football, premierleague, and
team names like manchester and liverpool. Users give the
event a human-readable name like “Soccer: Manchester City
vs. Liverpool” or “Obama presidency,” as well as an op-
tional time window. When users are done entering the infor-
mation, TwitInfo saves the event and begins logging tweets
matching the query. In its current implementation, we only
track tweets for a keyword when a user first enters the key-
word into the system, but this is not a hard limitation: to get
a historical view of an event from its keywords, we could

1http://twittersentiment.appspot.com/
2http://newstimeline.googlelabs.com/
3http://www.flipboard.com/
4http://gigaom.com/2010/09/22/twitter-to-launch-free-real-time-
analytics-this-year/

continuously collect a sample of all tweets, and historically
index each keyword as users begin tracking them.

Timeline and Tweets

Once users have created an event, they can monitor the event
in realtime by navigating to a web page that TwitInfo creates
for the event. The main TwitInfo interface (Figure 1) is a
dashboard summarizing the event over time. The dashboard
displays a timeline for this event, raw tweet text sampled
from the event, an overview graph of tweet sentiment, and a
map view displaying tweet sentiment and locations.

The event timeline (Figure 1.2) reports tweet activity by vol-
ume. The more tweets that match the query during a period
of time, the higher the y-axis value on the timeline for that
period. So, when many users are tweeting about a topic (for
example, Obama), the timeline spikes. TwitInfo’s peak de-
tection algorithm, described later in the paper, automatically
identifies these spikes and flags them as peaks in the inter-
face. Peaks appear as flags in the timeline and appear to the
right of the timeline along with automatically-generated key
terms that appear frequently in tweets during the peak. For
example, in Figure 1.2, TwitInfo automatically tags one of
the goals in the soccer game as peak “F” and annotates it on
the right with representative terms in the tweets like 3-0 (the
new score) and tevez (the soccer player who scored). Users
can perform text search on this list of key terms to locate a
specific peak. To visually scale from short events to long-
running queries, TwitInfo will aggregate tweets on the time-
line by minute-, hour-, or day-level granularity depending on
the timespan the user is viewing.

The timeline also provides a way to filter the tweets in the
rest of the interface: when the user clicks on a peak, the
other interface elements (map, links, tweet list, and senti-
ment graph) refresh to show only tweets in the time period
of that peak.

While derived information is useful at a glance, users need
to have access to the tweets behind the event. The Rele-
vant Tweets panel (Figure 1.4) lists tweets that fall within
the event’s start and end times. These tweets are sorted by
similarity to the event or peak keywords, so that tweets near
the top are most representative of the selected event. Tweets
are colored red, blue, or white depending on whether their
detected sentiment is positive, negative, or neutral.

Aggregate Metadata Views

In addition to skimming sentiment for individual tweets,
users may wish to see the general sentiment on Twitter about
a given topic. The Overall Sentiment panel (Figure 1.6) dis-
plays a piechart representing the total proportion of positive
and negative tweets during the event. We discuss the diffi-
culties in accurately depicting aggregate sentiment and other
aggregated classifier output in the Algorithms section.

Twitter users will share links as a story unfolds [17]. The
Popular Links panel (Figure 1.5) aggregates the top three
URLs extracted from tweets that occurred during the se-
lected subevent if users want sources for further exploration.

Figure 1. The TwitInfo user interface. 1) the user-defined name of the event, as well as keywords sent to the Twitter Search API to log the tweets.

2) The central timeline interface, with the y-axis corresponding to tweet volume. Automatically-detected peaks (subevents) are labeled with lettered

flags. When the user clicks on a peak, all the other interface elements filter to tweets in that time period. 3) Event-related tweets with geolocation

are displayed on a map. 4) Tweets for the currently selected event or peak (subevent), colored red if TwitInfo detects negative sentiment or blue if

TwitInfo detects positive sentiment. 5) The most popular links in the currently-selected event or subevent. 6) Aggregated sentiment of all tweets in

the event or subevent.

Often, opinion on an event differs by geographic region.
A user should be able to quickly zoom in on clusters of
activity around New York and Boston during a Red Sox-
Yankees baseball game, with sentiment toward a given peak
(e.g., a home run) varying by region. The Tweet Map (Fig-
ure 1.3) displays tweets that provide geolocation metadata.
The marker for each tweet is colored according to its senti-
ment, and clicking on a pin reveals the associated tweet.

Creating Subevents

An important contribution of TwitInfo is its interactive sup-
port for hierarchically nested events: users can start by view-
ing several months of the Obama presidency on Twitter,
zoom in to a subevent to see a timeline of just a single
speech, then zoom in again to do a detailed analysis of re-
actions to a single remark the President made. The user
can transform any peak on the timeline into its own first-
class event with a dedicated page. To do so, users are asked
to “Label this event” in the timeline and provide a human-
readable name for the event. This serves the purpose of pro-
viding a better event label, and for allowing future users to
navigate deeper into the subevent structure.

Realtime Updating

Diffusion speed is one of Twitter’s competitive advantages
in tracking the news, so it is important for Twitter inter-
faces to be able to handle ongoing events. Because TwitInfo

captures realtime streams from Twitter, its interface reacts
accordingly. The interface refreshes at regular intervals to
include any new tweets that have entered the system. In this
way, a user might track a speech, sporting event, or media
event in realtime as it occurs.

ALGORITHMS FOR DISPLAYING EVENTS

We now turn to the algorithms we use for detecting and dis-
playing subevents in a collection of tweets.

Event Detection

A key technical contribution of this paper is identifying tem-
poral peaks in tweet frequency. Our algorithm first bins the
tweets into a histogram by time, for example by minute. This
binning allows us to count the tweet-arrival rate in each time
period. We then calculate a historically weighted running
average of tweet rate and identify rates that are significantly
higher than the mean tweet rate. For these rate spikes, we
find the local maximum of tweet rate and identify a window
surrounding the local maximum. Finally, we collect tweets
within this window that contain the desired keywords, and
select frequent terms to provide an automated label of each
peak. We now describe each of these steps in detail.

Given a time-sorted collection of tweets, we first group the
tweets that were posted within a one-minute time window of
one-another. Increasing bin size smooths out small spikes in

longer events, and can sometimes aid in finding larger trends.
Users can adjust bin size to hours or days.

After our binning process, we are left with a list [C1, ..., CN]
of tweet counts, where Ci is the number of tweets in bin i.
For example, a list [25, 50, 13] with minute-sized bins would
mean that there were 25 tweets in the first minute of an event,
50 tweets in the second, and 13 tweets in the third. We
wish to determine when there is a peak in conversation about
some topic. A naı̈ve approach would be to find local maxima
amongst the Ci’s, but this would mis-identify peaks which
are marginally taller relative to their neighbors. Instead, we
wish to identify each bin i such that Ci is large relative to
the recent history Ci−1, Ci−2, A similar problem is ad-
dressed in TCP’s congestion control mechanism [14], which
must determine whether a packet is taking unusually long to
be acknowledged and is thus an outlier. The analogue in our
system is that the algorithm must determine whether a bin
has an unusually large number of tweets in it. We take inspi-
ration from TCP’s approach, which uses a weighted moving
average and variance.

Algorithm 1 Offline Peak-Finding Algorithm

1: function find peak windows(C):
2: windows = []
3: mean = C1

4: meandev = variance(C1, ..., Cp)
5:
6: for i = 2; i < len(C); i++ do

7: if
|Ci−mean|
meandev

> τ and Ci > Ci−1 then

8: start = i− 1
9: while i <len(C) and Ci > Ci−1 do

10: (mean, meandev) = update(mean, meandev, Ci)
11: i++
12: end while

13: while i < len(C) and Ci > Cstart do

14: if
|Ci−mean|
meandev

> τ and Ci > Ci−1 then

15: end = −− i

16: break
17: else

18: (mean, meandev) = update(mean, meandev, Ci)
19: end = i++
20: end if

21: end while

22: windows.append(start, end)
23: else

24: (mean, meandev) = update(mean, meandev, Ci)
25: end if

26: end for

27: return windows
28:
29: function update(oldmean, oldmeandev, updatevalue):
30: diff = |oldmean − updatevalue|
31: newmeandev = α*diff + (1−α)*oldmeandev
32: newmean = α*updatevalue + (1−α)*oldmean
33: return (newmean, newmeandev)

An offline version of peak detection is described in Algo-
rithm 1. The function find peak windows(C) takes binned
tweet counts as input [C1, ..., CN]. The function returns a
list [W1, ...,WN] of peak windows, where window Wi =
(Si, Fi), Si < Fi is represented by Si, the start bin of the
window, and Fi, the final bin of the window. After initial-
izing the mean to the first bin count (line 3) and the mean
deviation to the variance of the first p (we use p = 5) bins

(line 4), we loop through the subsequent bin counts (line 6).
Line 7 contains our peak detection logic: if the current bin
count (Ci) is more than τ (we use τ = 2) mean deviations
from the current mean, and the bin counts are increasing,
we say that the increase is significant, and begin a new peak
window (line 8). The loop in lines 9-12 is performing hill-
climbing to find the peak of this window: we loop until we
reach a bin count smaller than the previous one. Every time
we iterate over a new bin count, we update the mean and
mean deviation (lines 10, 18, 24). After a peak Ci has been
found, we enter the loop of lines 13-21. Here we follow the
peak to its bottom, which occurs either when the bin counts
are back at the level they started (line 13) or another signifi-
cant increase is found (the if statement on line 14).

To summarize the algorithm: when the algorithm encounters
a significant increase in bin count relative to the historical
mean, it starts a new window and follows the increase to its
maximum. The algorithm ends the peak’s window once the
bin count returns to the same level it started at, or when it
encounters another significant increase.

The implementation of find peak windows(C) in TwitInfo
is different than the one in Algorithm 1 to facilitate stream-
ing interactivity. In order to make peak-finding an online
algorithm, we make the iteration between lines 6 and 26
reachable using a continuation-passing style, and make the
function take only the latest bin count with each call.

The update(oldmean, oldmeandev, updatevalue) function
is the update step: given a new bin count (updatevalue),
it updates oldmean and oldmeandev and returns their new
values. Because we are doing this in a streaming context
(we do not want to maintain a list of historical values) and
because we want to eventually forget old bin counts to ad-
just to changing message frequency trends, we maintain an
exponentially weighted moving mean of bin counts. Simi-
larly, we maintain exponentially weighted moving mean de-
viations. The formulas for these update steps are on lines 31
and 32, and require that α < 1. We have found that α = .125
captures a reasonable amount of historical information.

The significance tests of lines 7 and 14 are similar to out-
lier detection criteria which identify outliers if they are a
certain number of standard deviations from the mean. We
utilize mean deviation instead of standard deviation because
the update step for mean (line 31) does not require keeping
historical bin count values. The update steps of lines 31 and
32, as well as the use of exponentially weighted moving av-
erages and mean deviations are based on ideas from TCP
congestion control.

After identifying a window W = {S, F}, we generate a
label for W . We consider all tweets containing the event’s
keywords that were posted between the start of bin S and the
end of bin F . We then tokenize all tweets into unigrams and
rank the unigrams by their Term Frequency / Inverse Docu-
ment Frequency (TF-IDF) [22]. TF is calculated across all
tweets in W , and IDF is calculated for tweets in all windows.
We present the top five ranked unigrams as the label for W .

Removing Noisy Query Terms

If a user includes a tangential but high-volume keyword in
the list of event keywords, the resulting timeline can lose its
meaningful signal. For example, suppose the user wanted to
track music news using band keywords like Journey, T-Pain,
and Justin Bieber. Justin Bieber is a Twitter celebrity and
perpetually trending — the volume of Bieber-related tweets
would overwhelm signal about the other musicians.

We employ an IDF-normalizing technique for avoiding this
situation. Rather than count the number of tweets which
contain any of the desired keywords in a given timeframe,
we normalize the count of tweets containing always-popular
terms by the terms’ global popularity (IDF). Thus, because
Bieber frequently appears in the Twitter stream, the contri-
bution of tweets containing that term to the volume of a pe-
riod is dampened.

Identifying Relevant Tweets

Because there are typically more tweets than can be digested
by a user for any subevent, we try to identify relevant tweets
for the user in the Relevant Tweets list (Figure 1.4). Given
our 5-term label for each identified event, we rank tweets by
the number of terms from the subevent label that the tweet
contains. Since retweets contain the same words as a tweet
and we want to promote diversity, we halve the matching
term count of retweeted tweets.

Representing Aggregate Sentiment

Our sentiment analysis algorithm places tweets into positive
and negative classes. It uses a Naı̈ve Bayes classifier trained
on unigram features. We built the algorithm around an idea
described by Go et al. [12], generating training sets for the
positive and negative classes using tweets with happy and
sad emoticons.

Traditionally, twitter-based sentiment analysis algorithms
are evaluated tweet-by-tweet, using standard precision/recall
metrics. In practice, however, they are often used in ag-
gregated form. The standard means of displaying aggregate
sentiment can pose a biased view. We illustrate the issue in
Figure 2. TwitInfo contributes a correction for this bias.

Our classifier predicts the probability that a tweet is a mem-
ber of the positive class (pp) and the probability that it is a
member of the negative class (pn). Not all tweets express
a strong sentiment, so we need a confidence threshold τ on
the classifiers below which we predict a neutral category.
Increasing the threshold for a class on a well-trained classi-
fier has the effect of increasing the precision and decreasing
the recall of the classifier. For example, we can increase our
precision on the positive class by increasing threshold τp for
which we will accept tweets with pp values as positive.

Our positive and negative classifiers will have different pre-
cision/recall curves as we adjust their thresholds. It is rela-
tively unlikely that the precision/recall curves will be identi-
cal for both classes. This may cause the two classes to have
different recall values at the same precision.

Negative Tweets Positive Tweets
(500 tweets)

(50 tweets)

(500 tweets)

Classified as Negative
(250 tweets)

Classified as Positive

Uncorrected Output: Recall-Normalized Output:

20%

80%

50% 50%

Figure 2. Positive and negative sentiment classifiers often have different

performance. Suppose both the positive and the negative class contain

500 tweets. If the negative classifier is conservative and only identifies

50 tweets while the positive classifier is more liberal and identifies 250,

the relative proportions will be biased (bottom left). If wedivide by an

estimate of the classifier’s recall (as a number in [0 . . . 1]), however, we

produce a more accurate visualization.

This means that one classifier may be conservatively ignor-
ing tweets while the other is accepting them. Following the
example of Figure 2, if we have 500 positive and negative
tweets, but the negative classifier has a recall of .1, whereas
the positive classifier has a recall of .5, then the positive clas-
sifier will identify 5 times as many positive tweets as nega-
tive ones in aggregate. If we do not correct for this problem,
the user will see an aggregate visualization that grossly over-
estimates the number of positive tweets in the data.

Our solution to this problem is to recall-normalize the ag-
gregate numbers. We first adjust both classifiers so that they
have equivalent precision values on a test dataset. We then
measure their recalls on this set. When we count the number
of positive tweets, we divide the count by the positive recall,
and similarly normalize the negative count. For example, if
we know recall is .1 and we observed 50 negative tweets,
we estimate 50/.1 = 500 negative tweets. This correction
assumes that the precision/recall characteristics of our senti-
ment analysis algorithm is similar in practice as it is on the
test dataset. As aggregated sentiment is important in many
domains, we think that researching a principled solution to
this problem will be important future work.

IMPLEMENTATION

TwitInfo layers an interface and infrastructure over the tweet
stream. When an event is created, TwitInfo searches for the
keywords for that event using the Twitter Streaming API. It
associates tweets containing relevant keywords with events,
counts tweet volume over time, and extracts metadata like
sentiment and URLs. It records location metadata by har-
vesting geolocation tags on the tweet or, failing that, at-
tempting to convert the freetext user location field into a lat-
itude/longitude pair using a geolocation service.

These tweets are serialized to a database using Django, in-
dexed by keywords that matched the streaming query. When
the user requests a TwitInfo page, Django looks up relevant
tweets using indexes on keyword and timestamp. To power

Data Source Precision Recall

Soccer Events 17

22
⇒ 77% 17

22
⇒ 77%

Soccer Events & Discussion 21

22
⇒ 95% 21

26
⇒ 81%

Major Earthquakes 6

44
⇒ 14% 5

5
⇒ 100%

All Earthquakes 29

44
⇒ 66% N/A

All Earthquakes & Discussion 39

44
⇒ 89% N/A

Table 1. Event detection performance on our data sets. Without a rea-

sonable ground truth labeling of all earthquakes, we omit recall values

for them. Note that there were five major earthquakes in the period of

interest, but one event had two distinct peaks on Twitter. Precision and

recall were equal for Soccer Events.

the visualization, we use the Google Visualization API 5 for
our annotated timeline and pie charts, and generate a map
using the Google Maps API.

EVALUATION

We now evaluate the performance of the algorithm for de-
tecting events in the timeline, and the effectiveness of the
user interface at visualizing events using Twitter data. We
analyze the algorithm through a quantitative analysis of its
ability to identify events, and analyze the user interface
through a user study on twelve users and a semi-structured
interview with a Pulitzer Prize-winning former Washington
Post investigative reporter.

Algorithm Evaluation

We now determine if our automated event detection ap-
proach matches human intuitions about correct behavior. To
support the evaluation, we gathered tweets from three soccer
games and one month of earthquakes. To create ground truth
for the soccer data, one researcher annotated major events in
the soccer game using the game video and web-based game
summaries, without looking at tweets. For ground truth on
the earthquake data, we gathered data from the US Geologi-
cal Survey on major earthquakes during the time period.

We tested how many of the events our algorithm detected
were part of this ground truth set (precision), and how many
events in the ground truth set our algorithm detected (recall).
We used the default threshold cutoff for determining events
— we can trade off precision and recall by adjusting this
threshold, but we chose to use the single value that users
will experience. Results are in Table 1.

The algorithm has high recall, finding all major earthquakes
and most soccer events. Figure 3 displays several ground
truth timelines and events that the algorithm identified. If the
algorithm failed to catch an event, it was typically because
Twitter volume did not peak when it occurred. For example,
the only uncaught ground truth events in the soccer data set
were yellow cards, which did not appear in large quantities
in the stream, even though our researcher identified them as
interesting events in his initial analysis of the game.

5http://code.google.com/apis/visualization/documentation/gallery.html

Real Madrid vs. Penarol

Manchester City vs. Liverpool

Barcelona vs. AC Milan

Game Start

Livestream URL

Pregame Chatter

Game Start

Game Start

Goal Halftime

Halftime

Goal

Goal

Goal

Goal
Game End

Game

End Penalty

Shots

Halftime Goal

Goal
Game End

Wrong

Figure 3. The TwitInfo timeline displaying three soccer games. The

peak detection algorithm finds only 1 false positive, labeled red. The

algorithm did not find Yellow Card events, but there was no spike in

Twitter usage to suggest it. The algorithm occasionally flagged pregame

chatter like retweeting a livestream URL.

Precision depended on activity type: it was high for soccer,
but there were several false positives for major earthquakes
because the algorithm also flagged minor earthquakes. If we
include in our ground truth dataset all minor earthquakes,
precision rises from 14% to 66% (Table 1). It still pro-
duces false positives, because Twitter spikes when its users
discuss an earthquake or share information about donating
aid money. If we include all earthquake-related discus-
sion, precision rises to 89%. Likewise, including soccer-
relevant discussion (like conversations identifying live video
stream URLs for a game) leads to 95% precision in the soc-
cer dataset. The remaining false positives come from high-
volume topics that happened to mention the word earthquake
or a soccer term. For example, one Twitterer asked celebrity
Justin Bieber to follow her because she survived Chile’s
earthquake, and she was retweeted around Bieber’s fan base.

The algorithm can be biased by Twitter’s interests. If there
is a medium-sized earthquake in the middle of the ocean,
nobody will notice or tweet about it, so TwitInfo will miss
the event. Conversely, if there is a minor earthquake in a
densely populated area, lots of locals will tweet about it and
TwitInfo may flag it as an event.

We also note two artifacts that occur because of a combi-
nation of our algorithm, timeline visualization, and use of
Twitter as a datasource. First, a well-defined event, such as
the September 2010 earthquake in Christchurch, NZ, often
appears as multiple peaks on Twitter. In the Christchurch
earthquake, we noticed three distinct peaks, all of which
were identified by the algorithm: 1) news about the earth-
quake, 2) thoughts and prayers to those in Christchurch, and

3) information about aid and scams. The second artifact oc-
curs when multiple events overlap in time. For example,
two earthquakes in different locations might result in a single
larger peak on the timeline. Our algorithm does not distin-
guish overlapping events, and our visualization, which does
not provide stacked layers like MemeTracker [18] does not
identify the two events as distinct.

User Interface Evaluation

Our next goal was to understand if TwitInfo users can un-
derstand an event’s structure via the interface, and if some
elements of the interface are more helpful for event explo-
ration than others.

Method

We recruited twelve participants, six of whom had Twitter
accounts. Ten had been to the Twitter website before. They
could all explain Twitter’s mechanics, including tweet length
and broadcast messaging. Four participants were female.
We compensated participants with $10 gift certificates.

We asked the participants to perform directed search tasks
for the first half of the study. We chose tasks that exercised
all the elements of the interface and allowed us to gather
feedback on a variety of usage scenarios. Some example
tasks on the earthquake dataset included:

• Find the earthquake that happened in Vanuatu. When did
it occur, and what was the magnitude?

• How did sentiment about the earthquake differ between
Vanuatu and New Zealand?

• What are people who live in Christchurch saying about
the earthquake there?

During this process, we gathered usability feedback and ob-
served which interface elements were useful or ignored.

The second half of the study was a time-limited exploration
task. We gave participants up to five minutes to understand
an event using TwitInfo and five minutes to dictate a news
report on the event to the experimenter. To gain a variety
of observations, we gave half of the participants a dataset
of a soccer game between Manchester City and Liverpool,
and half a dataset containing sixteen days of tweets about
President Barack Obama.

Finally, we guided participants in a semi-structured inter-
view. We asked about the best and worst parts of the Twit-
Info interface. We also tried to understand the situations
in which our participants would want to use TwitInfo, and
asked them for alternate modes of performing their assigned
reporting task in the absence of TwitInfo.

Results

Here is one participant’s summary of President Obama’s ac-
tivities over a 16 day period:

After the peace talks, Obama traveled to the ASEAN
conference and to NATO to work on issues in those
parts of the world. He then spent the week dedicated to

domestic economic issues. First he proposed a research
tax break, then a $50 billion investment in infrastruc-
ture, then the issue came up about whether he should
keep some tax breaks that Bush had implemented, and
he’s asking for some tax breaks from business, and
these are generating some controversy because [. . .]

Participants such as this one successfully reconstructed events
from the Twitter timeline within five minutes, even without
previous knowledge. TwitInfo gave quick, high-level under-
standing, with one user describing some of the visual ele-
ments as “at-a-glance” interfaces, and another praising its
speed of distilling information, but explaining that the ex-
tracted information was “shallow.”

Common Usage Patterns. When performing freeform ex-
ploration, users picked the largest peak and explored it care-
fully: they read the tweets thoroughly, drilled in on the
map, and followed links to articles. Most users relied on
tweets to confirm event details, though a few skimmed the
automatically-generated labels. Under time pressure, users
instead skimmed all peak labels to get a broad sense of the
chronology. Self-reported “news junkies” tended to follow
at least one link, either from a tweet citing an interesting
news source, or from the popular links section. These users
cited the lack of detail of the tweets as their reason for going
outside of the system.

The Timeline Focused User Activity. When providing a
high-level summary of the interface in the semistructured
interview, most users cited the timeline and event labels as
the most memorable and helpful elements. The timeline was
also the most actively used component in the interface.

Mapping Requires Aggregation. The map provided help-
ful filtering features, but could have been even more useful if
it offered aggregation. Users were excited to find that tweet
density increased in areas affected by earthquakes, but this
fact was not discoverable while the map was zoomed out.
So, these users requested a map indicator for geographic
areas with unusually high volume, for example a heatmap.
Other participants wanted the bounds and zoom level of the
map to act as a filter for the rest of the interface, for example
re-sampling the timeline based only on tweets from Iran.

Users Do Not Trust Sentiment Analysis. We tested
our sentiment classifier against previous work investigating
tweet sentiment [15], finding similar performance. However,
users did not agree with its model of sentiment. For exam-
ple, users were often surprised to find positive overall sen-
timent for earthquakes. After examining the positive and
negative sentiment tweets, they realized that many tweets
contained positive messages such as “sending best wishes to
those recovering from the earthquake in haiti.” They would
decide that the sentiment classifier was working correctly,
but that it was not giving them the information they wanted.
In essence, the sentiment of individual tweets did not sum-
marize the overall sentiment of the topics they mentioned.

What Alternatives Did Users Suggest? We asked users
how they would have performed their reporting task had
TwitInfo not been provided to them. Users who success-
fully reported on the soccer match suggested, correctly, that
they could have searched for an article about the game and
extracted much of the same information. Users reporting on
two weeks of Obama’s activities had a harder time arriving at
solutions. One user explained that he would have collected
news weeklies (e.g., Newsweek), identified key events from
each of President Obama’s weeks, and then searched for ar-
ticles on those events. Most of the other users explained that
they would have searched Google News for historical day-
by-day coverage, and compiled a set of the most interest-
ing stories. All of the users had difficulty determining how,
across the sets of daily search results, they would identify
which results to pay attention to.

A Journalist’s Perspective

Twitter has considerable buzz as a news medium [17]. We
wanted to understand if TwitInfo would be a useful tool for
journalists exploring a new topic. We conducted a semi-
structured interview with a Pulitzer Prize-winning former
Washington Post investigative reporter who is now a Knight
Professor of Journalism. We asked the journalist to interact
with the soccer, earthquake, and Obama examples, and to
reflect on how journalists might use TwitInfo.

When presented with TwitInfo, the journalist initially fo-
cused on the labeled timeline view. She explained that
the timeline with labeled events would be useful for back-
grounding on a longer-running topic such as the sixteen-day
Obama example. The journalist expanded: “When I do long
stories, they are on a very arcane subject. Being able to
see a timeline on an arcane subject could be really helpful.”
Specifically, she felt that the automated timeline would be
useful to understand which substories to explore further. Ad-
ditionally, she recommended blending the extracted URLs
from the tweet stream with stories from traditional sources
of news for an expanded understanding. In order to navi-
gate longer timelines covering multiple subevents, she rec-
ommended a topic-based drill-down interface along the lines
of what Eddi [4] provides.

The journalist was also interested in a separate use case for
the map view of geolocated tweets, which could be used by
reporters seeking to contact on-the-ground sources. The map
view was compelling because “from the perspective of us
covering a breaking event, you want to know what the people
on the ground are saying,” and zooming in on the location of
interest could result in eyewitnesses to follow up with. The
journalist drew an analogy to the #iranElection, which was
billed as a Twitter revolution, but left reporters wanting to
talk to the 200-odd people in Iran who were the eye-witness
sources of on-the-ground information.

For the most part, the journalist’s view on sentiment anal-
ysis was similar to that of the user study participants. She
said that journalists would be skeptical of the quality and ac-
curacy of the algorithm as well as the sample population ex-
pressing the sentiment. While aware of the research suggest-

ing that extracted Twitter sentiment matches sentiment mea-
sured through other polling measures [20], she expressed
skepticism that a journalist would trust these numbers.

Overall, the journalist found TwitInfo to be a compelling first
version of a tool to make sense of the tweet stream from a
reporter’s perspective. She expressed that with her recom-
mended interface modifications, she could imagine the tool
being useful for reporting on breaking news, following real-
time events, and familiarizing herself with overall interest
and current opinions on an arcane topic.

DISCUSSION

TwitInfo successfully allows individuals to aggregate thou-
sands of short messages into a coherent picture of an event.
If a user or journalist wishes to receive a high-level back-
ground on a new topic, or if a reporter wishes to identify
eyewitnesses to follow up with, our study and interview sug-
gest that TwitInfo would be a useful tool.

We offer designers and developers of similar systems sev-
eral takeaways from our experience. TwitInfo utilizes al-
gorithms which enable configuration-free real-time social
stream analysis. Prior work focuses on building useful dash-
boards on such data, but displays prototypes built on static
datasets. To fully benefit from social streams, systems de-
signers need to consider the streaming nature of the data
when designing the algorithms behind their visualizations.

Our application of signal processing and streaming tech-
niques to social streams opens the door to other uses in inter-
faces for social computing systems. Some examples include
event-based notification (e.g., your tweet is suddenly getting
lots of retweets), large text corpus summarization techniques
(e.g., extending Diakopoulos et al. [6] to realtime scenarios),
and smarter trend detection in newsfeed interfaces (e.g., ex-
tending systems like Eddi [4]).

Our evaluation presents a cautionary experience against
some of the excitement in using sentiment analysis in tweet
dashboards. Using sentiment analysis techniques from the
literature, we showed that users are wary of sentiment-
enabled exploratory tools of informative tweets due to a
mental model mismatch. While this does not reduce the
value of such signals in visualizations, it does suggest that
sentiment is not an easy drop-in for such interfaces.

As a news source, our users found that Twitter was often
only a shallow window into world events. Though analysis
and conversation does appear on Twitter [13, 5], for many
events Twitter is a medium for quick reactions and informa-
tion sharing. Even the summary tweets sometimes could not
explain the headline news: statistical summarization inter-
faces could help convey more meaning [25, 4, 21].

Our evaluation had several limitations. First-use studies
make it difficult to understand how a person might use the in-
terface longitudinally to track a topic. Such studies also have

low external validity: could a citizen journalist use TwitInfo
for real investigative reporting? We plan to release TwitInfo
publicly to answer some of these questions.

CONCLUSION

Twitter is fast becoming a critical source of information
about world events large and small. However, it is difficult to
translate this information into a format allows users to draw
higher-level conclusions. In this paper we present TwitInfo,
a novel microblog-based event tracking interface that can
collect, aggregate, and visualize tweets about user-specified
events as they unfold on the stream. TwitInfo embeds a novel
algorithm for peak detection and labeling, as well as a new
technique for correcting aggregate sentiment displays. The
peak detection algorithm identifies 80-100% of manually la-
beled peaks. TwitInfo users were able to understand sev-
eral weeks’ worth of Twitter data in a matter of minutes,
on diverse topics like earthquakes, politics, and sports. A
professional journalist reflected on the interface as a means
of exploring complex topics and identifying eyewitness ac-
counts. We discuss some implications of our approach for
future designers and researchers to consider.

Aggregate Twitter interfaces promise a new set of exploratory
data analysis tools. These tools are already being used for
social science [27, 29] and augmented media experiences
[23]. We envision a future where citizen journalists, citizen
scientists and curious minds can use tools like TwitInfo to
explore and understand their world.

REFERENCES

1. E. Adar, M. Dontcheva, J. Fogarty, and D. S. Weld.
Zoetrope: interacting with the ephemeral web. In UIST
’08. ACM Press, 2008.

2. P. André, M. L. Wilson, A. Russell, D. A. Smith,
A. Owens, and m. schraefel. Continuum: designing
timelines for hierarchies, relationships and scale. In
UIST ’07. ACM Press, 2007.

3. N. Bansal and N. Koudas. Blogscope: a system for
online analysis of high volume text streams. In VLDB
’07. VLDB Endowment, 2007.

4. M. S. Bernstein, B. Suh, L. Hong, J. Chen, S. Kairam,
and E. H. Chi. Eddi: Interactive Topic-based Browsing
of Social Status Streams. In UIST ’10, 2010.

5. danah boyd, S. Golder, and G. Lotan. Tweet, tweet,
retweet: Conversational aspects of retweeting on
twitter. In HICSS. IEEE, 2010.

6. N. Diakopoulos, M. Naaman, and F. Kivran-Swaine.
Diamonds in the rough: Social media visual analytics
for journalistic inquiry. In VAST 2010.

7. N. Diakopoulos and D. A. Shamma. Characterizing
debate performance via aggregated twitter sentiment. In
CHI 2010.

8. M. Dörk, D. Gruen, C. Williamson, and S. Carpendale.
A visual backchannel for large-scale events. IEEE
Transactions on Visualization and Computer Graphics,
16:1129–1138, 2010.

9. S. Faridani, E. Bitton, K. Ryokai, and K. Goldberg.
Opinion space: a scalable tool for browsing online

comments. In CHI ’10. ACM Press, 2010.
10. E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie:

providing personalized newsfeeds via analysis of
information novelty. In WWW ’04. ACM Press, 2004.

11. D. Gaffney. #iranelection: Quantifying online activism.
In Web Science, 2010.

12. Go, Alec and Bhayani, Richa and Huang, Lei. Twitter
sentiment website, September 2010.
http://twittersentiment.appspot.com.

13. C. Honeycutt and S. C. Herring. Beyond
microblogging: Conversation and collaboration via
twitter. In HICSS ’09, 2009.

14. IETF Network Working Group. Rfc 2988: Computing
tcp’s retransmission timer, November 2000.
http://tools.ietf.org/html/rfc2988.

15. B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury.
Twitter power: Tweets as electronic word of mouth.
JASIST, 60(11), 2009.

16. A. Java, X. Song, T. Finin, and B. Tseng. Why we
twitter: Understanding the microblogging effect in user
intentions and communities. In WebKDD, 2007.

17. H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW
2010, 2010.

18. J. Leskovec, L. Backstrom, and J. Kleinberg.
Meme-tracking and the dynamics of the news cycle. In
KDD ’09. ACM Press, 2009.

19. M. Naaman, J. Boase, and C.-H. Lai. Is it really about
me?: message content in social awareness streams. In
CSCW ’10, New York, NY, USA, 2010. ACM.

20. B. O’Connor, R. Balasubramanyan, B. R. Routledge,
and N. A. Smith. From tweets to polls: Linking text
sentiment to public opinion time series. In ICSWSM
2010.

21. D. Ramage, S. Dumais, and D. Liebling. Characterizing
microblogs with topic models. In ICWSM ’10, 2010.

22. G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing and
Management, 24(5):513–523, 1988.

23. D. Shamma, L. Kennedy, and E. Churchill. Tweetgeist:
Can the twitter timeline reveal the structure of
broadcast events? In CSCW 2010 Horizon, 2010.

24. D. A. Shamma, L. Kennedy, and E. F. Churchill.
Conversational shadows: Describing live media events
using short messages. In ICWSM ’10, 2010.

25. B. Sharifi, M.-A. Hutton, and J. Kalita. Summarizing
microblogs automatically. In NAACL ’10. ACL, 2010.

26. S. F. Silva and T. Catarci. Visualization of linear
time-oriented data: A survey. Web Information Systems
Engineering, 1:0310, 2000.

27. K. Starbird, L. Palen, A. L. Hughes, and S. Vieweg.
Chatter on the red: what hazards threat reveals about
the social life of microblogged information. In CSCW
’10. ACM, 2010.

28. R. Swan and J. Allan. Extracting significant time
varying features from text. In CIKM 1999.

29. S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen.
Microblogging during two natural hazards events: what
twitter may contribute to situational awareness. In CHI
’10. ACM Press, 2010.

