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ABSTRACT 

Storm has long served as the main platform for real-time analytics 

at Twitter. However, as the scale of data being processed in real-

time at Twitter has increased, along with an increase in the 

diversity and the number of use cases, many limitations of Storm 

have become apparent. We need a system that scales better, has 

better debug-ability, has better performance, and is easier to 

manage – all while working in a shared cluster infrastructure. We 

considered various alternatives to meet these needs, and in the end 

concluded that we needed to build a new real-time stream data 

processing system. This paper presents the design and 

implementation of this new system, called Heron. Heron is now 

the de facto stream data processing engine inside Twitter, and in 

this paper we also share our experiences from running Heron in 

production. In this paper, we also provide empirical evidence 

demonstrating the efficiency and scalability of Heron. 
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1. INTRODUCTION 
Twitter, like many other organizations, relies heavily on real-time 

streaming. For example, real-time streaming is used to compute 

the real-time active user counts (RTAC), and to measure the real-

time engagement of users to tweets and advertisements. For many 

years, Storm [16, 20] was used as the real-time streaming engine 

inside Twitter. But, using Storm at our current scale was 

becoming increasingly challenging due to issues related to 

scalability, debug-ability, manageability, and efficient sharing of 

cluster resources with other data services.  

A big challenge when working with Storm in production is the issue 

of debug-ability. When a topology misbehaves – which could be for 

a variety of reasons including load changes, misbehaving user code, 

or failing hardware – it is important to quickly determine the root-

causes for the performance degradation. In Storm, work from 

multiple components of a topology is bundled into one operating 

system process, which makes debugging very challenging. Thus, we 

needed a cleaner mapping from the logical units of computation to 

each physical process. The importance of such clean mapping for 

debug-ability is really crucial when responding to pager alerts for a 

failing topology, especially if it is a topology that is critical to the 

underlying business model.  

In addition, Storm needs dedicated cluster resources, which requires 

special hardware allocation to run Storm topologies. This approach 

leads to inefficiencies in using precious cluster resources, and also 

limits the ability to scale on demand. We needed the ability to work 

in a more flexible way with popular cluster scheduling software that 

allows sharing the cluster resources across different types of data 

processing systems (and not just a stream processing system). 

Internally at Twitter, this meant working with Aurora [1], as that is 

the dominant cluster management system in use.  

With Storm, provisioning a new production topology requires 

manual isolation of machines, and conversely, when a topology is 

no longer needed, the machines allocated to serve that topology 

now have to be decommissioned. Managing machine provisioning 

in this way is cumbersome. Furthermore, we also wanted to be far 

more efficient than the Storm system in production, simply 

because at Twitter’s scale, any improvement in performance 

translates into significant reduction in infrastructure costs and also 

significant improvements in the productivity of our end users.  

We wanted to meet all the goals outlined above without forcing a 

rewrite of the large number of applications that have already been 

written for Storm; i.e. compatibility with the Storm and 

Summingbird APIs was essential. (Summingbird [8], which 

provides a Scala-idiomatic way for programmers to express their 

computation and constraints, generates many of the Storm 

topologies that are run in production.)1 

After examining various options, we concluded that we needed to 

design a new stream processing system to meet the design goals 

outlined above. This new system is called Heron. Heron is API-

compatible with Storm, which makes it easy for Storm users to 

migrate to Heron. All production topologies inside Twitter now 

run on Heron. Besides providing us significant performance 

improvements and lower resource consumption over Storm, 

Heron also has big advantages in terms of debug-ability, 

scalability, and manageability. 

In this paper, we present the design of Heron, and also present 

results from an empirical evaluation of Heron. We begin by 

briefly describing related work in the next section. Then, in 

Section 3, we describe Storm and motivate the need for Heron. 

                                                                 
1 Work done while consulting for Twitter. 
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Section 4 describes alternatives that we considered to address the 

problems described above, and Section 5 presents the design of 

Heron. Section 6 describes the tools around Heron that we use in 

production, and describes the current status of Heron inside 

Twitter. Results from an empirical evaluation comparing Storm 

and Heron are presented in Section 7. Finally, Section 8 contains 

our concluding remarks and points to some directions for future 

work. 

2. Related Work 
The interest in stream data processing systems includes a flurry of 

initial work about a decade ago (e.g. [6, 7, 10]). The need for 

highly-scalable stream processing systems has lead to the creation 

of a number of recent systems, including [2, 3, 5, 9, 15, 17, 18]. 

Stream processing has also been integrated with traditional 

database products (e.g. [4, 12, 19]), highlighting the need for 

stream processing in the broader enterprise ecosystem.  

For our needs at Twitter, we needed a stream processing platform 

that was open-source, high-performance, scalable, and was 

compatible with the current Storm API. We also needed the 

platform to work on a shared infrastructure. These requirements 

limited the options discussed above. We did consider alternatives 

that came close to fitting our needs (see Section 4), but in the end 

concluded that we needed to build Heron. 

3. Motivation for Heron 
Storm has served the real-time analytics needs at Twitter for the 

past several years. Based on our operational experience at the 

current Twitter-scale, we identified several limitations with Storm 

that are highlighted in the following sections. These limitations 

motivated us to develop Heron. 

3.1 Storm Background 
As described in [20], a Storm topology is directed graph of spouts 

and bolts. Spouts are sources of input data (e.g. a stream of 

Tweets), and bolts are an abstraction to represent computation on 

the stream. Spouts often pull data from queues, such as Kafka [14] 

and Kestrel [13], and generate a stream of tuples, which is then 

fed into a network of bolts that carry out the required 

computation.  For example, a topology that counts the number of 

active users in real-time (RTAC) is shown in Figure 1. 

Spouts and bolts are run as tasks, and multiple such tasks are 

grouped into an executor. In turn, multiple executors are grouped 

into a worker, and each worker runs as a JVM process (as shown 

in Figure 2). A single host may run multiple worker processes, but 

each of them could belong to different topologies. 

3.2 Storm Worker Architecture: Limitations 
As described in [20] and briefly described above, a Storm worker 

has a fairly complex design. Several instances of worker processes 

are scheduled by the operating system in a host. Inside the JVM 

process, each executor is mapped to two threads. In turn, these 

threads are scheduled using a preemptive and priority-based 

scheduling algorithm by the JVM. Since each thread has to run 

several tasks, the executor implements another scheduling 

algorithm to invoke the appropriate task, based on the incoming 

data. Such multiple levels of scheduling and their complex 

interaction often leads to uncertainty about when the tasks are 

being scheduled. 

Furthermore, each worker can run disparate tasks. For example, a 

Kafka spout, a bolt that joins the incoming tuples with a Twitter 

internal service, and another bolt writing output to a key-value 

store might be running in the same JVM. In such scenarios, it is 

difficult to reason about the behavior and the performance of a 

particular task, since it is not possible to isolate its resource usage. 

As a result, the favored troubleshooting mechanism is to restart 

the topology. After restart, it is perfectly possible that the 

misbehaving task could be scheduled with some other task(s), 

thereby making it hard to track down the root cause of the original 

problem.  

Since logs from multiple tasks are written into a single file, it is 

hard to identify any errors or exceptions that are associated with a 

particular task. The situation gets worse quickly if some tasks log 

a larger amount of information compared to other tasks. 

Furthermore, an unhandled exception in a single task takes down 

the entire worker process, thereby killing other (perfectly fine) 

running tasks. Thus, errors in one part of the topology can 

indirectly impact the performance of other parts of the topology, 

leading to high variance in the overall performance. In addition, 

disparate tasks make garbage collection related-issues extremely 

hard to track down in practice. 

For resource allocation purposes, Storm assumes that every 

worker is homogenous. This architectural assumption results in 

inefficient utilization of allocated resources, and often results in 

over-provisioning. For example, consider scheduling 3 spouts and 

1 bolt on 2 workers. Assuming that the bolt and the spout tasks 

each need 10GB and 5GB of memory respectively, this topology 

needs to reserve a total of 15GB memory per worker since one of 

the worker has to run a bolt and a spout task. This allocation 

policy leads to a total of 30GB of memory for the topology, while 

only 25GB of memory is actually required; thus, wasting 5GB of 

memory resource. This problem gets worse with increasing 

number of diverse components being packed into a worker, and 

this situation happens frequently when generating (complex) 

topologies using higher-level abstractions like Summingbird [8]. 

 
Figure 1: The RTAC Topology 

 

Figure 2: Storm Worker 
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As a consequence of allocating large memory to the workers, the 

use of common profiling tools, such as jstack or heap dump, 

becomes very cumbersome. When a worker is executing a heap 

dump, it misses sending heartbeats signals (which are needed to 

keep the worker alive), leading the Storm supervisor to kill it, 

thereby preventing the heap dump. Debugging problems becomes 

quite challenging as a result of this behavior.  

A natural question is whether we could have re-architected Storm 

to allow it to run one task per worker. We considered this option, 

but discovered that approach could lead to big inefficiency in 

resource usage, and also limit the degree of parallelism that we 

could achieve. Such a deployment would result in a large number 

of workers per topology. Due to the homogeneity assumption 

across workers, there could be significant overprovisioning of 

resources. Under this model, we would have to reserve the 

following amount of memory for each worker:     
This number may be far larger than the optimal/ideal utilization. 

Referring to the aforementioned example with 3 spouts and 1 bolt, 

each worker needs around 10GB of memory, requiring a total of 

40GB of memory, compared to the optimal memory size of 25GB. 

Finally, as the degree of parallelism for each component 

(bolts/tasks) increases, every worker tends to be connected to 

every other worker, which can run into problems with not having 

enough number of ports in each worker for communication, and 

thereby reduces the scalability options. 

Storm workers use several threads and queues to move data 

between tasks and workers (see [20] for more details). A global 

receive thread in each worker process is responsible for getting 

data from workers “upstream”, and a global send thread is in 

charge of transmitting data to the workers “downstream”. In 

addition to these global threads, each executor consists of a user 

logic thread that runs the topology code, and a local send thread 

that communicates the output data from the user logic thread to 

the global sender thread. Hence in Storm, each tuple has to pass 

through four threads from the point of entry to the point of exit 

inside the worker process2. This design leads to significant 

overhead and queue contention issues.  

3.3 Issues with the Storm Nimbus 
The Storm Nimbus [20] performs several functions including 

scheduling, monitoring, and distributing JARs. It also serves the 

metrics-reporting component for the system, and manages 

counters for several topologies. Thus, the Nimbus component is 

functionally overloaded, and often becomes an operational 

bottleneck for a variety of reasons, as outlined below. 

First, the Nimbus scheduler does not support resource reservation 

and isolation at a granular level for Storm workers. Consequently, 

Storm workers that belong to different topologies running on the 

same machine could interfere with each other. This situation can 

in turn lead to untraceable performance issues. To mitigate this 

problem, we ran production Storm topologies in isolation; i.e. 

entire machines are dedicated to a topology. But, this approach 

leads to wastage of resources, as it is hard for a topology to fully 

use all the hardware resources that are allocated to it (and all the 

time). Attempts to address this issue by running Storm on YARN 

[22] don’t fully solve the problem.  

Second, as mentioned in [20], Storm uses Zookeeper extensively 

to manage heartbeats from the workers and the supervisors. This 

                                                                 

2 This feature is implemented using fast disruptor queues and 0mq [23]. 

use of Zookeeper limits the number of workers per topology, and 

the total number of topologies in a cluster, as at very large 

numbers, Zookeeper becomes the bottleneck. To address this 

issue, we had developed an interim design to route the keep-alive 

heartbeat traffic to special “heartbeat” daemons that ran in a 

separate set of machines. However, this interim design increased 

the operational burden, requiring separate monitoring of those 

hosts and the heartbeat daemons. 

Finally, the Nimbus component is a single point of failure. When 

the Nimbus fails, the users are neither able to submit any new 

topologies nor kill existing ones. Furthermore, when Nimbus fails, 

any existing topology that undergoes failures cannot be 

automatically detected and recovered.  

3.4 Lack of Backpressure 
Storm has no backpressure mechanism. If the receiver component 

is unable to handle incoming data/tuples, then the sender simply 

drops tuples. This is a fail-fast mechanism, and a simple strategy, 

but it has the following disadvantages:  

 If acknowledgements are disabled, this mechanism will result 

in unbounded tuple drops, making it hard to get visibility 

about these drops. 

 Work done by upstream components is lost. 

 System behavior becomes less predictable. 

In extreme scenarios, this design causes the topology to not make 

any progress while consuming all its resources. 

3.5 Efficiency 
In production, there were several instances of unpredictable 

performance during topology execution, which then lead to tuple 

failures, tuple replays, and execution lag (rate of data arrival 

exceeds rate of processing by the topology). The most common 

causes for these reduced performance scenarios were:  

 Suboptimal replays – A tuple failure anywhere in the tuple 

tree leads to failure of the entire tuple tree. This effect is more 

pronounced with high fan-out topologies where the topology 

is not doing any useful work, but is simply replaying the 

tuples. 

 Long Garbage Collection cycles – Topologies consuming 

large amount of RAM for a worker encounter garbage 

collection (GC) cycles greater than a minute, resulting in high 

latencies and high tuple failure rates. 

 Queue contention – In some cases, there is a lot of contention 

at the transfer queues, especially when a worker runs several 

executors. 

To mitigate the risks associated with these issues, we often had to 

overprovision the allocated resources. Such overprovisioning has 

obvious negative implications on the infrastructure costs.  

For example, a sample three-stage Storm topology (constructed 

primarily for this evaluation) requires approximately 600 cores 

with an average CPU utilization of 20-30%. To better understand 

where the time might be spent in such a topology, a simple Java 

program was written to absorb all such tuples and de-serializing 

them using Thrift. This step of processing input data consumed 

only 25 cores at 90% utilization. This resource consumption is 

equivalent to 75 cores at 30% CPU utilization, which is 8X lower 

than the 600 cores. 

Even in the worst case, assuming that the counting and data 

movement overhead is as great as deserialization and reading 

from the source, one would expect the topology to use 150 cores. 

However, this topology runs on 600 cores, which indicates that 
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with a better architecture/system we have the potential to achieve 

significant savings in resources that are consumed when running 

Storm topologies. 

4. Design Alternatives 
Considering the aforementioned issues, we weighed the options of 

whether to extend Storm, or to use another existing system, or to 

write a new system. 

Since the issues discussed in Section 3 are fundamental to Storm, 

fixing them in Storm would have required extensive rewrite of the 

core components. At a high level, Storm organizes topologies as a 

bunch of queues that move data around, and changing this basic 

architectural block is hard. Modifying this existing system in such 

a fundamental way would have been inflexible, and potentially 

required much longer development cycles. 

The next option was to consider using another existing open-

source solution, such as Apache Samza [2] or Spark Streaming 

[18]. However, there are a number of issues with respect to 

making these systems work in its current form at our scale. In 

addition, these systems are not compatible with Storm’s API. 

Rewriting the existing topologies with a different API would have 

been time consuming resulting in a very long migration process. 

Also note that there are different libraries that have been 

developed on top of the Storm API, such as Summingbird [8], and 

if we changed the underlying API of the streaming platform, we 

would have to change other components in our stack.  

Thus, we concluded that our best option was to rewrite the system 

from ground-up, reusing and building on some of the existing 

components within Twitter. 

5. Heron  
In this section, we briefly describe the Heron data model, API, 

and the various Heron components.  

5.1 Data Model and API 
A key design goal for Heron is to maintain compatibility with the 

Storm API. Thus, the data model and API for Heron are identical 

to that of Storm [20]. Like Storm, Heron runs topologies. A 

topology is a directed acyclic graph of spouts and bolts. Like 

Storm, spouts generate the input tuples that are fed into the 

topology, and bolts do the actual computation.  

A Heron topology is equivalent to a logical query plan in a 

database system. Such a logical plan is translated into a physical 

plan before actual execution. As a part of the topology, a 

programmer specifies the number of tasks for each spout and each 

bolt (i.e. the degree of parallelism), and how the data is partitioned 

as it moves across the spout and the bolt tasks (grouping). The 

actual topology, parallelism specification for each component, and 

the grouping specification, constitute the physical execution plan 

that is executed on the machines. 

Finally, Heron’s tuple processing semantics are similar to that of 

Storm, and include the following: 

 At most once – No tuple is processed more than once, 

although some tuples may be dropped, and thus may miss 

being analyzed by the topology. 

 At least once – Each tuple is guaranteed to be processed at 

least once, although some tuples may be processed more than 

once, and may contribute to the result of the topology 

multiple times. 

5.2 Architecture overview 
Since the key factors driving the need for Heron are to ease the 

task of manageability, improve developer productivity, and 

improve the predictability of performance, we had to make careful 

decisions about how to architect the different components of the 

system considering clean abstractions for various interconnected 

modules, and ensuring an architecture that can operate at Twitter’s 

scale. 

The overall architecture for Heron is shown in Figure 3. Users 

employ the Heron (spouts/bolts programming) API to create and 

deploy topologies to the Aurora scheduler, using a Heron 

command line tool. Aurora [1] is a generic service scheduler that 

runs as a framework on top of Mesos [11]. However, our 

architecture implements a scheduler abstraction that facilitates 

running Heron on other schedulers such as YARN, Mesos, and 

ECS (Amazon EC2 Docker Container Service). This design is a 

departure from Storm, where Nimbus (which is an integral 

component of Storm) was used for scheduling. Since Twitter’s 

homegrown Aurora scheduler and other open-source schedulers 

(e.g. YARN) have become sophisticated, we made the conscious 

choice of working with these schedulers rather than implementing 

another one. 

Each topology is run as an Aurora job consisting of several 

containers, as shown in Figure 4. The first container runs a 

process called the Topology Master. The remaining containers 

each run a Stream Manager, a Metrics Manager, and a number of 

processes called Heron Instances (which are spouts/bolts that run 

user logic code). Multiple containers can be launched on a single 

 
Figure 3: Heron Architecture Figure 4: Heron Topology Architecture 
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physical node. These containers are allocated and scheduled by 

Aurora based on the resource availability across the nodes in the 

cluster. (At Twitter, Aurora maps these containers to Linux 

cgroups.) A standby Topology Master can be run for availability. 

The metadata for the topology (which includes information about 

the user who launched the job, the time of launch, and the 

execution details) are kept in Zookeeper.  

The Heron Instances are written in Java, as they need to run user 

logic code (which is written in Java). There is one JVM per Heron 

Instance.  

All Heron processes communicate with each other using protocol 

buffers (protobufs). 

5.3 Topology Master 
The Topology Master (TM) is responsible for managing the 

topology throughout its existence. It provides a single point of 

contact for discovering the status of the topology (and thus is 

similar to the Application Master in YARN). Upon startup, the 

TM makes itself discoverable by creating an ephemeral node at a 

well-known location in Zookeeper. The ephemeral node serves 

the following two purposes:  

 It prevents multiple TMs from becoming the master for the 

same topology, thereby providing different processes of the 

topology a consistent view of the entire topology. 

 It allows any other process that belongs to the topology to 

discover the TM. 

The TM also serves as a gateway for the topology metrics through 

an endpoint. Note that since the TM is not involved in the data 

processing path, it is not a bottleneck.  

5.4 Stream Manager 
The key function of the Stream Manager (SM) is to manage the 

routing of tuples efficiently. Each Heron Instance (HI) connects 

to its local SM to send and receive tuples. All the SMs in a 

topology connect between themselves to form a O(k2) connection 

network, where k is the number of containers/SMs in the physical 

plan of the topology. Note that since the number of HIs, n is 

generally much larger than k, this design permits a way to scale 

the communication overlay network by multiplexing O(n2)  

logical channels over O(k2)  physical connections. Furthermore, 

any tuples routed from one HI to another HI in the same container 

is routed using a local short-circuiting mechanism.  

5.4.1 Topology Backpressure 
Unlike Storm, Heron employs a backpressure mechanism to 

dynamically adjust the rate at which data flows through the 

topology. This mechanism is important in topologies where 

different components can execute at different speeds (and the 

speed of processing in each component can change over time). 

For example, consider a pipeline of work in which the 

later/downstream stages are running slow, or have slowed down 

due to data or execution skew. In this case, if the earlier/upstream 

stages do not slow down, it will lead to buffers building up long 

queues, or result in the system dropping tuples. If tuples are 

dropped mid-stream, then there is a potential loss in efficiency as 

the computation already incurred for those tuples is wasted. A 

backpressure mechanism is needed to slow down the earlier 

stages. We considered a few implementation strategies, which we 

describe next.  

TCP Backpressure: In this strategy, we use the TCP windowing 

mechanism to propagate backpressure from the HIs to the other 

upstream components. Since the HIs and the SM (in each 

container) communicate using TCP sockets, the rate of draining 

from the send/receive buffers is equal to the rate of 

production/consumption by the local HI. If an HI is executing 

slowly, then its receive buffer will start filling up. The SM that is 

pushing data to this HI will recognize this situation, as its send 

buffer will also fill up. This backpressure mechanism then 

propagates to the other SMs and HIs upstream. Note that this 

backpressure is only cleared when the original (slow) HI starts 

catching up again.  

This simple TCP-based backpressure mechanism is easy to 

implement. However, this method did not work well in practice 

because multiple logical channels (between HIs) are overlaid on 

top of the physical connections between SMs. This multiplexing 

inadvertently not only causes the upstream HIs to slow down, but 

also often causes the downstream HIs (that are on the same 

connection) to also slow down. Consequently, any congestion 

clears very slowly, causing the entire topology to experience 

significant and unduly long-lasting performance degradation.  

Spout Backpressure: In this approach, the SMs clamp down their 

local spouts to reduce the new data that is injected into the 

topology. This approach is used in conjunction with TCP 

backpressure between the SMs and the HIs. When an SM realizes 

that one or more of its HIs are slowing down, it identifies its local 

spouts and stops reading data from them. This mechanism has the 

effect of slowing down the spout as the spout’s send buffer that is 

used to send tuples to the SM will get filled up, and will 

eventually block. The affected SM sends a special start 

backpressure message to other SMs requesting them to clamp 

down their local spouts. When the other SMs receive this special 

message, they oblige by not reading tuples from their local spouts. 

Once the slow HI catches up, the local SM sends stop 

backpressure messages to other SMs. When the other SMs 

receive this special message, they restart consuming data from 

their local spouts again.  

This approach directly clamps down the most upstream 

component (spouts). This method may be less than optimal 

because we may unnecessarily clamp down a spout, when simply 

slowing down an immediate upstream producer is all that was 

actually necessary. The other potential disadvantage of this 

approach is the additional message passing overhead. However, 

the advantage of this approach is that the reaction time to flow 

rate changes is small, irrespective of the depth of the topology. 

Stage-by-Stage Backpressure: A topology can be viewed as 

consisting of multiple stages. In this approach, we gradually 

propagate the backpressure stage-by-stage until it reaches the 

spouts (which represent the 1st stage in any topology). As in the 

spout backpressure method, this strategy is used in conjunction 

with the TCP backpressure mechanism between the SMs and the 

HIs, and differs in the backpressure control messages that are 

exchanged between the SMs. 

5.4.2 Implementation 
In Heron we have implemented the spout backpressure approach, 

as it is simpler to implement. This mechanism works well in 

practice, and also aids debug-ability as one can see when skew-

related events happen, and which component was the root cause 

of the backpressure trigger.  

Every socket channel is associated with an application-level 

buffer that is bounded in size by both a high water mark and a low 

water mark. Backpressure is triggered when the buffer size 

reaches the high water mark, and remains in effect until the buffer 
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size goes below the low water mark. The rationale for this design 

is to prevent a topology from rapidly oscillating between going 

into and coming out of the backpressure mitigation mode. 

A consequence of this design is that once a tuple is emitted from 

the spout, Heron does not drop it, except during process or 

machine failure scenarios. This behavior makes tuple failures 

more deterministic. 

When a topology is in backpressure mode, it goes as fast as the 

slowest component. If this situation continues to persist for a 

while, it could lead to data building up in the “source” queues 

from which the spout reads the data. Depending on the topology, 

spouts can be configured to drop older data. 

5.5 Heron Instance 
The main work for a spout or a bolt is carried out in the Heron 

instances (HIs). Unlike the Storm worker, each HI is a JVM 

process, which runs only a single task of the spout or the bolt. 

Such a design allows us to easily debug/profile either a spout or 

bolt, since the developer can easily see the sequence of events and 

logs that originate from a HI.  

Note that since the complexity of data movement has been moved 

to the SMs, it easy for us to consider writing native HIs in other 

languages in the future.  

To implement the HIs, we considered two designs: one using a 

single thread and the other using two threads. Next, we describe 

these two designs. 

5.5.1 Single-threaded approach 
In the single-threaded design, a main thread maintains a TCP 

communication channel to the local SM and waits for tuples. 

Once a tuple arrives, the user logic code is invoked in the same 

thread. If the user logic code program generates an output tuple, it 

is buffered. Once the buffer exceeds a certain threshold, it is 

delivered to the local SM. 

While this approach has the advantage of simplicity, it has several 

disadvantages, as the user code can potentially block due to a 

variety of reasons, including:  

 Invoking the sleep system call for a finite duration of time 

 Using read/write system calls for file or socket I/O 

 Calling thread synchronization primitives 

We implemented this approach and realized that such blocking is 

not desirable for the required periodic activities such as metrics 

reporting. Since the duration of blocking could potentially vary, it 

leads to unpredictable behavior. If the metrics are not collected 

and sent timely, one cannot reliably troubleshoot whether an HI is 

in a “bad” state. 

5.5.2 Two-threaded approach 
In this design, the HIs have two threads namely, a Gateway thread 

and a Task Execution thread as shown in Figure 5. The Gateway 

thread is responsible for controlling all the communication and 

data movement in and out from the HI. It maintains TCP 

connections to the local SM and the metrics manager. It is also 

responsible for receiving incoming tuples from the local SM. 

These tuples are sent to the Task Execution thread for processing. 

The Task Execution thread runs user code. When the task 

execution thread is started, it executes the “open” or “prepare” 

method depending upon whether the instance is executing a spout 

or a bolt, respectively. In the case of a bolt, when tuples arrive, the 

task execution thread invokes the “execute” method with the 

incoming tuple for processing. In the case of a spout, it repeatedly 

calls the “nextTuple” method to fetch data from the source, and 

then injects this data as tuples into the topology. The emitted 

tuples from either spout or bolt are sent to the Gateway thread, 

which forwards the tuples to the local SM. In addition to 

processing tuples, the Task Execution thread collects various 

metrics such as the number of tuples executed, the number of 

tuples emitted, the number of tuples acknowledged, and the 

latency experienced during the processing of tuples. 

The Gateway thread and the Task Execution thread communicate 

between themselves using three unidirectional queues, as shown 

in Figure 5. The Gateway thread uses the data-in queue to push 

tuples to the Task Execution thread for processing. The Task 

Execution thread uses the data-out queue to send tuples to the 

Gateway thread (for sending to other parts of the topology). The 

metrics-out queue is used by the Task Execution thread to pass the 

collected metrics to the Gateway thread. 

The data-in and the data-out queues are bounded in size. The 

Gateway Execution thread stops reading from the local SM when 

the data-in queue exceeds this bound. This action triggers the 

backpressure mechanism at the local SM. Similarly, when items 

in the data-out queue exceed the bound, the Gateway thread can 

 
 

 
 

Figure 5: Heron Instance Figure 6: Heron Services for Production 
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assume that the local SM can not receive more data, and that the 

Task Execution thread should not emit or execute any more 

tuples. 

When we ran large topologies in production with bounded queue 

sizes, we often experienced unexpected GC issues. Everything 

worked fine until, say, a network outage happened and the 

Gateway thread was unable to send tuples from the data-out 

queue. Tuples would then start to back up in the data-out queue, 

and because they are live objects, they could not be reclaimed. 

This situation then caused the corresponding HI to reach its 

memory limit. Once the network recovered, the Gateway thread 

would start reading tuples from the local SM, as well as sending 

out tuples from data-out queue. If the Gateway thread read tuples 

from the SM before sending out tuples, any new object 

construction could trigger the GC, since nearly all of the available 

memory was already used up, quickly resulting in further 

performance degradation. 

To avoid such GC issues, we periodically check the capacity of 

the data-out and data-in queues and increase/decrease these queue 

sizes accordingly. If the capacity of the queue grows over a 

configurable limit, then it is reduced (currently to half of the last 

capacity). This mechanism is invoked periodically until the 

capacity of the queue returns to a stable constant value, or the 

capacity reaches zero. When the capacity of the queue becomes 

zero, neither new tuples can be injected, nor, in many cases, can 

new tuples be produced. As a consequence, it is easier to recover 

from GC issues. Similarly, when the outstanding number of tuples 

in the queue is smaller than the configured limit, the capacity is 

gradually increased until the queue length either reaches the 

configured limit or hits the maximum capacity value. 

5.6 Metrics Manager 
The Metrics Manager (MM) collects and exports metrics from all 

the components in the system. These metrics include system 

metrics and user metrics for the topologies. There is one metrics 

manager for each container, to which the Stream Manager and 

Heron Instances report their metrics.  

Metrics are sent from each container to an in-house monitoring 

system. The MMs also pass the metrics to the Topology Master 

for displaying in external UIs. The separation of metrics reporting 

using local MM provides us the flexibility to support other 

monitoring systems (such as Ganglia and Graphite) in the future. 

5.7 Startup Sequence and Failure Scenarios 
When a topology is submitted to Heron, a sequence of steps are 

triggered. Upon submission, the scheduler (in our case it is 

generally Aurora [1]) allocates the necessary resources and 

schedules the topology containers in several machines in the 

cluster. The Topology Master (TM) comes up on the first 

container, and makes itself discoverable using the Zookeeper 

ephemeral node. Meanwhile, the Stream Manager (SM) on each 

container consults Zookeeper to discover the TM. The SM then 

connects to the TM and periodically sends heartbeats.  

When all the SMs are connected, the TM runs an assignment 

algorithm to assign different components of the topology (spouts 

and bolts) to different containers. This is called the physical plan 

in our terminology. Once the assignment is complete, the SMs get 

the entire physical plan from the TM, which helps the SMs to 

discover each other. Now the SMs connect to each other to form a 

fully-connected network. Meanwhile, the Heron instances (HI) 

come up, discover their local SM, download their portion of the 

physical plan, and start executing. After these steps are completed, 

data/tuples starts flowing through the topology. For safekeeping, 

the TM writes the physical plan to Zookeeper to rediscover the 

state in case of its failure.  

When a topology is executing, there are several failure scenarios 

that could affect some portion of the topology, and sometimes 

even the entire topology itself.  These scenarios consist of the 

death of processes, failure of containers, and failures of machines.  

When the TM process dies, the container restarts the failed 

process, and the TM recovers its state from Zookeeper. When a 

topology is started with a standby TM, the standby TM becomes 

the master, and the restarted TM becomes the standby. 

Meanwhile, the SMs that have open channels to the TM 

rediscover the new TM, and connect to it. 

Similarly when an SM dies, it gets restarted in the same container, 

it rediscovers the TM, and it initiates a connection to fetch the 

physical plan to check if there are any changes in its state. Other 

SMs, who have lost the connection to the failed SM, also get a 

copy of the same physical plan indicating the location of the new 

SM, and create a connection to the new SM. When an instance 

(HI) dies within a container, it is restarted, and it contacts its local 

SM. The HI then gets a copy of the physical plan, identifies 

whether it is a spout or bolt, and starts executing the 

corresponding user logic code. 

When any container is rescheduled or relocated to a new machine, 

the newly minted SM discovers the TM, and follows the same 

sequence of steps of an SM failure and an HI failure.  

5.8 Architecture Features: Summary 
We note several salient aspects of our design. First, the 

provisioning of resources (e.g. for containers and even the 

Topology Master) is cleanly abstracted from the duties of the 

cluster manager, thereby allowing Heron to “play nice” with the 

rest of the (shared) infrastructure.  

Second, since each Heron Instance is executing only a single task 

(e.g. running a spout or bolt), it is easy to debug that instance by 

simply using tools like jstack and heap dump with that process.  

Third, the design makes it transparent as to which component of 

the topology is failing or slowing down, as the metrics collection 

is granular, and lets us easily map an issue unambiguously to a 

specific process in the system.  

Fourth, by allowing component-level resource allocation, Heron 

allows a topology writer to specify exactly the resources for each 

component, thereby avoiding unnecessary over-provisioning.  

Fifth, having a Topology Master per topology allows each 

topology to be managed independently of each other (and other 

systems in the underlying cluster). In additional, failure of one 

topology (which can happen as user-defined code often gets run in 

the bolts) does not impact the other topologies.  

Sixth, the backpressure mechanism allows us to achieve a 

consistent rate of delivering results, and a precise way to reason 

about the system. It is also a key mechanism that allows migrating 

topologies from one set of containers to another (e.g. to an 

upgraded set of machines).  

Finally, we now do not have any single point of failure.  

6. Heron in Production 
To get Heron working in production, we needed several additional 

functionalities, which include: a) the ability for users to interact 

with their topologies, b) the ability for users to view metrics and 
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trends for their topologies, c) the ability for users to view 

exceptions that occurs in the Heron Instances, and d) the ability 

for users to view their topology logs. To accommodate all this 

functionality, we implemented additional components: Heron 

Tracker, Heron UI and Heron Viz as shown in Figure 6. These 

components are described in more details below. 

6.1 Heron Tracker 
The Heron Tracker acts as a gateway to access several 

information about topologies. It interfaces with the same 

Zookeeper instance that the topologies use to save their metadata, 

and collects additional information about the topologies. The 

tracker uses Zookeeper watches to keep track of new topologies 

that are being launched, existing topologies that are being killed, 

and any change in the physical plan of the topology (such as a 

container being moved from one host to another). In addition to 

this information, the tracker also uses the metadata information in 

Zookeeper to discover where the Topology Master of a topology 

is running to obtain metrics and any other relevant data. 

The tracker provides a clean abstraction by exposing a well-

defined REST API that makes it easy to create any additional 

tools. The API provides information about the topologies such as 

the logical and the physical plan, various metrics including user-

defined and system metrics, links to log files for all the instances, 

and links to the Aurora job pages for the executing containers. 

The tracker runs as an Aurora service, and typically is run in 

several instances for fault tolerance. The API requests are load 

balanced across these instances. 

6.2 Heron UI 
Heron users can interact with their topologies using a rich visual 

UI. This UI uses the Heron Tracker API and displays a visual 

representation of the topologies, including its logical and physical 

plan. Logical plan displays the directed acyclic graph with each 

node uniquely color-coded. The physical plan is displayed as a set 

of concentric circles, with the inner circle representing the hosts, 

the middle circle depicting the containers, and the outer circle 

representing the instances of components. A user can drill down 

either on a component or on an instance of the component to 

display metrics such as emit counts, complete/execute latencies, 

acknowledged counts, and fail counts for the time intervals of last 

10 minutes, 1 hour, 3 hours, and since the start of the topology. In 

addition to these features, the UI also offers easy access links to 

view the logs and exceptions that are associated with an instance – 

an important feature for debugging. Figure 7 shows a part of the 

visualization for a 5-stage topology.  

6.3 Heron Viz 
Heron Viz is a service that creates the dashboard used to view the 

metrics collected by the Metrics Manager for a topology. This 

service periodically contacts the Heron Tracker for any new 

topology. When there is a new topology, it uses the HTTP API of 

graphing system, called Viz, to create a dashboard of graphs. In 

order to create the dashboard, Heron Viz retrieves the logical plan 

of the topology to determine the components, i.e. the bolts and the 

spouts, and the number of instances of each component. For each 

component in the topology, a section is created based on the type 

of the component (spout or bolt), and queries are generated based 

on the number of instances.  

Broadly, the Heron Viz dashboard for a topology is categorized 

into health metrics, resource metrics, component metrics and 

stream manager (SM) metrics.  

Health metrics include the overall lag the topology is 

experiencing, aggregate tuple fail count in the spouts, and number 

of SM deaths.  

Figure 7: Topology Visualization. The figure on the left shows the logical plan for the topology, and the figure on the right shows the 

current location of components of the physical plan for the topology. Clicking on a logical plan component (e.g. the red bolt in the figure 

on the left) highlights the location of the containers on the map on the right. The table below the two figures shows key metrics. 
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Resource metrics consist of the CPU resources allocated, CPU 

resources that are actually used, the amount of memory that is 

being used, the amount of memory that has been reserved, and the 

amount of time spent in GC.  

Component metrics include, for each spout, the number of tuples 

that have been emitted, failed, and acknowledged. They also 

include the average end-to-end latency for processing a tuple. 

Additional component metrics include, for each bolt, the number 

of tuples executed, acknowledged and emitted, and the average 

latency for processing each tuple.  

Finally, the SM metrics tracks for each SM, the number of tuples 

that have arrived from instances, the number of tuples delivered to 

the instances, the number of tuples dropped when receiving and 

sending to instances and other SMs, and the total aggregate time 

spent in backpressure mode.  

A sample and partial view of the dashboard is shown in Figure 8. 

6.4 Heron@Twitter 
At Twitter, Storm has been decommissioned and Heron is now the 

de-facto streaming system. It has been in production for several 

months and runs hundreds of development and production 

topologies in multiple data centers. These topologies process 

several tens of terabytes of data, generating billions of output 

tuples.  

Topologies vary in their complexity and a large number of 

topologies have three or fewer stages. There are several topologies 

that extend to more than three stages, and the longest ones go as 

deep as eight stages.  

The use cases for these topologies are varied and include data 

transformation, filtering, joining, and aggregating content across 

various streams in Twitter (e.g. computing counts). The use cases 

also include running complex machine learning algorithms (e.g. 

regression, association and clustering) over streaming data. 

Various groups inside Twitter use Heron. These groups include 

user services, revenue, growth, search, and content discovery. 

After migrating all the topologies to Heron (from Storm), there 

was an overall 3X reduction in hardware – a significant 

improvement in the infrastructure efficiency at Twitter’s scale. 

7. Empirical Evaluation  
In this section, we present results comparing Heron and Storm.  

7.1 Workload 
We chose to evaluate Heron in the context of two topologies – a 

Word Count topology, and a RTAC topology (cf. Figure 1). For 

each topology, we considered two variants, one with 

acknowledgements enabled (i.e. at least once semantics), and the 

other with no acknowledgements (i.e. at most once semantics).  

Note that both topologies were constructed primarily for this 

empirical evaluation, and should not be construed as being the 

representative topology for Heron/Storm workloads at Twitter. 

7.2 Setup 
All experiments were run on machines with dual Intel Xeon 

E5645@2.4GHZ CPUs, each consisting of 12 physical cores with 

hyper-threading enabled, 72GB of main memory, and 500GB of 

disk space. We tuned both Storm and Heron to perform in ways 

that we expect in production settings. In other words, there are no 

out-of-memory (OOM) crashes (or any other failure due to 

resource starvation during scheduling), or long repetitive GC 

cycles. The Storm topologies were run in isolation, which means 

that no process besides the kernel, Mesos slaves, and metric 

exporter daemons, is running in the system. Heron was running in 

a shared cluster, with Linux “cgroups” isolation.  

The experiments were allowed to run for several hours to attain 

steady state before measurements were taken. For Storm, this 

means very small number of drops in the 0mq layer, and that the 

size of various queues are not growing, and remain small.  For 

Heron, this means no backpressure, and that its transfer queues 

also maintain a stable size while remaining small. 

Note that for topologies with acknowledgements, tuple failures 

may occur due to 0mq drops in Storm, or due to timeout. While 

Figure 8: Topology Metrics Reporting 
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for Heron, tuple failures can happen only due to timeouts. We 

used 30 seconds as the timeout interval in both cases.  

7.3 Word Count Topology 
In these set of experiments, we used a simple word count 

topology. In this topology, the spout tasks generate a set of 

random words (~175k words) during the initial “open” call, and 

during every “nextTuple” call. In each call, each spout simply 

picks a word at random and emits it. Hence spouts are extremely 

fast, if left unrestricted. Spouts use a fields grouping for their 

output, and each spout could send tuples to every other bolt in the 

topology. 

Bolts maintain an in-memory map, which is keyed by the word 

emitted by the spout and updates the count when it receives a 

tuple.  

This topology is a good measure of the overhead introduced by 

either Storm or Heron since it does not do significant work in its 

spouts and bolts.  

For each set of experiments, we varied the number of Storm 

spout/bolt tasks, Heron spout/bolt instances, Storm workers, and 

Heron containers as shown below in Table 1. 

Table 1: Experimental setup for the Word Count topology 

Components Expt. #1 Expt. #2 Expt. #3 Expt. #4

Spout 25 100 200 500 

Bolt 25 100 200 500 

# Heron containers 25 100 200 500 

# Storm workers 25 100 200 500 

 

7.3.1 Acknowledgements Enabled 
In these experiments, the word count topology is enabled to 

receive acknowledgements. We measured the topology 

throughput, end-to-end latency, and CPU usage, and plot these 

results in Figure 9, Figure 10, and Figure 11 respectively. Each of 

these figures has four points on each line, corresponding to the 

four experimental setup configurations that are shown in Table 1. 

As shown in Figure 9, the topology throughput increases linearly 

for both Storm and Heron. However, for Heron, the throughput is 

10-14X higher than that for Storm in all these experiments. 

The end-to-end latency graph, plotted in Figure 10, shows that the 

latency increases far more gradually for Heron than it does for 

Storm. Heron latency is 5-15X lower than that of the Storm. There 

are many bottlenecks in Storm, as the tuples have to travel 

through multiple threads inside the worker and pass through 

multiple queues. (See Section 3.) 

In Heron, there are several buffers that a tuple has to pass through 

as they are transported from one Heron Instance to another (via 

the SMs). Each buffer adds some latency since tuples are 

transported in batches. In normal cases, this latency is 

approximately 20ms, and one would expect the latency to be of 

the same value since the tuples in this topology have the same 

number of hops. However, in this topology, the latency increases 

as the number of containers increase. This increase is a result of 

the SMs becoming a bottleneck, as they need to maintain buffers 

for each connection to the other SMs, and it takes more time to 

consume data from more buffers. The tuples also live in these 

buffers for longer time given a constant input rate (only one spout 

instance per container). 

Figure 11 shows the aggregate CPU resources that are utilized 

across the entire cluster that is used for this topology, as reported 

  

Figure 9: Throughput with acknowledgements Figure 10: End-to-end latency with acknowledgements 

 

Figure 11: CPU usage with acknowledgements 
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by Aurora. The metric in this figure is number of cores, and the 

aggregate CPU resources that is consumed is computed by taking 

the CPU utilization of each core that is used, and dividing it by 

100.  

As shown in Figure 11, the CPU usage also increases linearly as 

more data is pushed through the topology for both Storm and 

Heron. This behavior is expected as increasing the number of 

processes and the number of containers results in requiring more 

CPU resources. However, the CPU usage of Heron is 2-3X lower 

than that of the Storm, and the increase in CPU utilization is 

nearly linear as the number of containers increase. 

7.3.2 Acknowledgements Disabled 
In these experiments, we disable the acknowledgments, which 

means that some tuples might be lost mid-flight. We measured the 

throughput and the CPU usage, and show these results in Figure 

12 and Figure 13, respectively. 

As can be seen in Figure 12, the throughput increases linearly for 

both Storm and Heron as we input more data into the topology. 

However, across all the experiments, the throughput of Heron is 

6-8X higher than that of Storm. 

When comparing CPU usage (Figure 13), we observe that the 

CPU resources used by Heron is consistently 3-4X lower than that 

for Storm, while achieving a far higher throughput. 
 

7.4 RTAC Topology 
For this evaluation, we chose the example RTAC topology shown 

in Figure 1. We set up this topology so that the expected output 

rate for this topology, when it can keep up with the input data rate, 

is ~6M tuples/minute. Using iterative experiments, we identified 

the configuration parameters for Storm and Heron that provided 

the best performance. These configurations are listed in Table 2.  

7.4.1 Acknowledgements Enabled 
In the first experiment, we enable end-to-end acknowledgements 

in the topology. We measured the actual CPU usage and the end-

to-end latency for the topology when running both in Storm and in 

Heron. Recall that Storm topologies run in isolation (cf. Section 

3.3). The results plotting the total CPU resources utilized (in terms 

of 100% utilized core counts), and the end-to-end latencies are 

shown in Figure 14 and Figure 15, respectively.  

As shown in these two figures, Storm needed 360 cores to keep up 

with the required throughput of 6M tuples/min, with an end-to-

end tuple latency of 70ms. On the other hand, Heron can sustain 

the required throughput with just 36 cores, while delivering an 

end-to-end tuple latency of only 24ms. When we relaxed the 

latency requirements for Storm, we were able to sustain the 

required throughput with 240 cores with an increased end-to-end 

latency of 500ms. In this experiment, Heron shows 65-95% 

improvement in the latency over Storm, while requiring only 20-

22% of the CPU resources that Storm requires.   

7.4.2 Acknowledgements Disabled 
In the second experiment, we disabled acknowledgements, which 

means that failed tuples are dropped without any replaying. In this 

case, we measured the CPU usage. The results for this experiment 

are shown in Figure 16. 

With this simpler topology, Storm needed 240 cores, creating an 

output throughput rate of 6M/min. On the other hand, Heron can 

keep up with this topology using just 20 cores, a 10X reduction in 

CPU resources that are required. 

8. Conclusions and Future work 
The need for real-time stream analytics at Twitter continues to 

grow, and in production has pushed the boundaries of what 

existing streaming systems can deliver in terms of manageability 

and performance. To meet these needs, and to also provide 

backward compatibility with our existing streaming API, we have 

designed and implemented a new stream data processing system 

called Heron, which we have presented in this paper. We have 

also presented results from an empirical evaluation of Heron that 

demonstrates large reductions in CPU resources when using 

Heron, while delivering 6-14X improvements in throughput, and 

5-10X reductions in tuple latencies.  

  

Figure 12: Throughput with acknowledgements disabled Figure 13: CPU usage with acknowledgements disabled 

Table 2: Parameter settings for the RTAC topology 

Component # Storm tasks # Heron tasks 

Spout 200 60 

DistributorBolt 200 15 

UserCountBolt 300 3 

AggregatorBolt 20 2 
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The design of Heron allows supporting exactly once semantics, 

but the first version of Heron does not have this implementation. 

One reason for tolerating the lack of exactly once semantics is that 

Summingbird [8] simultaneously generates both a Heron query 

and an equivalent Hadoop job, and in our infrastructure the 

answers from both these parts are eventually merged.  

However, there is a real need for fast responses from the 

streaming system (even if the answer is not fully accurate) as this 

real-time analytics is crucial to how Twitter works. Exactly once 

semantics requires some form of check pointing (e.g. see [21]), 

which is known to reduce the performance, and our design allows 

for adding such semantics. We are considering designing and 

implementing mechanisms for exactly once semantics in Heron. 
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Figure 14: CPU usage with 

acknowledgements enabled 

Figure 15: End-to-end latency with 

acknowledgements 

Figure 16: CPU usage with 

acknowledgements disabled 
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