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This paper provides a unified discussion of the Delaunay triangulation. Its 

geometric properties are reviewed and several applications are discussed. 

Two algorithms are presented for constructing the triangulation over a 

planar set of Npoints. The first algorithm uses a divide-and-conquer approach. 

It runs in O(Nlog N) time, which is asymptotically optimal. The second 

algorithm is iterative and requires O(N 2) time in the worst case. However, 

its average case performance is comparable to that of the first algorithm. 
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1. I N T R O D U C T I O N  

In  this pape r  we cons ider  the  p rob l em of  t r i angula t ing  a set o f  poin ts  in the 

plane.  Let  V be a set o f  N ~> 3 dis t inct  po in ts  in the Eucl idean  plane.  We 

assume tha t  these poin ts  are not  all colinear.  Let  E be the set of  (n) s traight-  

l ine segments (edges) between vertices in V. Two edges e l ,  e~ ~ E, el ~ e~, 

will be said to properly intersect i f  they  intersect  a t  a po in t  o ther  than  their  

endpoin ts .  A t r i angula t ion  o f  V is a p l a n a r  s t raight- l ine g raph  G(V, E' )  

for  which E '  is a max ima l  subset  of  E such tha t  no  two edges o f  E'  proper ly  

intersect.~16~ 
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There is no conceptual difficulty involved in constructing a triangulation. 

Any set of points can be triangulated if edges are added with the proviso 

that no new edge intersects an existing edge. We will investigate a particular 

triangulation called the Delaunay triangulation. ~) It has the property that 

the circumcircle of any triangle in the triangulation contains no point of V 

in its interior. 

This paper is the result of a recent study whose objective was to develop 

an efficient algorithm for fitting triangular faceted surfaces to digital terrain 

data. A piecewise planar surface is used as a terrain model by all visual 

flight simulators. It was concluded that the Delaunay triangulation is an 

excellant choice for this application, based on the initial objectives of 

minimizing computation time and producing a good visual display. 

In Sec. 2, we will formally define the Delaunay triangulation and review 

its properties. Then in See. 3, we will provide two algorithms for its con- 

struction. Section 4 will cover some applications of the triangulation. 

2. D E F I N I T I O N  A N D  PROPERTIES OF T H E  D E L A U N A Y  

T R I A N G  U L A T I O  N 

Suppose that we are given a set V = {v~ ..... VN}, N >/3, of points in 

the Euclidean plane. Assume that these points are not all colinear, and 

that no four points are cocircular. Let d(v,,  v~) denote the Euclidean distance 

between points v~ and vs. The region V(i) = {x ~ E2 l d(x, v,) <~ d(x, vj), 
j = 1,..., N} which is the locus of points closer to vertex v~ than to any 

other vertex is called the Voronoi ~87~ (or Dirichlet, Wigner-Seithz, Thiessen, ~a6~ 

or "S ''124~) polygon associated with the vertex v~. 

Voronoi polygons may be thought of as the cells of a growth process. 

Suppose that we let each vertex in V be the nucleus of a growing cell. Cells 

will propagate outward from their nuclei, simultaneously and at a uniform 

rate. The border of a growing cell will freeze in place at its points of contact 

with the border of another growing cell. 

Eventually, only the cells whose nuclei are on the convex hull of V are 

still expanding. The remaining cells have completely partitioned (or tessellat- 

ed) a region of the plane into a set of nonoverlapping closed convex polygons, 

one polygon about each nucleus. These closed polygons, together with the 

open polygons on the convex hull, define a Voronoi tessellation of the entire 

plane. 
Let us take a closer look at this process. Since all cells expand at the 

same rate, the first point of contact between two cells must occur at the 

midpoint between their nuclei. Likewise, every point of continuing contact 

must be equidistant from the two nuclei. These points are on the common 

edge (called a Voronoi edge) of two developing Voronoi polygons. This 



Two Algorithms for Constructing a Delaunay Triangulation 22t 

l 

\ i  / 
,,, 

Fig. 1. Voronoi diagram for a set of 16 points (solid 
lines); Delaunay triangulation (dashed lines). 

edge continues elongating until it encounters the border  of  a third expand- 

ing cell. The point  o f  contact  (called a Voronoi point)  of  this edge and the 

border  o f  the third cell must  be equidistant f rom the growth centers of  all 

three cells. I t  is therefore the circumcenter o f  the triangle defined by the 

three nuclei. 

Voronoi  cells which share a c o m m o n  edge are called Voronoi neighbors. 

The aggregate of  triangles formed by connecting the growth centers o f  all 

Voronoi  neighbors tessellates the area within the convex hull of  the point  

set. This tessellation is called the Delaunay triangulation D T ( V )  of  V. An  

example o f  a Voronoi  tessellation and its dual is shown in Fig. 1. 

Each  Voronoi  point  corresponds to a triangle and each Voronoi  edge 

to a Delaunay  edge. Since the number  of  Voronoi  points and edges are both  

O(N),  4 the number  o f  Delaunay  triangles and edges are O(N).  To be more 

precise we have the following. 

L e m m a  1. Given a set V of  N points, any triangulation T(V) has the 

same number  o f  triangles, Ne = 2(N - -  1) - -  N~, and the same number  o f  

edges, N~ = 3 ( N - -  1) - -  Nh,  where Nh is the number  of  points on the 

convex hull o f  V. 

4 Note: We say that g(n) = O(f(n)) if l g(n)[ ~ cf(n) for some constant c and all sufficiently 
large n. We say that g(n) = D(f(n)) if I g(n)[ ~> cf(n) for some constant c > 0 and all 
sufficiently large n. We say that g(n) = O(f(n)) if bothg(n) = O(f(n)) and g(n) = ~Q'(n)). 
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Proof By induction, see Ref. 11 for example. 

Now we will state without proof  some properties of the Delaunay 

triangulation DT(V). 

L e m m a  2. Given a set V = {vz, . . . ,  VN} of points, any edge (vi, vj) is a 

Delaunay edge of DT(V) if and only if there exists a point x such that the 

circle centered at x and passing through v~ and v~ does not contain in its 

interior any other point of V. 

Coro l l a ry  1. Given a set V = (va ..... VN} of points, the edge (v~, vj) 

on the boundary of the convex hull of V is a Delaunay edge. 

Lemma 3. Given a set V = {vl, ..., UN} of points, Av~vjv~ is a Delaunay 

triangle of DT(V) if and only if its circumcircle does not contain any other 

point of V in its interior. 

The proofs of these lemmas can be found in Refs 12 and 32. The latter 

property is called the circle criterion. It is often used as a rule for constructing 

a triangulation. Triangulations may also be constructed according to the 

MAX-MIN angle criterion, i.e., the minimum measure of angles of all the 

triangles in the triangulation is maximized. We shall investigate the re- 

lationship between these two criteria. 

The following analysis follows that given by Lawson c9,1~ (see also the 

work of Sibson1331). Consider a very simple triangulation, that over the 

vertices of a strictly convex quadrilateral. A quadrilateral is called strictly 

convex if its four interior angles are each less than 180 ~ A quadrilateral 

can be partitioned into two triangles in two possible ways. Each of the 

criteria described above can be thought of as a rule for choosing a preferred 

triangulation. 

By examining the case of four cocircular points (Fig. 2), one can show 

that the two criteria are equivalent. Suppose that for this example line 

segment (vi, v~) is shorter than (v3, v~), (v4, vz), and (Vl, v~). Let the angular 

measure of the arc v~, v3 be 20. Then the angles/_v3, vl, v2 and / v 3 ,  v4, v2 

are each 0. Thus the two possible triangulations over the four points have 

the same minimum angle. The choice of a preferred triangulation is then 

arbitrary according to the MAX-MIN angle criterion. The Voronoi tessella- 

tion of the quadrilateral also exhibits a tie case. All four Voronoi polygons 

meet at a single point. 

Further analysis shows that moving one point, say point v~ in Fig. 2, 

inside the circle causes /_v3, v4, v~ to increase and points v2 and v~ to be the 

growth centers of  Voronoi neighbors. Consequently, the two criteria and 

the Voronoi tessellation of the polygon all now prescribe the connection of 

vertices v2 and v~. 
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Fig. 2. Lawson's example showing 
a triangulation over four cocircular 
points. The Voronoi tessellation is 
shown as dashed lines. 

A fourth criterion has been studied, that of choosing the minimum length 

diagonal. Shamos and Hoey 1~2~ claim that a Delaunay triangulation is a 

minimum edge length triangulation. Lawson ~9) and Lloyd ~1~1 prove by 

counterexample that this is not the case (Fig. 3). 

Lawson a~ gives the following local optimization procedure (LOP) 

for constructing a triangulation. Let e be an internal edge (in contrast to an 

edge on the convex hull) of  a triangulation and Q be the quadrilateral formed 

by the two triangles having e as their common edge. Consider the circum- 

circle of  one of the triangles. This circle passes through three vertices of  Q. 

I f  the fourth vertex of the quadrilateral is within the circle, replace e by the 

other diagonal of  Q, otherwise no action is taken. An edge of the triangula- 

tion is said to be locally optimal if an application of the LOP would not 

swap it. Since for any set of  vertices, the number of  triangles in any triangula- 

tion is a constant, a linear ordering over the set of  all triangles can be defined 

as follows. To each triangle in the triangulation we assign a value, which is 

14 

! 

Fig. 3. Lloyd's counterexample to Shamos 
and Hoey's claim that a Delaunay triangulation 
is a minimum edge length triangulation. The 
Voronoi tessellation (shown as dashed lines) 
indicates the use of the longer diagonal for a 
Delaunay triangulation. 
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the measure of its minimum angle. Let Nt denote the number of triangles. 

For each triangulation we have an indicator vector of N~ components, each 

component corresponding to the minimum angle of its corresponding 

triangle. Triangles are sorted in nondecreasing order. Given any two trian- 

gulations T and T', define T < T' if and only if the associated indicator 

vector of T is Iexicographically less than that of T'. 

T h e o r e m  1 r Given a triangulation T, if an application of the 

LOP to an edge e results in a swapping of the edge with any other edge e', 

thus producing a new triangulation T', then T < T'; i.e., T' strictly follows 

T in the linear ordering defined above. 

Proof Let I be an indicator vector for T. The measures of the smallest 

angles in the two triangles of T sharing the edge e occur as two of the com- 

ponents of L say Ij and In with j < k and thus Ij ~ Ik. Since a swap was 

.made when applying the LOP, the smallest angle in both of the two new 

triangles of T' sharing the edge e' must be strictly greater than I j .  It follows 

that the indicator vector I for T is lexicographically less than the indicator 

I '  for T' and thus T < T'. 

T h e o r e m  2. t1~ All internal edges of a triangulation T of a finite 

set V are locally optimal if and only if no point of V is interior to any cir- 

cumcircle of a triangle of T. 

Proof I f  no point of V is interior to the circumcircle of any triangle 

of T, then the application of LOP to any edge will not swap it. Thus all 

edges are locally optimal. If  all edges are locally optimal, then we show 

that no point of V is interior to the circumcircle of any triangle. Suppose 

that the circumcircle K of a triangle Aabe contains a point v of V. Let 8 

be the distance of v to its nearest edge, say (a, c), as shown in Fig. 4. Assume 

that among all triangles of T whose circumcircles contain v as an interior 

point, none has an edge which is at a distance less than 8 from v. Since v 

is on the opposite side of (a, c) from b, the edge (a, c) is not a boundary 

edge of T. Thus, there is another triangle Aacq sharing an edge with triangle 

Aabc. The vertex q cannot be interior to the circle K as this would contradict 

the hypothesis that edge (a, c) is locally optimal. The vertex q cannot be in 

the crosshatched region of the diagram, or Aacq will contain v in its interior. 

Suppose that edge (c, q) is the nearest edge of •acq to v. Note that the 

distance from (c, q) to v is less than 8. Since the circumcircle of Aacq also 

contains v in its interior, we have a contradiction that Aabc is the triangle 

with an edge at the smallest distance from v. 

By the above theorem, the edges of the Delaunay triangulation of a 

finite set V of points are locally optimal. I f  we assume that no more than 
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Fig. 4. Illustration of the proof of Theorem 2. 

three points are cocircular, the uniqueness of  the Delaunay triangulation ~aa) 

suggests the following theorem. 

T h e o r e m  3. (12) A triangulation T(V) is a Delaunay triangulation if 

and only if its indicator vector is lexicographically maximum, i.e., no trian- 

gulation follows it in the linear ordering. 

Proof. I f  the triangulation T is lexicographically maximum, then all 

the edges of T must be locally optimal, which implies that no circumcircle 

of  any triangle will contain any other point of V in its interior (Theorem 2). 

Thus, T is the Delaunay triangulation DT(V). To prove the converse, 

suppose that the Delaunay triangulation is not maximum in the linear 

ordering. That is, there exists another triangulation T(V), such that DT(V) < 

T(V). Repeatedly applying the LOP to T(F)  will produce a triangulation 

T'(V) in which all the edges are locally optimal. Since DT(V) < T(V) < 

T'(V), T'(V) would also be a Delaunay triangulation by Theorem 2 and 

Lemma 3. However, since the Delaunay triangulation is unique, T'(V) = 

DT(V), a contradiction. 

Corollary 2. The Delaunay triangulation of a set of  points satisfies 

the M A X - M I N  angle criterion. (Note that a triangulation which satisfies 

the M A X - M I N  angle criterion is not necessarily a Delaunay triangulation.) 5 

s Consider a triangulation T whose indicator vector is (h ..... is) where il is the minimum 
angle. Suppose that zxabc is the triangle with the smallest angle. If applying LOP to the 
edges of ab, bc, ca will not result in a swap, then T satisfies the MAX-MIN angle criterion. 
Since we have only checked one triangle in the triangulation, we cannot say that T is a 
Delaunay triangulation. However, if we apply the LOP to atl edges of T, until no more 
swapping occurs, the resulting triangulation will be Delaunay. 

8~8/9/3-s 
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We have shown that the Delaunay triangulation of a set of points is a 

maximum in the linear ordering over the set of possible triangulations. 

Now we are ready to describe two algorithms for its construction. 

3. T E C H N I Q U E S  FOR C O N S T R U C T I N G  T H E  D E L A U N A Y  

T R I A N G U L A T I O N  

We will present two algorithms for constructing a Delaunay triangula- 

tion. The first is rather involved, but its running time is asymptotically 

optimal. The second algorithm is simpler to understand, is simpler to 

program, and requires less overhead. These features make it especially 

attractive for small and medium-sized data sets (~'500 points or less). 

The first algorithm is comparable to the one given by Lewis and 

Robinson aS~ in that it divides the original data set into disjoint subsets. 

After obtaining a solution for each of these subsets, it combines solutions 

to yield the final result. Lewis and Robinson ~15~ claim, without proof, that 

their algorithm runs in O(N log N). But in fact, 6 the running time of  their 

algorithm is O(N~). The second algorithm that we will present is iterative. 

It follows the idea proposed by Lawson. (9~ Nelson ~231 gives a similar method. 

3.1. Divide-and-Conquer 

Shamos and Hoey ~2~ present an O(N log N) algorithm for constructing 

the Voronoi diagram for a set of N points in the plane. Green and Sibson ~7~ 

also implement an algorithm for this purpose, but the running time is O(N 2) 

in the worst case. Lee aSI modifies the procedure given by Shamos and Hoey 

and extends the method to any L~ metric, 1 ~< p ~ oo. 

Once the Voronoi diagram is obtained, its dual graph (i.e., the Delaunay 

triangulation) can be constructed in an additional O(N) time. To eliminate 

the need for a two-step procedure, we have developed the following algorithm 

which constructs a triangulation directly. The running time of the algorithm 

is shown to be O(N log N). Shamos and Hoey la~ show that the construction 

of any triangulation over N points requires s N) time. Thus, our 

algorithm is asymptotically optimal. 

We will begin by describing the data structures and notation to be used 

in the sequel. For each point vi, we keep an ordered adjacency list of points 

vii .... , vi~, where (Ui, V i s ) , j  = 1,..., k, is a Delaunay edge. The list is 

doubly linked and circular. PRED(vi ,  v~j) denotes the point vi~ which 

6 There are at least four triangulation algorithms in the computer literature which claim 
to be O(N log N), but which are in fact O(N2). A counterexample for several of these is 

given in Appendix A. 
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Fig. 5. Example illustrating a 

doubly linked circular list. 
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appears clockwise (CW) of and immediately after the point vii �9 The counter- 

clockwise function SUCC operates in a similar manner. For example in 

Fig. 5, v5 ~ PRED(vl , v6) and v5 = SUCC(vz , v4). 
If  the point vi is on the convex hull CH(V), then the first entry on its 

adjacency list is the point denoted FIRST(vi), which appears after v~- if we 

traverse the boundary of CH(V) in a CCW direction. Let l(vl, vj) denote the 

line segment directed from vi to vj. 

Now we are ready to construct the Delaunay triangulation. First, we 

sort the given set V of N points in lexicographically ascending order and 

rename the indices so that v I < v~ < --- < VN, such that (x,:, yi) = v~ < vj 

if and only if either x~ < x~- or x~ = xj and Yi < Yj �9 Next we divide V into 

two subsets VI. and VR, such that VL = {Vl, ..., VtN/~J} and Va = {VLN/23+I ,..., 

VN}. Now we recursively construct the Delaunay triangulations DT(VL) 

and DT(VR). To merge DT(VL) and DT(VR) to form DT(VLUVR), we make 

use of  the convex hull CH(VLUVR). The convex hull can be obtained in 

O(N) time Cz61 from the union of the convex hulls CH(VL) and CH(VR). 
The convex hulls can also be computed recursively. Forming the union of 

CH(Vt.) and CH(VR) will result in two new hull edges which are the lower 

and upper common tangents of CH(VL) and CH(VR). These two common 

tangents are known to be in the final Delaunay triangulation. 

The following subroutine finds the lower common tangent of  CH(VL) 
and CH(VR). For each convex hull CH(S), we maintain two points LM(S) 

and RM(S), which are the leftmost and rightmost points of S, respectively. 

Subroutine H U L L  

(Comment: H U L L  is input two convex hulls. It finds their lower common 

tangent (Fig. 6). The upper common tangent can be found in an analogous 

manner.) 

828/9/3-5* 
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upper common tangent 

" l 
lower common tangen t  

Fig. 6. I l lustrat ion o f  the  

upper  and  lower c o m m o n  

tangents of two convex hulls. 

(Comment: I(X, Y) denotes the line directed from X to Y.) 

X *-- RM(VL); Y +-- LM(VR) 

Z +--FIRST(Y); Z' +-FIRST(X); Z"+--PRED(X, Z') 

A: IF (Z is-right-of l(X, Y)) 

z succ ( z ,  Y) 
Y~--Z 

ELSE 

IF (Z" is-right-of I(X, Y) 

Z" ~-- PRED(Z", X) 

X+-- Z" 

ELSE 

R E T U R N  (X, Y) 

E N D I F  

ENDIF  

GO TO A 

END H U L L  

The lower common tangent will be used as an input to the following sub- 

routine which merges the two triangu/ations DT(VL) and DT(VR). 

Subroutine MERGE 

(Comment: M E R G E  is input two triangulations and the upper and lower 

common tangents of  their convex hulls. It merges the two triangulations, 

starting with the lower common tangent, zigzagging upward until the upper 

common tangent is reached.) 
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(Comment: Initially, the points adjacent to the endpoints of the lower 

common tangent are examined. Using the circle criterion, we either connect: 

1. the left endpoint (in VL) of the lower common tangent to a point 

adjacent to the right endpoint (in VR) of the lower common tangent, 

or 

2. the right endpoint (in Va) of the lower common tangent to a point 

adjacent to the left endpoint (in VI.) of the lower common tangent. 

The above process is repeated with the newly found edge taking the place 

of the lower common tangent, and each succeeding new edge taking the place 

of that. The subroutine continues in this manner until the upper common 

tangent is reached.) 

(Comment: The adjacency list of the right (left) endpoint in VR (VL) of 

the current edge being considered is examined in a CW (CCW) direction 

starting with the left (right) endpoint of the edge.) 

(Comment: INSERT(A, B) inserts point A into the adjacency list of B and 

point B into the adjacency list of A at proper positions. DELETE(A, B) 

deletes A from the adjacency list of B and B from the adjacency list of A.) 

(Comment: QTEST(H,/, J, K) tests the quadrilateral having CCW ordered 

vertices H , / ,  J, K. It returns TRUE if the circumcircle of AHIJ does not 

contain K in its interior, and returns FALSE otherwise.) 

step 1 : 

step 2: 

step 3: 

step 4: 

step 5: 

step 6: 

step 7: 

step 8: 

INITIALIZATION 

BT+-lower common tangent 

UT+-upper common tangent 

L +-- left endpoint of BT 

R +- right endpoint of BT 

DO UNTIL (BT equals UT) 

A +- B ~-- FALSE 

INSERT(L, R) 

Rx ~-- PRED(R, L) 

IF (R1 is-left-of l(L, R)) 

R2 ~-- PRED(R, RO 

DO UNTIL (QTEST(R~, L, R, R2)) 
DELETE(R, R1) 

Rz +-- R2 

R2 *-- PRED(R, R1) 

END DO UNTIL 
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step 9: ELSE 

A +-- TRUE 

ENDIF 

step 10: Lz +-- SUCC(L, R) 

step 11 : IF (LI is-right-of I(R, L) 

step I2: L 2 +-- SUCC(L, Lz) 

step 13: DO UNTIL (QTEST(L, R, Lx, L2) ) 
DELETE (L, L1) 
LI +- L 2 

L 2 +-- SUCC(L, L1) 

END DO UNTIL 

step 14: ELSE 

B +-- TRUE 

ENDIF 

step 15: IF (A) 

L.+-- Lz 

step 16: ELSE 

step 17: IF (B) 

R+--R1 

step 18: ELSE 

step 19: IF (QTEST(L, R, R~, Lz)) 

R~--'R1 

step 20: ELSE 

L +--La 

ENDIF 

step 21 : ENDIF 

step 22: ENDIF 

step 23: BT +- l(L, R) 

END DO UNTIL 

step 24: END MERGE 

To show that the above algorithm merges two triangulations correctly, 

it is sufficient to show that each edge we insert into the triangulation is a 

Delaunay edge (step 4). Initially, the first edge (L, R) is a lower common 

tangent and is known to be a Delaunay edge. Steps 5-8 delete the edges in 

DT(VR) which are not Delaunay edges in DT(V) by determining if L is 

within the circumcircle of /kR, Ra, Rz. If so, the edge (R, Ra) is not a 

Delaunay edge and must be deleted. Steps 10-13 perform the same operation 

on the edges in DT(Vt). An example of this process is shown in Fig. 7(a). 

Now the circumcircle KR of AL, R, Rz does not contain any point of VR 

in its interior and the circumcircle KL of AR, L, Lz does not contain any 

point of VL in its interior. Now as shown in Fig. 7(b), we have a choice of 
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Fig, 7. IHustration for the merge process. Bold fines are new De]aunay edges introduced 

by the MERGE algorithm. 

either connecting L1 to R or R1 to L. Step 19 chooses the correct edge by 

applying the circle criterion. In Fig. 7, Kc contains R~ in its interior, so we 

choose the edge (L, R 0. All that we have left to do is to show that the edge 

(L, R0 is a Delannay edge, or equivalently that the circle KR does not 

contain any point of VL in its interior. Since the edge (L, R) is known to be a 

Delaunay edge, by Lemma 2 there exists a circle K passing through L and R 

which contains no point of V in its interior. It is also known that the circle 

KL contains no point of VL in its interior. Since the circle KR lies inside the 

union of K and KL, it follows that KR contains no point of VL in its interior. 

We combine this result with the fact that KR does not contain any point of 

VR in its interior to conclude that KR contains no point of V in its interior. 

Thus, the edge (L, R1) is a Delaunay edge. The edge (L, R0 can now be 

inserted to replace the edge (L, R). In showing that the next edge to be added 

after (L, Rz) is a Delaunay edge, the circle KR plays the same role as the 

circle K just did. 

Now let us analyze the algorithm MERGE. We first note that during 

the merge process, once an edge is deleted, it will never be reexamined. 

Since the total number of edges deleted is O(N) and the total number of 

edges added is also O(N), the time needed for the merge is O(N). Let t(N) 

denote the time required to construct the Delaunay triangulation for a set 

of  N points. We have the following recurrence relation; 

t(N) = 2t(N/2) + M(N/2, N/2) 

t ( 1 )  = o 

where M represents the time required for the merge process. Since 

M(N/2, N/2) = O(N), t(N) = O(N log N). 
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3.2. I teration 

The algorithm presented in this section iteratively triangulates a set of 

points within a rectangular region. If  the point set does not include all four 

vertices of the rectangle, the missing vertices are implicitly added. The 

algorithm uses the swapping approach developed by Lawson. ~9,1~ Since the 

convex hull of our point set is a rectangle and is known in advance, we need 

not compute it, as is done in Lawson's algorithm. The initial ordering of 

the point set also differs from that used by Lawson. 

This algorithm was developed with the terrain fitting problem in mind. 

Terrtain regions are processed in rectangular blocks. Adjacent terrain 

regions must fit together without any gaps. Once a triangular faceted surface 

is fit to a terrain region, the accuracy of the fit is usually computed. If  the 

approximation surface does not meet the given accuracy constraints, addi- 

tional vertices are added and the triangulation is updated. An iterative 

triangulation algorithm is ideal for updating. 

Algor i thm T R I B U I L D  

I N I T I A L I Z A T I O N  

step l: Given a set V of N points within a rectangle, remove any points 

which fall on the vertices of the rectangle. 

step2: Partition the rectangle into approximately N1/z bins (smaller 

rectangular regions). 

step 3: Reorder the points by bins, starting at some bin and proceeding 

to neighboring bins (see Fig. 8). 

step 4: Place' the first point into the rectangle. Connect the point to the four 

corners of the rectangle to produce an initial triangulation. 

-) 

J 

Fig. 8. Two possible bin ordering schemes. 
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I T E R A T I O N  

(Comment: The remaining points in V will be iteratively added to the 

triangulation. After each point is added, it will be connected to the vertices 

of its enclosing triangle. The triangulation will then be restructured so that 

the MAX-MIN angle criterion is globally satisfied. (See Fig. 9.) 

step 1: Input the next point to the existing triangulation. Connect this 

point to the vertices of its enclosing triangle. 

step 2: Step 1 will produce up to four strictly convex quadrilaterals. (Four 

quadrilaterals only occur when a newly introduced point falls on the edge 

of the triangulation.) Each of these quadrilaterals has an alternate diagonal. 

Swap a diagonal with its alternate, if doing so is required to satisfy the 

Ii "" \ \  / 
\ / 

\ / 

/I \\ 
/ \\ 

(a) 

(d) 

(g) 

/Y 

\ 

/ 

\ 

(b) 

(e) 

\\\ 

(c) 

(f) 

Fig. 9. Example showing a Delaunay triangulation produced by the iterative algorithm. 
Newly introduced points are shown as filled circles. 
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MAX-MIN angle criterion within the quadrilateral (i.e., use the LOP within 

the quadrilateral). 

step 3: Each swap performed in step 2 may result in two new quadrilaterals 

that need to be tested. If  one of these quadrilaterals doesn't satisfy the 

MAX-MIN angle criterion, swap its diagonal with its alternate. 

step 4: This swapping procedure may propagate further outward. Lawson (1~ 

has shown that this process will always terminate. 

step 5: If all points in V have been used then stop, otherwise go to step 1. 

END TRIBUILD 

Step 1 requires the identification of the enclosing triangle of a point. 

This can be accomplished by the following very simple subroutine 

TRIFIND.  (1~ The subroutine assumes that the triangulation is stored using 

a variation of Lawson's data structure (given in Appendix B). 

Subrout ine  T R I F I N D  

(Comment: The triangulation is stored in the form given in Appendix B. 

This subroutine locates the triangle T which encloses the point (Xo, Y0).) 

(Comment: X(r, i) denotes the x value of the ith vertex of triangle ~-.) 

-r ~-- last triangle created 

LOOP: DO FOR I ~ -  1 to 3 

/PLUS 1 ~ I(mod 3) -~ 1 

IF [(Yo -- Y(T, I)) * (X(r , /PLUS1) -- Xo).GT.(xo -- SO', I)) �9 

(YO', IPLUS1) --  Yo)] 

(Comment: If  (Xo, Yo) is not in ~-, jump to the neighbor o f  ~- 

which is in the direction of the point. 

~- ~- NO-,/PLUS 1) 

GO TO LOOP 

ENDIF  

END DO FOR 

R E T U R N  (r) 

END TRIFIND 

Each iteration of algorithm TRIBUILD requires an O(N) search 

performed by TRIFIND,  followed by an O(N) swapping procedure. Thus, 

the algorithm is O(NO. 
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An empirical examination of algorithm TRIBUILD yields somewhat 

better results. If the initial point set is uniformly distributed within its 

enclosing rectangle, then the number of data points in each bin will be 

approximately O(NX/2). Thus the search procedure will be 0(N1/2). The 

swapping procedure which updates the triangulation can be propagated 

many times. We have found that two levels of swaps are nearly always 

sufficient to globally satisfy the MAX-MIN angle criterion. Thus the al- 

gorithm is roughly 0(N8/2), empirically. 

4. E X A M P L E S  A N D  A P P L I C A T I O N S  

4.1. Random Delaunay Triangulation 

A two-dimensional Poisson process of intensity A can be used to describe 

a random distribution of points in the plane. This process is characterized 

by the property that the expected number of points within a region of area 

A is AA, irrespective of the shape or orientation of the region. 

Suppose we let the points chosen by a Poisson process seed a Delaunay 

triangulation. The resulting network of triangles inherits the properties of 

homogeneity and isotropy from the driving point process. 

A random Delaunay triangulation is probably the only nonregular 

triangulation which is mathematically tractable. Many of its statistical 

properties have been derived by Miles/21) Its principal first-order statistics 

are given below; the paper by Miles also provides the associated second- 

order statistics. 

E[cell area] = 7r/A 

E[cell circumference] = 32/[3rr(,~/2rc)l/2] 

E[cell in-radius] = (8,~/7r)-1/2 

Miles has also derived the probability density function f (a)  for an arbitrary 

angle c~ in the triangulation. 

f (a )  = 4{(rr -- a) cos a § sin a} (sin a/a) 

For certain applications, we would like a triangulation with as few 

small angles as possible. The distribution f (a)  provides a characterization 

of the "goodness" of a triangulation. 

4.2. Interpolating Functions of Two Variables 

A major application of triangulations is the interpolation of functions 

of two variables, where the function is initially defined only at an irregular 

set of locations. These locations are used as the vertices of a triangulation. 
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The value of the function at a point, other than a vertex, is computed by 

performing an interpolation within the triangle containing the point. A 

triangulation composed of nearly equiangular triangles is considered good 

for this purpose. McLain 119~ and Lawson (1~ have used the Delaunay trian- 

gulation for this purpose. Also see the work of Powell and Sabin. (~5~ 

4.3. Decomposition of Polygons into Convex Sets 

An algorithm for decomposing polygons into triangles may be based 

upon the concept of the Delaunay triangulation. There are applications in 

pattern recognition and computer graphics for which one wants to combine 

adjacent triangles into larger convex sets. An O(mN) algorithm for de- 

composing a nonconvex polygon of N sides and m reflex angles into convex 

sets is given by Schachter. (3~ [An O ( N l o g N )  polygon triangulation al- 

gorithm not based upon the Delaunay triangulation is given by Garey 

et al. (5)] 

4.4. Terrain Fitting 

A rectangular terrain region may be represented by an array of elevation 

values. A two-dimensional digital filter (e.g., a Wiener filter) can be applied 

to these data to extract local extrema (i.e., peaks of mountains and "pits" 

of valleys) and ridge line segments. 

We would like the local extrema to be the vertices of a triangulation 

and the ridge line segments to fail on the edges of the triangulation. This 

structure can be obtained as follows. Let L denote the set of local extrema 

and E the set of endpoints of the ridge segments. For each element of L u E 

falling within the smallest circumscribing circle of a ridge segment, construct 

a normal projection onto the segment. Let P denote the projection point 

set. Now, let the points in L ~ E • P seed a Delaunay triangulation. Each 

element of L ~ E w P has an associated elevation. The triangulation therefore 

defines a piecewise planar approximation to the terrain surface. For certain 

applications, an approximated surface must fit the original data to a given 

error tolerance. If  this error bound is not satisfied, additional vertices are 

added, and the triangulation is updated. An iterative algorithm is well suited 

for updating. 

The above technique assumes that the line segment set is sparse in the 

plane. A good solution for the more general problem of triangulating any 

planar set of points and line segments is given by Lee. a2~ 

A Delaunay triangulation is an excellent choice for the terrain fitting 

and display problem. Triangles with very small angles produce a poor 

computer graphics display. Maximizing the minimum angle within the 
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triangulation insures the best possible visualization of the data. Further 

requirements are met concerning speed of construction. 

4.5. Spatial Pattern Models 

The Voronoi and Delaunay tessellations have been extensively used to 

model spatial patterns in a wide range of fields including astronomy (s~ 

biomathematics, a~la,24,~5~ computer science ~4,zl,z4,~9,a~21 geography, (~,~7,27~ 

meteorology, ~6~ metallurgy] 6~ numerical analysis, (~~ and packing and 

covering. (22,zs~ We will briefly consider two somewhat representative examples. 

Suppose that we are given a collection of sites, where each site has a 

random variable associated with it. Let these sites seed a Voronoi tessella- 

tion. The statistical dependence between (Voronoi) neighboring sites may be 

specified in terms of the Delaunay edge length between sites and the Voronoi 

border length between their cells. See the work of Besag m for details and 

references. 

Stearns (34~ poses the following problem: 

A domain wall in ferromagnetic materials can be considered as 

a two-dimensional membrane which, when subject to an r.f. field, 

will oscillate irma manner determined by the boundary condi- 

tions. One possible set of boundary conditions would correspond 

to pinning the wall at impurities whose positions are random in 

the wall. In describing wall motion, we must know the area 

distributions of triangles formed from three impurity sites. 

These triangles will contain no other impurity pinning points in 

their interior and will be called "good"  triangles. What is the 

probability distribution of  the areas of the resulting network of 

"good"  triangles formed by choosing N points distributed 

uniformly in a given area 

Miles ~z~ interprets "good"  to mean Delaunay, and proposes a solution. 

5. D I S C U S S I O N  

We have presented two algorithms for constructing the Delaunay 

triangulation for a set of  N points in the Euclidean plane. The first algorithm 

is based upon a divide-and-conquer approach. It runs in 0(N log N) time, 

which is asymptotically optimal. The second algorithm iteratively adds 

points to an existing triangulation, updating the triangulation to include 

each newly introduced point as a vertex. Although it could take O(N ~) time 

in the worst case, it runs fairly well for the average case. 
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A P P E N D I X  A-  A N  E X A M P L E  F O R  W H I C H  I T E R A T I V E  

A L G O R I T H M S  W O R K  IN  O ( N  2) W O R S T  CASE T I M E  

Consider  10 points  on the pa rabo la  y = �89 ~. The  points  in the d iagram 

are numbered  in the order  in which they are added to the existing set. 

/ 

t / 
J 
io 9 

A 

Let S = {1, 2, ..., 9}. DT(S) is given below. 

iJ 
B 
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Now when point 10 is added, all the edges incident with point 9 are deleted. 

The resultant triangulation is given below. Thus, in general the total work 

involved in updating the triangulation is ~=4 (i -- 1) = O(N 2) in the worst 

case. 

I 

C 

A P P E N D I X  B: DATA STRUCTURE FOR A T R I A N G U L A R  
N E T W O R K  

The data structure used by the iterative algorithm will be described 
by an example. 

1 5 
Vertex X Y 

1 1 1 

2 1 31 

3 !8. 17 

4 31 31 

5 31 1 
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Triangle 

T 

Neighboring triangles 

(counterclockwise): 

N(T,  1) N(T, 2) N(T, 3) 

Lee and Schachter 

Vertices 

(counterclockwise): 

V(T, 1) V(T, 2) V(T, 3) 

1 2 0 4 1 2 3 

2 1 3 0 3 5 1 

3 4 0 2 4 5 3 

4 1 0 3 2 4 3 

The following conventions are used: Triangles N(T, 1), N(T, 2), and T meet 

at vertex V(T, 1). Zero denotes a null triangle. 
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