
Two Algorithms for Maintaining

Order in a List zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Daniel D. Sleator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Paul F. Dietz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

15 September 1988

CMU-C S-88- 1 13

'Partial support provided by DARPA, ARPA order 4976, amendment 19, monitored by

the Air Force Avionics Laboratory under contract F33615-87-C-1499, and by the National

Science Foundation under grant CCR8658139. The views and conclusions contained in

this document are those of the authors and should not be interpreted aa representing the

official policies, either expres8ed or implied, of the Air Force Avionics Laboratory, the

National Science Foundation or the US Government.

Two Algorithms for Maintaining Order in a List zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Paul F. Dietz

Department of Computer Science

University of Rochester

Rochester, NY 14627

Daniel D. Sleator
Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract

The order maintenance problem is that of maintaining a list under a se-

quence of Insert and Delete operations, while answering Order queries (deter-

mine which of two records comes first in the list). We give two new algorithms

for this problem. The first algorithm matches the 0(1) amortized time per

operation of the best previously known algorithm, and is much simpler. The

second algorithm permits all operations to be performed in 0(1) worst-case
time.

'A preliminary version of this paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas presented at the 19th Annual ACM Symposium

on Theory of Computing, New York, May 25-27, 1987.

2This author was employed by Schlumberger-Doll Research, Ridgefield, Connecticut, at

the time this work was done.

3Partial support provided by DARPA, ARPA order 4976, amendment 19, monitored by

the Air Force Avionics Laboratory under contract F33615-87-C-1499, and by the National

Science Foundation under grant CCR-8658139.

1

1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A variety of important problem in the design of data structures arise from the need to

store and manipulate ordered sets of records. These problems can be formulated as a

collection of operation types, each with an anticipated frequency of occurrence. A data

structure is desired which performs efficiently on the operations which occur with high

frequency.

The most versatile data structure for solving these problems is the binary search tree

[13]. In some circumstances the commonly used operations do not require the full generality

of binary search trees, and faster methods are possible. In this paper, we consider one of

these special problems.

The order maintenance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproblem is that of maintaining a non-empty list L of records

under a sequence of the following three types of operations:

Insert(x, y): Insert record y after record x in the list. The record y must not already

be in the list.

Dclete(x): Delete record x from the list.

Order(x,y): Return true if x is before y in the list, otherwise return false.

In addition to being a very natural problem to consider, the order maintenance problem

has several applications, the most compelling of which is the ancestor query problem. In

this problem a rooted tree is maintained under the operations of insertion and deletion of

nodes, while ancestor queries are being performed. These queries are of the form "is x an

ancestor of y", where x and y are nodes in the tree. Dietz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2) showed how a data structure

to solve the order maintenance problem can be used to solve the ancestor query problem,

and how an ancestor query data structure can be used to implement context trees 115).
Another application of an efficient ancestor query data structure is in the construction of

fully persistent data structures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] .
Search trees can be used to solve the order maintenance problem as follows. The

records of the list are stored in the internal nodes of the search tree in symmetric order.

Insertion and deletion are done in the ordinary fashion. An Order(x, y) query is performed

by finding the least common ancestor of x and y (by walking up the tree from x and y),
and determining which of x or y is in the left or right subtree of this common ancestor. By

using balanced, or self-adjusting search trees [lo], these operations on a list of n records

can all be performed in O(log n) time.

Search trees allow other operations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- such as concatenating and splitting - to be per-

formed in O(1ogn) time. If concatenating and splitting are needed, but rarely compared

to order queries, then Pugh's skip lists [8] are a viable alternative. This data structure

allows e user to choose a trade-off point between the cost of doing the order queries and

the other operations.

order maintenance

problem to obtain a more efficient data structure? One approach is to maintain a linked

list of records, and to keep in each record an associated number called the lu6cl. The labels

How can we take advantage of the specific requirements of ti

2

are in monotonically increasing order from the beginning of the list to the end. An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOrder
query can then be performed by comparing the labels of the two records in question. When

a record is inserted into the list it is given a label between those of its two neighbors. This

method is extremely efficient if the insertions are very uniformly distributed throughout

the list. If many insertions occur in the same region of the list, then many bits will be

required to represent the labels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas to ensure that all labels are different. In the worst

case, the penalty for having to manipulate and store such large numbers is severe, giving

an algorithm which takes O(n) time per operation.

A solution to this problem is to renumber the records in the vicinity of the inserted

record. Dietz [2] gave an algorithm for performing insertions in which each insertion causes

O(1ogn) renumberings to take place in the amortized sense‘. (Here n is the number of

records in the list.) In order to determine which records to renumber, Dietz’s method

made use of a data structure (in addition to the linked list of records) called the overlying
t ree.

Tarjan [ll] observed that this algorithm for maintaining order in a list can be used as a

component of another algorithm for the same problem that runs in constant amortized time

per operation. This result is obtained by breaking the list into sublists of size O(1og zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn), and

using Dietz’s algorithm to maintain the list of sublists. (This details of this method are

given at the end of Section 2.) A similar result was independently obtained by Tsakalidis

Leiserson (71 also devised (but did not publish) a method to solve the order maintenance

problem. His algorithm did away with the explicit storage of an overlying tree. Instead,

the bits of the numbers were constrained to correspond to paths in a hypothetical 2-
4 tree which would represent the current list. He took advantage of the properties of

2’s complement arithmetic to efficiently perform the renumbering. Leiserson’s algorithm

renumbers a sublist of records following the point of insertion, and uses wrapping modulo

A4 to make the renumbering procedure independent of where the insertion takes place.

This paper presents two new algorithms for the order maintenance problem. The first

is distinguished by its simplicity. It attains the same time bounds previously obtained by

Dietz, Tsakalidis, and Lieserson for renumbering a list (0(log n) amortized renumberings

per insertion), but is much simpler. Our algorithm resembles Leiserson’s algorithm in that

it does not make use of any data structures besides the list and the labels, and it uses the

technique of wrapping modulo M. When an insertion occurs in a congested region of the

list, a contiguous sublist of records (starting from the point of insertion) is renumbered as
uniformly as possible. The criterion for determining which sublist to renumber is a simple

test. Like the other methods, our algorithm can also be used in the list-of-lists scheme

mentioned above to allow all operations to be performed in constant amortized time.

Our second algorithm achieves constant worst-case time for all operations. This an-

swers an open question in (51 and permits updates to be performed on fully persistent

search trees in O(1og n) worst case time and O(1) worst case space.

We describe both of our algorithms assuming that there is a fixed upper limit N on how

~ 4 1 .

4The techniques of amortized analysis are described in [9] and [12]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3

big the list will ever grow. We also assume a model of computation in which numbers of

O(1og zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN) bits can be manipulated in constant time. These realistic assumptions simplify

the description and analysis of the algorithms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. A Simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(1og n) Amortized Time Algorithm
The data structure consists of a circularly linked list of records. Each record r is labeled

with an integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(r) . The successor of a record is denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(r). The set of integers available

for labeling the records is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 , 1,2, . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , M - 1). This set will be called the arena.
Let n denote the size of the list at any time. Our algorithm works under the assumption

that the arena size, M , has been chosen so that

M > n2 (1)

always holds. Therefore, the list is restricted to contain at most

N = [M1 /2] - 1

records.

The list initially contains one record (which is never deleted) called the base and de-

noted 6. The base represents the end and the beginning of the list. The initial label of the

base is arbitrary. For convenience we will use the following definitions:

ub(r) = (u(r) - u(6)) mod M

M if s(r) = 6
2)'(r) = { ub(s(r)) otherwise

The following invariant will always be maintained:

(2) ub(r) < .;(r) for all records r.

The algorithms for Order and Delete are trivial: Order(x,y) is done by comparing

V b (Z) and ub(y) , if ua(x) < vb(y) return true, otherwise return false. Delete(x) is done

simply by removing x from the list.

Before we describe the insertion algorithm, we define some notation. Let Insert(%, y)
be the insertion operation being performed. Let uo be the label of record x , let u1 be the

label of record s(z), let u2 be the label of s2(x) = s (s (x)) , etc. Let wi = (u, - U O) mod M
for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i < n (n denotes the number of records in the list before the insertion). Note that

200 = 0, and w1 = 1, and define w,, = M . The insertion algorithm first walks down the list

until UJj > j2:

j + 1;
while w, 5 j 2 do

end
j + j + l

4

Relabel the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 records zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(x) , . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd - ' (x) with the labels

The j gaps created between adjacent labels will differ in size by at most 1. It is now the

case that vb(5) + 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 v ; (x) , and we can insert y between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and s (x) , setting v (y) to be

This completes the insertion.

This algorithm can be implemented easily and efficiently. If M is chosen so that log A4
is the word size of the machine' (or a small multiple thereof) then the sum of two numbers

modulo M is computed automatically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a result of adding the numbers.

The following lemmas show that the insertion algorithm terminates, and relabels

records in a way that satisfies the invariant 2.

Lemma 1 When inserting a record y after a record x, (a) the search part of the insertion
algorithm terminates, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) upon termination w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2j, and (c) if j > 1 upon termination
then Wj-1 < n2.

' Proof: (a) Note that w, = M > n2, so the loop must terminate.

(b) If the loop terminates with j = 1 then j 2 2 = 2j. If j > 1 then j > j2 2 2j.
(c) Since the loop did not terminate in the previous iteration, w , - ~ 5 (j -1)2 < j2 5 n2.

1

We will analyze this algorithm by the technique described in (91 and [12]. The potential

function we shall use is:
2n n- 1

k=O g k
@ = C max(0, c log -) (4)

Here g k denotes the size of the gap between successive labels, that is, g k = wk+l - wk,
0 5 k 5 j - 1. The positive constant c will be chosen later.

Lemma 2 For fixed w, > j2, the value of

2n j -1

k=O g k
a' = C max(0, c log -)

is minimized when g k = 2k + 1, 0 5 k < j - 1.

bAll logarithms in this paper are binary.

(5)

Proof: For the moment, we will assume the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi's (and therefore the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgi's) can take on

real values, rather than just integer values. We will show zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@' achieves its minimum value

when wi = i2, 0 < i < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .
Note that the function

2n

Si
4(9i) = max(0, clog -)

1 is concave. This implies that if g, > gi+1, setting wi+l = T(wi + wi+2) (and therefore

g, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgi+l) cannot increase W . Therefore, for any arrangement of gaps that can be found

by the algorithm (that is, for which wi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i2 for i = 0 , . . . , j - 1 and wj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 j' + 1) there is

another such arrangement with equal j and W j in which gi 5 gi+l for which CP' is no larger.

Similar reasoning permits one to further constrain the arrangement so that gi < gi+l

iff w , + ~ = (i + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl)', since if < (i + 1)' one could increase w , + ~ , stopping only when the

gaps were equal or wi+l achieved its maximum value.

So, suppose the wi satisfy these constraints and achieve the minimum possible value

of W . We first show that wj-1 = (j - 1)': Assume not. Then, gj-2 = gj-1 > 2 j . A
simple argument by induction shows that this implies that all the gaps must be equal,

so wj-k < (j - 1)' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2j(k - l), and therefore wo < 0, a contradiction. Similar argument

demonstrate that wi = i', i = 1,. . . , j - 2. This proves the lemma. I

Theorem 3 The amortized tcme to do Insert on a list containing n records is O(logn),

and the amortized (and worst-case) time to do Delete or Order is O(1).

Proof: We assume that n is initially one and is always at least one, and that M 2 2.

is initially zero. Thus, to prove the first part of the theorem it suffices This implies that

to show that c can be chosen so that for an insertion:

(amortized work) = (work done) + (change in potential) 5 c log n + O(1).

We define the work done during an insertion to be the number of records whose labels

change. The actual running time of the algorithm is proportional to this number.

Suppose that the insertion does not cause any of the old records to be relabeled. The

work done is one (the new record is labeled). To evaluate the change in the potential, we

separate it into two components. First, an existing gap is split in two and a new term

introduced into equation 4. The increase in @ is maximized when the gap being is split is

of size 2, in which case increases by c(1 +log n). In addition, n is increased by one. This

causes every term in equation (4) to increase by at most cn-' loge, so 9 increases by an

additional c(l + n-') loge. The total increase in @ from the actual insertion is therefore

at most

c log n + (loge + 1)c + (log e)cn-' = c log n + O(1).

In an insertion in which some relabeling is done, the final step is just like that described

above. Therefore to complete the proof it suffices to show that the amortized work of

relabeling is constant. Consider an insertion in which j - 1 of the records already in the

6

list are relabeled, j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1. We shall choose c such that the potential decreases by at least

j - O(1).

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi , j, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw be defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in the insertion algorithm. Let 90 denote the potential

before the insertion. We divide the relabelling process into three phases.

1. The first phase relabels 51,. . . , zj-1 so that the first j - 1 gaps are j, and the final

gap is w j - j(j - 1). The potential at this point will be denoted 91.

2. The second phase adjusts all the gaps so they are equal. The potential at this

point will be denoted 0 2 .

3. The final phase adjusts the gaps gb (for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk < j) so that they are all integers and

the largest and the smallest differ by at most 1. The multiset of gaps resulting is

exactly that produced by the insertion algorithm, and thus the resulting potential,

@3, is the same as that after the algorithm finishes relabeling.

The decrease in the potential caused by phase 1 is minimized when the contribution

to 0 0 from go,. . . , g,-1 is minimized. By lemma 2 this occurs when gi = 2i + 1, i =
0,. . . , j - 2. Note that in this case the term corresponding to the last gap increases by at

most c log & < c (the gap goes from 2 j to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj + 1). So,

(2i + 1)
j - 2

@ 1 - 9 o ~ c + ~ c l o g
i=O j

Writing the sum of logarithms as the logarithm of a product gives

We now use Stirling's approximation to the factorial function

and simplify to get
e el - a0 5 - c j log + O(1).

Because of the concavity of 6, phase 2 cannot increase @; i.e.,

We now must bound the effect of phase 3 on the potential. Let D = w, be the total

space used by the j modified gaps. In the uniform arrangement of gaps produced. by phase

2, there are j gaps of size D/j. In the discrete arrangement produced by phase 3, there

are j - f gaps of size [D/jl, and j - (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf) gaps of size lD/jJ, where f = D/ j - LD/jJ is
the fractional part of the rational number D/j.

2n 2n 2n
+f . jc log- - jclog-.

Wjl D/ j
9 3 - 9 2 = (1 - f)jclog-

P/jJ

7

Defining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj / D , and substituting into (6), we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(as 1 - @2) = -(1- f) log(1- 3: * f) - f * log(1 + x * (1 - f)) .

J C

The partial derivative of the righthand side of equation 7 with respect to x is

x j . (1 - f) (l - x . f) - ' (l + s . (1 -f))- ' . loge

which is nonnegative for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 f 5 1 and 0 < x < 1. Therefore, since 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx < j-l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(8)

1
-(@3 - @z) 5 -(1- f) log(1 - f +-I) - f * log(1 + (1 - f) * j-1).

j c

Using the inequality
6

log (1 + 6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -
1 + 6 loge

(for 6 > -I), we get

Therefore,

@ps - @ 2 = O(j-1).

Putting the three bounds together yields

e

2
a3 - <Po 5 -jclog- + O(1).

By choosing c 2 (log(e/2))-l = 2.25889..., we get a3 - a0 5 - j + 0(1), which is the

desired result.

The bound on the amortized time of Delete follows by observing that a deletion only

causes the potential to decrease. Thus the amortized time of a deletion is at most the

worst-case time of a deletion, which is a constant. An order query takes constant worst-

case time and does not change the potential, therefore its amortized time is also constant.

I

Note that the arena size may at any time be increased without violating (l), and that

increasing M during the execution of the algorithm cannot cause the potential function in

Theorem 3 to increase.

The algorithm could be improved slightly by changing the relabeling scheme so that

the first gap is twice the size of the other gaps, or, equivalently, inserting the new record

into the first gap before relabeling is performed.
Increase M so that

A4 > 2n2. When renumbering, first determine if u (z) < M/2. If so, use the algorithm as
The algorithm can be modified to avoid modular arithmetic.

8

described. Otherwise, replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx with y and renumber in the opposite direction, starting

at y. Insert x before y when this renumbering is complete.

For completeness, we briefly outline how this algorithm can be used to obtain an

algorithm which uses only 0(1) amortized time per operation. The list is represented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas
a list of sublists. Inside each sublist records are assigned monotonically increasing labels.

When a record is inserted into a sublist its label is the average of the labels of its neighbors,

or the label of its predecessor plus n if the record in inserted at the end of the sublist.

The algorithm tries to make the length of each sublist about log(k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1)’ where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is the

number of items in the list. When the algorithm inserts into (or deletes from) a sublist,

if the length u of the sublist is at least 2log(k + l), the list is split into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAla/ log(k + l)]
sublists of size at least log(k + l), and each sublist is inserted into the list of sublists. By

using a potential function of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8

= c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC Ilength(Li) - log(k + 1)1
i= 1

(where L1, . . . , L8 are the sublists) one can show that insertions and deletions take 0 (1)
amortized time. Order(x, y) is implemented by determining the order of the sublists con-

taining x and y (if they are in different sublists), or by comparing the labels of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (if

they are in the same sublist); this takes constant time.

3. A Real-Time Algorithm

Our real-time algorithm makes use of a technique of Willard [16,17] for performing inser-

tions and deletions in an ordered dense sequential file in time O(1og’ n) per operation. To

apply Willard’s algorithm to the order maintenance problem we implement Order(x, y) by

comparing the addresses of x and y in the file.

For simplicity, we will mostly ignore deletions and restrict the list to contain at most

N records. Our basic idea is to extend the two level scheme of Tarjan and Tsakalidis

to four levels, so that Willard’s algorithm manipulates a file with O (N / log3 N) elements,

each a sublist of O(10g3 N) elements. We need two of these levels because an insertion in

Willard’s algorithm requires O(log2 N) time. We need the third level because of Theorem

5.
The data structure is a tree of height 4. The leaves are all at depth 4 (height 0), while

the root has is at depth 0 (height 4). The leaves of this tree are the records in the list.

The root has O (N / log3 N) children. Nodes at height h = 1,2,3, called internal nodes, are

the roots of subtrees with 5 logh N leaves.

The algorithm assigns real numbers to the children of each node. For each node, the

numbers of its children increase monotonically from left to right. The numbers assigned to

children of the root are the positions in the file assigned by Willard’s algorithm. Children

of internal nodes are numbered using the following simple algorithm:

When a new‘child is inserted between two other children, its number is the

average of their numbers. When inserting at the beginning (at the end) of a

9

list of children, the new child's number is one less than (one greater than) the

number of its successor (predecessor).

This algorithm requires no renumbering. We will show (Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) that the internal

nodes have O(1og N) children, so this algorithm uses numbers with O(1og N) significant

bits.

To answer a query zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOrder(x,y), the algorithm finds the lowest common ancestor of

leaves x and y . It determines the order of x and y by comparing the numbers of the two

relevant children of this least common ancestor. Under the assumption that numbers with

O(1og N) bits can be compared in constant time, Order can be computed in constant time.

Whenever a node x of height h is the root of a subtree with more than logh N leaves,

the algorithm splits x into two new nodes, called overflow nodes, which are inserted before

and after x , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas children of x's parent. (This process is analogous to the process of inserting

into a b-tree, except that a node splits when the number of leaves in the subtree rooted

there gets too large.)

Because we can not afford to immediately spend the O(1og N) time that may be required

to split the node, the children of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx are gradually moved into the overflow nodes. Over each

of the next O(1ogN) insertions that insert into the subtrees rooted at x or its overflow

nodes, we move zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (1) children of x to the overflow nodes. Children are moved to the

overflow node which is the root of the subtree with fewest leaves. Incremental movement

can be done fast enough that the overflow nodes cannot themselves split before all of x's
children are moved. When x has no more children it can be deleted. Note that order

queries are not hindered by nodes that are in the process of splitting.

At any time, we can partition the internal nodes of the tree into three classes: overflow
nodes, which are being copied into, splitting nodes, which are being emptied, and quiescent
nodes, which are all other internal nodes. The splitting strategy causes the following lemma

to hold:

Lemma 4 Every internal node has O(1ogN) children.

Proof: No internal node is the root of a subtree with more than 1og"N leaves, h the

height of the node. At most one internal node at each height in the tree was not created

by splitting. When a node is created by splitting it is the root of a subtree with at least

(loghN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- logh-lN)/2 leaves (because a node begins splitting when it is the root of a

subtree with logh N nodes, and children are copied to the overflow node which is the root

of the subtree with the fewest leaves). If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is large enough then there cannot be enough

time for an overflow node to begin splitting before the node from which its children are

being moved is emptied and deleted (at which point the overflow nodes become quiescent).

Therefore, any internal node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx of height h = 1,2 ,3 with c children has at least (c - 1)/3
children that are the roots of subtrees with Q(logh-l N) leaves, so x has O(1og N) children.

I

When splitting a depth 1 node, we must insert the overflow nodes into Willard's data

structure. Again, we cannot spend the O(log2N) time required to do this immediately.

10

This case is complicated because queries cannot be done in a partially modified Willard

structure. Therefore we must arrange the data structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that when the split begins the

two overflow nodes have already been inserted into the Willard structure. Depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 overflow

nodes are created and inserted by a process that runs in the background independent of

the insertions that are taking place. At each insertion, a constant number of steps are

taken in this process, which is outlined below:

1. Find the child of the root x that (a) has not yet had overflow nodes allocated, (b) is

the root of a subtree with more than (2/3) log’N leaves, and (c) has the maximum

number of leaves of any such child. If there are no such children, wait until one

appears.

2. Create two overflow nodes for x.

3. Begin executing Willard’s insertion algorithm to insert the two overflow nodes

before and after x. This algorithm executes over the next O(log2N) insertions.

When done, go back to 1.

To keep this process from interfering with the order queries we must keep both old and

new versions of every field in the Willard structure that changes during an insertion. A

time stamp is used so that a query can use the appropriate version of a node. When an

insertion is finished, the time is incremented so that the new version of the structure is

activated. Since only two versions are needed at any time, this technique multiplies space

by a constant factor.

We also need to maintain a priority queue to be able to determine where to put the

overflow nodes. It is easy to make such a data structure that works in constant time per

operation, because depth 1 nodes are inserted when they have exactly [(2/3) log3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1

leaves (so they are inserted at the bottom of the priority queue) and the number of leaves

below a node increases by exactly one for each insertion beneath that node. The number

of leaves beneath a node does not decrease until that node begins to split, at which time

it has been removed from the priority queue.

We can show that, if we execute Willard’s insertion algorithm sufficiently quickly, no

depth 1 node will begin splitting before its overflow nodes are ready. This is a consequence

of the following theorem:

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 Let 5 1 , . . . , xn be n real valued variables, all initially zero. Repeatedly perform
the following procedure:

1. Find an i , 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i <_ n, such that x; = m a j {xi}. Set xi to zero.

2. Pick n nonnegative teals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal, . . . , a,, such that

3. For i = 1,. . . ,n , set xi to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi + ai.

ai = 1.

No xi will ever exceed Hn-l -k 1, where Hk = C!=, i - l , the kth harmonic number.

11

Proof: Observe that the sum of the elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz is always less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn: it is initially zero,

and one iteration of the procedure can increase it from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS to at most 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Y S , which is

also less than n.
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdl), . . . ,=(“‘I be a sequence of vectors produced by repeated application of the

procedure, where dl) is the initial zero vector. We will assume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is at least n; if not, pad

the beginning of the sequence with additional zero vectors and the following argument will

still apply. We will show that the largest element in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd”’) is less than Hn-1 + 1. Since m

was chosen arbitrarily, this will prove the theorem.

For each k = 1,. . . , n, let ?rk be a permutation on 1 , . . . , n such that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,. . . , n - 1,

For k = 1,. . . , n, define
L

i= l

that is, the sum of the k largest elements of ~ (~ - ~ + l) . We can show

This is because after the largest element of z(m-k) has been set to zero in step 1, the sum

of its k largest elements is at most and s k is maximized by concentrating all the

nonzero a,’s chosen in step 2 on these elements.

By induction,
s k

s1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Hk-1 -k - (k = 2,. . . , n).
k

Since S, is less than n, S1, the largest value in dm), is less than Hn-1 + 1.

I

Note that this bound is tight, since one can make the zi’s exceed any value less than 1
in a finite number of steps, then add Hn-1 to one of them in n - 1 more steps by adding

l / (n - 1) to n - 1 nonzero elements, then l / (n - 2) to n - 2 nonzero elements, etc.

Theorem 5 implies that at most O(l0g’N) leaves will be inserted beneath any depth

one node before its overflow nodes are ready. To see why this is so, define the fullness of

a depth one node to be zero if its overflow nodes are ready and

max(0, number of leaves - [(2/3) log3 NJ)

otherwise. During one insertion by Willard’s algorithm, the fullness of depth one nodes

increases by a total of at most O(log2 N). Since the overflow node creation process always

picks the node with the highest fullness, by Theorem 5 the fullness of any depth one node

is at most O(HN-llog2N), or O(l0g’N). The constant can be made arbitrarily small

(specifically, less than i) by executing Willard’s algorithm with sufficient speed.

We briefly outline how to modify the algorithm so that N can be variable. Initially, N

is some power of 2. When the number of elements in the data structure reaches (1 - c)N

12

for some constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, begin copying the data structure to a larger copy in which N

is doubled. Copying is done by performing Insert operations using the previous, fixed

N algorithm. A constant amount of work in this copying process is done on each of

the next zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(N) insertions, with a constant chosen to be large enough so that copying is

complete before the old data structure overflows. The same technique can be used to

handle deletions: when an item is deleted, mark it. Concurrently, make a fresh copy of

the data structure, discarding marked leaves. This is reminiscent of incremental garbage

collection [zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11.
The algorithm is presented in detail in the appendix. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4. Remarks
Our first algorithm is remarkably simple compared to previous algorithms for solving this

problem. It is also probably the best algorithm to use in practice. One of us [3) has

adapted the idea behind the algorithm to solve the problem of maintaining a sparse sorted

table in O(log2n) amortized time per insertion, where the table occupies space linear in

the number of data items. This simplifies the algorithm of Itai, Konheim and Rodeh [6] ,
which achieves the same amortized time bound.

The technique we used to develop the second algorithm is a first step towards a more

general means for converting algorithms efficient in the amortized sense to algorithms

efficient in the worst case. We have applied Theorem 5 and the ideas of Section 3 to

construct a new data structure for search trees in which a constant number of changes

are made to the data structure per update. A search tree with this property is required

to make search trees fully persistent. Such a search tree was constructed by an entirely

different means in (51.
Our second algorithm is perhaps more complex than necessary. The first step toward

creating a simpler algorithm is to devise a method of doing insertions into the list that

does O(1ogn) renumberings. This would obviate the use of of Willard’s technique (which

is in itself rather complex), and would reduce the number of levels required from four to

three.

Acknowledgements

We thank Charles Leiserson and Bob Tarjan for several interesting and enlightening dis-

cussions, and Joe Wald for his helpful comments on early drafts of this paper.

References

[l] Baker, H. G. Jr. List Processing in Real Time on a Serial Computer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC.ACM
21(4), April 1978, pages 280-294.

[2] Dietz, P. F: Maintaining Order in a Linked List. Proc. 14th ACM STOC, May

1982, pages 122-127.

13

[3] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADietz, P. F. A Simple Algorithm for Padded Lists. March 1988. In preparation.

[4] Dietz, P. F. and Sleator, D. D. Two Algorithms for Maintaining Order in a Linked

List. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. 19th ACMSTOC, May, 1987.

[5] Driscoll, J. R., Sarnak, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN., Sleator, D. D., Tarjan, R. E. Making Data Structures

Persistent. Proc. 18th ACM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTOC, May 1986. To appear in JCSS.

[6] Itai, A., Konheim, A. G., Rodeh, M. A Sparse Table Implementation of Sorted

Lists. IBM Research Report RC 9146, Nov. 1981. See section 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[71 Leiserson, C. Personal communication, 1982.

[8] Pugh, W. Efficient Concatenable Ordered Lists. TR 87-831, Department of Com-

puter Science, Cornell University, Ithaca, NY, 1987.

[9] Sleator, D. D., Tarjan, R., E. Amortized Efficiency of List Update and Paging

Rules. C.ACM 28(2), February 1985, pages 202-206.

[lo] Sleator, D. D., Tarjan, R., E. Self-Adjusting Binary Search Trees. J.ACM32(3),
July 1985, pages 652-686.

[ll] Tarjan, R. E. Personal communication.

[12] Tarjan, R. E. Amortized Computational Complexity. SIAM J. Alg. Disc. Meth.
2(6), April 1985, pages 306318.

[13] Tarjan, R. E. Data Structures and Network Algorithms. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1983.

[141 Tsakalidis, A. K. Maintaining Order in a Generalized Linked List. Acta Informat-
ica, 21(1), 1984, pages 101-112.

[15] Wegbreit, B. Retrieval from Context Trees. Info. Proc. Lett. 3(4), March 1975,
pages 119-120.

[16] Willard, D. E. Maintaining Dense Sequential Files in a Dynamic Environment.

Proc. 14th ACM STOC, May 1982, pages 114-121.

[17] Willard, D. E. Good Worst-case Algorithms for Inserting and Deleting Records

in Dense Sequential Files. ACM SIGMOD 86, May 1986, pages 251-260.

14

Appendix: Details of the Real Time Algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The real time algorithm manipulates a tree with three kinds of nodes. The leaves represent

the elements being inserted into the list; we assume that pointers to the leaves are passed

to the algorithm. The root of the tree includes a copy of Willard’s data structure, the

details of which are unimportant. All other nodes are internal nodes of height 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 or 3.

Nodes are implemented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas data structures with the following fields:

nleaves(x): The number of leaves in the subtree rooted at the node x.

chifdren(x): A doubly linked list of children of x, in order from left to right. For
leaves this field is null.

index(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: A real number. For any node y, the index fields of nodes in the

list chifdren(y) increase monotonically. For children of the root, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
index field contains the number assigned to the children of the root

by Willard’s algorithm, and is implemented using a time-stamp (this

detail is omitted below).

spfitting?(x): A boolean value. This field is true if x is an internal node other than

the root that is being split into two new nodes.

depth(x),parent(x): have the obvious meanings. The depth of the root is zero.

There is a priority queue of depth one nodes, RPQueue. A node is inserted into this

queue when it has 1(2/3) log: NJ + 1 children, and is removed when its overflow nodes have

been inserted.

- Return true if x occurs before y in the list

proc Order(z, y)
XO x; YO y;
for i + 1 to 4 do

xi t patent(s,-l); yi + parent(yi-1);
if xi = vi then return index(zi-1) < index(yi-1)
end

end
end Order

Figure 1: Real-Time Algorithm: Order

15

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInsert y after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx in the list
proc Insert (5 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy)

5 0 + x ;
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 1 to 3 do

xi + parent(xi-1);
nZeaves(x,) + deaves(xi) + 1;
if nleaves(xi) > (log, N)' A isplitting?(xi)

then SetUpSpltt(xi) end;
end;
if nleaves(x3) = \(2/3) log: N] + 1 A isplitttng?(z3) then

else if x3 is already in RPQueue then

end;
nleaves(y) + 1;
PlaceAfter(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9) ;
for i t 1 to 3 do

Insert 5 3 into RPQueue

Move x3 up one position in RPQueue

Incremental Split (x i) ;

if x, # first(children(parent(x,)))

if xi # Zast(children(parent(xi)))
then IncrementalSpli t(pred(x,)) end;

then IncrenentalSplit(next(x,)) end
end;
Do 0(1) steps of ReseruattonProcess

end Insert;

Figure 2: Real-Time Algorithm: Insert

16

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMake zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy a child of p a r e n t (z) , placing it just after
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 in the list of children. Assume paren t (x) is an

- internal node other than the root. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
proc P l a c e A f t e r (z , y)

p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt paren t (z) ;
paren t (y) + P;
i f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = f i r s t (Chi ldren(p) j then i n d e z (y) t i n d e z (z) + 1;

end;
Insert y after x in chi ldren(p)

else i n d e z (y) t (i n d e z (z) + i n d e z (n e z t (z))) / 2

end PluceA f t er

- Make y a child of p a r e n t (z) , placing it just before
-
-
proc P l a c e B e f o r e (z , y)

z in the list of children. Assume p a r e n t (z) is an

internal node other than the root.

p +- paren t (z) ;

if z = las t (ch i ldren(p)) then i n d e z (y) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ndez(s) - 1;

end;
Insert y before z in chi ldren(p)

w r e n t (y) t P;

else i n d e z (y) t (i n d e z (z) + i n d e s (p r e d (z))) / 2

end PlaceBe fore

Figure 3: Real-Time Algorithm: PlaceBefore and PlaceAfter

- Prepare an internal node of depth 2 or 3 to split.

- Create two overflow nodes and insert beneath paren t (z) .
proc Se tUpSp l i t (z)

if parent (%) # root then
Create two new nodes, y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz;
nleczues(y) +- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0;
nleaues(a) +- 0;
dep th (y) + dep th (s) ;
dep th (z) t dep th (z) ;
P l a c e B c f o r e (z , y) ;
P l a c c A f t e r (z , a)

end;
sp l i t t ing?(z) t true

end SetUpSpl i t ,

Figure 4: Real-Time Algorithm: Prepare to Split a Node

17

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACopy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk children from beneath a splitting node.
- k is a sufficiently large constant.
proc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIncrementalsplit(z)

if lspl i t t ing?(z) then return end;
for i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 1 to k do

if z has no children then
Delete z from children(parent(z));
return

end;
if nleaves(first(children(s))) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 nleaves(last(children(z))) then

y t f i rst(chi ldren(z));
Remove y from children(z);
nleaves(z) t nleaves(z) - nleaves(y);
nleaves(pred(z)) + nleaves(pred(z)) + nleaves(y);
PlaceAfter(last(children(pred(z))), y)

y t last(children(z));
Remove y from children(z);
nleaves(z) t nleaves(z) - nleaves(y);
nleaves(nezt(z)) t nleaves(nezt(z)) + nleaves(y);
PluceBefore(f i rst(children(nest(z))) , y)

else

end
end

end Incrementalsplit

Figure 5: Real-Time Algorithm: Program for Splitting

18

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe process that guarantees that depth 1 overflow nodes

- are available when neeed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReservationProcess

while true do
Wait until RPQueue is not empty;

Remove the node from the priority queue that has

Create two new nodes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz;
nleaves(y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 0;
nleaues(z) + 0;
depth(y) t 1;
depth(z) t 1;
PlaceBefore(s, y) ;
PlaceAfter(s, z) ;
Use Willard’s algorithm to insert y and z before and after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs;

Activate new time-stamped indices produced in the previous step;

splitting?(s) t true

the largest number of leaves, breaking ties arbitrarily;

end
end ReservationProcess

Figure 6: Real-Time Algorithm: Depth 1 Insertion Process

19

