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Two- and three-dimensional bearing capacity of footings in sand

A. V. LYAMIN*, R. SALGADO†, S . W. SLOAN* and M. PREZZI†

Bearing capacity calculations are an important part of
the design of foundations. Many of the terms in the
bearing capacity equation, as it is used today in practice,
are empirical. Shape factors could not be derived in the
past because three-dimensional bearing capacity compu-
tations could not be performed with any degree of
accuracy. Likewise, depth factors could not be deter-
mined because rigorous analyses of foundations em-
bedded in the ground were not possible. In this paper,
the bearing capacity of strip, square, circular and rectan-
gular foundations in sand are determined for frictional
soils following an associated flow rule using finite-element
limit analysis. The results of the analyses are used to
propose values of the shape and depth factors for calcula-
tion of the bearing capacity of foundations in sands using
the traditional bearing capacity equation. The traditional
bearing capacity equation is based on the assumption
that effects of shape and depth can be considered sepa-
rately for soil self-weight and surcharge (embedment)
terms. This assumption is not realistic, so a different
form of the bearing capacity equation is also proposed
that does not rely on it.

KEYWORDS: bearing capacity; footings/foundations; limit
analysis; sand

Les calculs de force portante sont un élément important
de l’étude des fondations. Un grand nombre des termes
utilisés dans l’équation de force portante, tels qu’ils sont
utilisés à l’heure actuelle, sont empiriques. Autrefois, il
n’était pas possible de dériver des coefficients de forme
car on ne pouvait effectuer des calculs tridimensionnels de
force portante avec la précision nécessaire. De même, il
n’était pas possible de déterminer des facteurs de profon-
deur, car l’exécution d’analyses rigoureuses de fondations
encastrées dans le sol n’était pas possible. Dans la présente
communication, on détermine la force portante de fonda-
tions linéaires, carrées, circulaires et rectangulaires dans
le sable pour des sols à frottement, à la suite d’une règle
d’écoulement, au moyen d’une analyse des limites aux
éléments finis. On utilise les résultats de ces analyses pour
proposer des valeurs de coefficients de forme et de profon-
deur pour le calcul de la force portante des fondations
dans le sable, en utilisant l’équation de force portante
traditionnelle. L’équation de force portante traditionnelle
est fondée sur une hypothèse d’après laquelle les effets de
la forme et de la profondeur peuvent être examinés
séparément pour la charge propre et la surcharge (en-
fouissement). Cette hypothèse n’étant pas réaliste, nous
proposons également une forme d’équation de force por-
tante diverse non basée sur cette hypothèse.

INTRODUCTION
The bearing capacity equation (Terzaghi, 1943; Meyerhof,
1951, 1963; Brinch Hansen, 1970) is one tool that geotech-
nical engineers employ routinely. It is used to estimate the
limit unit load qbL (referred to also as the limit unit bearing
capacity or limit unit base resistance) that will cause a
footing to undergo classical bearing capacity failure. For a
footing with a level base embedded in a level sand deposit
acted upon by a vertical load, the bearing capacity equation
has the form

qbL ¼ sqdqð Þq0Nq þ 0:5 sªdªð ÞªBNª (1)

where Nq and Nª are bearing capacity factors; sq and sª are
shape factors; dq and dª are depth factors; q0 is the
surcharge at the footing base level; and ª is the soil unit
weight below the footing base level. The limit unit load is a
load divided by the plan area of the footing, and has units
of stress. In the case of a uniform soil profile, with the unit
weight above the level of the footing base also equal to ª,
we have q0 ¼ ªD. The unit weight ª, the footing width B
and the surcharge q0 can be considered as given. The other
terms of equation (1) must be calculated or estimated by
some means.

Most theoretical work done in connection with the bearing
capacity problem has been for soils following an associated
flow rule. This also applies to the present paper. Until
recently, the only term of equation (1) that was known
rigorously was Nq (for zero self-weight), which follows
directly from consideration of the bearing capacity of a strip
footing on the surface of a weightless, frictional soil
(Reissner, 1924; see also Bolton, 1979),

qbL ¼ q0Nq (2)

where Nq is calculated from

Nq ¼
1þ sin�

1� sin�
e� tan� (3)

Considering a strip footing on the surface of frictional soil
with non-zero unit weight ª and q0 ¼ 0, the unit bearing
capacity is calculated from

qbL ¼ 0:5ªBNª (4)

There are two equations for the Nª in equation (4) that
have been widely referenced in the literature,

Nª ¼ 1:5 Nq � 1ð Þ tan� (5)

by Brinch Hansen (1970) and

Nª ¼ 2 Nq þ 1ð Þ tan� (6)

by Caquot & Kerisel (1953).
Although equation (5) was developed at a time when

computations were subject to greater uncertainties, it is close
to producing exact values for a frictional soil following an
associated flow rule for relatively low friction angle values.
It tracks well the results of slip-line analyses done by
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Hansen & Christensen (1969), Booker (1969) and Davis &
Booker (1971) for a strip footing on the surface of a
frictional soil with self-weight up to a � value of roughly
408. Martin (2005) found values of Nª based on the slip-line
method that are very accurate. Salgado (2008) proposed a
simple equation, in a form similar to equation (5), that fits
those values quite well:

Nª ¼ Nq � 1ð Þ tan 1:32�ð Þ (7)

Equation (1) results from the superposition of the bearing
capacity due to the surcharge q0 with that due to the self-
weight of the frictional soil. While the values of Nq and Nª

satisfy a standard of rigour when used independently for the
two problems for which they were developed, it is not
theoretically correct to superpose the surcharge and self-
weight effects (in fact, the surcharge is due to the self-
weight of the soil located above the footing base). Still,
while not theoretically correct, the superposition of the two
solutions as in equation (1) has been used in practice for
decades. Smith (2005) has recently shown that the error
introduced by superposition may be as high as 25%.
In addition to superposing the effects of surcharge and

self-weight, each of the two terms on the right side of
equation (1) contains shape and depth factors. The shape
factors are used to model the problem of the bearing
capacity of a footing with finite dimensions in both horizon-
tal directions, and the depth factors are used to model the
problem in which the surcharge is in reality a soil over-
burden due to embedment of the footing in the soil. The
equations for these factors have been determined empirically,
based on relatively crude models (Meyerhof, 1963; Brinch
Hansen, 1970; Vesic, 1973). Tables 1 and 2 contain the
expressions more commonly used for the shape and depth
factors, due to Meyerhof (1963), Brinch Hansen (1970), De
Beer (1970) and Vesic (1973). The experimental data on
which these equations are based are mostly due to Meyerhof

(1951, 1953, 1963), who tested both prototype and model
foundations. There was some additional experimental re-
search following the work of Meyerhof. De Beer (1970)
tested very small footings bearing on sand, determining limit
bearing capacity from load–settlement curves using the limit
load criterion of Brinch Hansen (1963).

In this paper, we present results of rigorous analyses that
we employ to obtain values of shape and depth factors for
use in bearing capacity computations in sand. The shape and
depth factors are determined by computing the bearing
capacities of footings of various geometries placed at various
depths and comparing those with the bearing capacities of
strip footings located on the ground surface for the same
soil properties (unit weight and friction angle). In addition
to revisiting the terms in the traditional bearing capacity
equation and proposing new, improved relationships, we
shall also propose a different form of the bearing capacity
equation, a simpler form, that does not require an assump-
tion of independence of the self-weight and surcharge
effects. This new form of the bearing capacity equation
consists of one term instead of two.

CALCULATION OF LIMIT BEARING CAPACITY USING
LIMIT ANALYSIS
Limit analysis: background

From the time Hill (1951) and Drucker et al. (1951,1952)
published their ground-breaking lower and upper-bound the-
orems of plasticity theory, on which limit analysis is based,
it was apparent that limit analysis would be a tool that
would provide important insights into the bearing capacity
problem and other stability applications. However, the nu-
merical techniques required for finding very close lower and
upper bounds on collapse loads, thus accurately estimating
the collapse loads themselves, were not available until very
recently.

Table 1. Commonly used expressions for shape factors

q0 term ª term

Meyerhof (1963) sq ¼ 1þ 0:1N
B

L
sª ¼ 1þ 0:1N

B

L

Brinch Hansen (1970) sq ¼ 1þ B

L
sin� sª ¼ 1� 0:4

B

L
> 0:6

Vesic (1973) sq ¼ 1þ B

L
tan� sª ¼ 1� 0:4

B

L
> 0:6

N ¼ flow number ¼ tan2(45+�/2).

Table 2. Commonly used expressions for depth factors

q0 term ª term

Meyerhof (1963) dq ¼ 1þ 0:1
ffiffiffiffiffi

N
p D

B
dª ¼ 1þ 0:1

ffiffiffiffiffi

N
p D

B

Brinch Hansen (1970)
and Vesic (1973)

D/B < 1:
dq ¼ 1þ 2 tan�(1� sin�)2

D

B

dª ¼ 1

D/B . 1
dq ¼ 1þ 2 tan�(1� sin�)2 tan�1 D

B

N ¼ flow number ¼ tan2(45+�/2)
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Limit analysis takes advantage of the lower- and upper-
bound theorems of plasticity theory to bound the rigorous
solution to a stability problem from below and above. The
theorems are based on the principle of maximum power

dissipation of plasticity theory, which is valid for soil
following an associated flow rule. If soil does not follow an
associated flow rule (the case with sands), the bearing
capacity values from limit analysis may be too high. The
focus of the present paper is on frictional soils following an
associated flow rule. However, for relative quantities (such
as shape and depth factors), the results produced by limit
analysis can be considered reasonable estimates of the
quantities for sands.

Discrete formulation of lower-bound theorem
The objective of a lower-bound calculation is to find a

stress field �ij that satisfies equilibrium throughout the soil

σ
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Fig. 1. Three-dimensional finite elements for: (a) lower-bound
analysis; (b) upper-bound analysis
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mass, balances the prescribed surface tractions, nowhere
violates the yield criterion, and maximises Q, given in the
general case by

Q ¼
ð

S

TdS þ
ð

V

XdV (8)

where T and X are, respectively, the surface tractions and
body forces. In our analyses, body forces (soil weight) are
prescribed: therefore equation (8) reduces to the first integral
only.

The numerical implementation of the limit analysis theo-
rems usually proceeds by discretising the continuum into a
set of finite elements and then using mathematical program-
ming techniques to solve the resulting optimisation problem.
The choice of finite elements that can be employed to
guarantee a rigorous lower-bound numerical formulation is
rather limited. They must be linear stress elements. Addi-
tionally, consideration of equilibrium of any two elements
sharing a face does not lead to a requirement of continuity
of the normal stress in a direction parallel to the shared face
(Fig. 1(a)). In the present analysis, these stress discontinu-
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Fig. 5. Typical upper-bound mesh and deformation pattern for
rectangular footings
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ities are placed between all elements. If D is the problem
dimensionality, then there are D + 1 nodes in each element,
and each node is associated with a (D2 + D )/2-dimensional
vector of stress variables {�ij}, i ¼ 1, . . ., D; j ¼ i, . . ., D.
These stresses are taken as the problem variables.

A detailed description of the numerical formulation of the
lower-bound theorem utilised in the present study is beyond
the scope of the paper, but can be found in Lyamin (1999)
and Lyamin & Sloan (2002a).

Discrete formulation of upper-bound theorem
The objective of an upper-bound calculation is to find a

velocity distribution u that satisfies compatibility, the flow
rule and the velocity boundary conditions, and which mini-
mises the internal power dissipation less the rate of work
done by prescribed external forces:

W1 ¼
ð

V

� _�� dV �
ð

S

TT
pu dS �

ð

V

XT
p u dV (9)

An upper-bound estimate on the true collapse load can be
obtained by equating W1 to the rate of work done by all
other external loads, given by

W2 ¼
ð

S

TTu dS þ
ð

V

XTu dV (10)

For a cohesionless soil there is no energy dissipation. In a
bearing capacity problem, this means that the bearing capa-
city comes entirely from the self-weight of the soil. Addi-
tionally, minimisation of W1 implies maximisation of W2,
which is due entirely to the tractions applied on the soil
mass by the footing.

In contrast to the lower-bound formulation, there is more
than one type of finite element that will enforce rigorous
upper-bound calculations (e.g. Yu et al., 1994; Makrodimo-
poulos & Martin, 2005). In the present work, we use the
simplex finite element illustrated in Fig. 1(b). Kinematically
admissible velocity discontinuities are permitted at all inter-
faces between adjacent elements. If D is the dimensionality
of the problem, then there are D + 1 nodes in the element,
and each node is associated with a D-dimensional vector of
velocity variables {ui}, i ¼ 1, . . ., D. These, together with a
(D2 + D )/2-dimensional vector of elemental stresses {�ij},
i ¼ 1, . . ., D; j ¼ i, . . ., D, and a 2(D � 1)-dimensional
vector of discontinuity velocity variables v

d are taken as the
problem variables.

A comprehensive description of the dimensionally inde-
pendent upper-bound formulation (suitable for cohesive-
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frictional materials) used to carry out computations for this
research is given in Lyamin & Sloan (2002b), Lyamin et al.
(2005) and Krabbenhøft et al. (2005).

TYPICAL MESHES FOR EMBEDDED FOOTING
PROBLEM
To increase the accuracy of the computed depth and

shape factors for 3D footings, the symmetry inherent in all
of these problems is fully exploited. This means that only
158, 458 and 908 sectors are discretised for the circular,
square and rectangular footings respectively, as shown in
Figs 2–7. These plots also show the boundary conditions
adopted in the various analyses and resultant plasticity
zones (shown as shaded in the figures) and deformation
patterns. The 158 sector for circular footings has been used
to minimise computation time. A slice with such a thick-
ness can be discretised using only one layer of well-shaped
elements, while keeping the error in geometry representa-
tion below 1% (which is approximately five times less than
the accuracy of the predicted collapse load, as we shall see
later).
For the lower-bound meshes, special extension elements

are included to extend the stress field over the semi-infinite
domain (thus guaranteeing that the solutions obtained are
rigorous lower bounds on the true solutions; Pastor, 1978).
To model the embedded conditions properly, the space above
the footing was filled with soil. At the same time, the model
includes a gap between the top of the footing and this fill;
this gap is supported by normal hydrostatic pressure, as
shown in the enlarged diagrams of Figs 2–7. Rough condi-

tions are applied at the top and bottom of the footing by
prescribing zero tangential velocity for upper-bound calcula-
tions and specifying no particular shear stresses for lower-
bound calculations (that is, the yield criterion is operative
between the footing and the soil in the same way as it is
operative within the soil). This modelling strategy is geome-
trically simple, producing a result that is close to the desired
quantity (pure unit base resistance) with only a slight
conservative bias when compared with other possible model-
ling options, shown in Fig. 8.

In order to illustrate the differences between results
from the different options, we performed a model compari-
son study, which is summarised in Table 3. For each
option, the lower (LB), upper (UB) and average (Avg)
values of collapse pressure were computed using FE
meshes similar to those shown in Figs 6 and 7. From the
results presented in Table 3, it is apparent that a simple
‘rigid-block’ model is on the unsafe side when ‘rough’
walls are assumed, and is too conservative when ‘smooth’
walls are assumed, when compared with realistically
shaped footings. On the other hand, the ‘rigid-plate’ model
with hydrostatically supported soil above the plate is safe
for all considered D/B ratios and has the lowest geometric
complexity (which is especially helpful in modelling 3D
cases). Note, however, that the differences between the
results of all the analyses are not large, even for the
maximum D/B value considered in the calculations. The
difference between all considered footing geometries and
wall/soil interface conditions (for a rough base in all
cases) is not greater than 14%. If we exclude the ‘rigid-

Q

B/2

R
o
u
g
h

R
o
u
g
h

Rough

Rough S
m

o
o
th

Smooth

S
m

o
o
th

Rough

R
o
u
g
h

Rough

Rough

S
m

o
o
th

Smooth

Rough

R
o
u
g
h

Rough

S
m

o
o
th

Rough Rough

Fixed

Zero thickness gap

Rough

Hydrostatic

support

Zero thickness gap

D

B/5

B/10

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Modelling options for embedded 2D footing: (a) T-bar, rough base, rough walls; (b) T-bar, rough base, smooth walls; (c) T-
cone, rough base, rough walls; (d) T-cone, rough base, smooth walls; (e) block, rough base, rough walls; (f) block, rough base, smooth
walls; (g) plate, rough base, fixed top; (h) plate, rough base, hydrostatically supported top

652 LYAMIN, SALGADO, SLOAN AND PREZZI



block’ model, this figure drops to just 5% for the maxi-
mum D/B ratio considered.

DETERMINATION OF THE TRADITIONAL BEARING
CAPACITY EQUATION TERMS
Range of conditions considered in the calculations

Our goal in this section is to generate equations for shape
and depth factors that will perform the same function as the
equations in Tables 1 and 2, but will do so with greater
accuracy. The range of friction angles of sands is from
roughly 278 to about 458 for square and circular footings,
and from 278 to about 508 for strip footings, to which plane-
strain friction angles apply. Accordingly, the frictional soils
considered in our calculations have � ¼ 258, 308, 358, 408
and 458.

We are interested in both circular and square footings. In
practice, most rectangular footings have L/B of no more than
4, where L and B are the two plan dimensions of the
footing. Accordingly, our calculations are for footings with
L/B ¼ 1, 2, 3 and 4. The maximum embedment for shallow
foundations is typically taken as D ¼ B. We more liberally
established 2 as the upper limit of the D/B range considered
in our calculations. The embedment ratios we considered
were 0.1, 0.2, 0.4, 0.6, 0.8, 1 and 2.

Determination of Nª

The very first step in this process of analysis of the
bearing capacity equation is the determination of Nª, which
requires the determination of lower and upper bounds on the
bearing capacity of a strip footing on the surface of a
frictional soil. Equation (1) is rewritten for this case as

qbL ¼ 1

2
ªBNª (11)

Calculations were done with ª ¼ 1 and B ¼ 2 so that qbL
resulted numerically equal to Nª. The lower- and upper-
bound values of Nª calculated in this way using limit analy-
sis are shown in Table 4 and Fig. 9, which also show the
values calculated using equations (5), (6) and (7). For
completeness, the table also shows the value of Nq for each
friction angle. It can be seen that the values of Nª calculated
using equation (5) fall between the lower and upper bounds
on Nª for � values lower than 408 and then fall below the
lower bound for � > 408. Values of Nª calculated using
equation (7) fall within the range determined by lower- and
upper-bound solutions for all � values of interest. On the
other hand, the Nª values calculated using equation (6) are
too high. So this equation, the Caquot & Kerisel (1953)
equation, is not correct, and its use should be discouraged.

Determination of the depth factors
The depth factor dª was taken as 1 by both Vesic (1973)

and Brinch Hansen (1970), as seen in Table 2. Conceptually,
a value of dª ¼ 1 means that the Nª term refers only to the
slip mechanism that forms below the base of the footing.
This means that the effects of the portion of the mechanism
extending above the base of the footing are fully captured
by the depth factor dq. In this section, consistent with what
has traditionally been done, we take dª ¼ 1 as well. Later in
the paper we shall present an alternative way to account for
embedment of the footing.

For the determination of dq, we consider a strip footing at
depth. For this case, equation (1) becomesT
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qbL ¼ dqq0Nq þ 0:5ªBNª

¼ dqªDNq þ 0:5ªBNª (12)

The lower and upper bounds on the second term on the
right side of (12)—and indeed the nearly exact value of it—
are known, as discussed earlier. The corresponding values of
dq can then be calculated from equation (12), rewritten as

dq ¼
qbL � 0:5ªBNª

q0Nq

(13)

The results of these calculations, given in Table 5, show
clearly that the depth factor dq does not approach 1 when
D/B ! 0, as would be suggested by the expressions given
in Table 2. On the contrary, it increases with decreasing
D/B. This fact can be explained by the inadequacy of the
logic of superposition and segregation of the different
contributions to bearing capacity. Indeed, the theory of the
depth factor dq is that it would correct for the shear
strength of the soil located above the level of the footing
base, which disappears upon the replacement of the over-
burden soil by a surcharge. The reality of the depth factor
dq, computed using equation (13), is that it accumulates
two contributions. The first contribution is the intended
one: the contribution of the shear strength of the soil

Table 4. Values of Nq and Nª calculated using limit analysis and equations (5), (6) and (7).

� Nq Nª Nª (Martin) Nª (LB) Nª (UB) Error: % Nª,w Error: %

Equation (5) Equation (6) Equation (7)

258 10.66 6.76 10.88 6.49 6.49 6.44 7.09 4.80 6.72 3.57
308 18.40 15.07 22.40 14.75 14.75 14.57 15.90 4.36 15.51 5.18
358 33.30 33.92 48.03 34.48 34.48 33.81 36.98 4.48 35.01 1.54
408 64.20 79.54 109.41 85.47 85.57 82.29 91.86 5.50 89.94 5.10
458 134.87 200.81 271.75 234.2 234.21 221.71 255.44 7.07 242.96 3.74
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Fig. 10. Illustration of difference in work done by external forces in two cases: (a) equivalent surcharge used to replace soil above
base of footing; (b) footing modelled as an embedded footing
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located above the level of the footing base, which is lost
upon its replacement by an equivalent surcharge. The
second contribution results from the fact that replacing the
soil above the footing base by an equivalent surcharge
produces a different response of the soil below the footing
base. Note that this is contrary to the assumption that the
response of the soil below the footing base is independent
of what happens above it (which is the logic behind
making dª ¼ 1). Fig. 10 shows, using upper-bound
calculations, that the rate of work done by displacing the
soil above the level of an embedded footing must be
greater than the rate of work done against an equivalent
surface footing (i.e. the footing plus a surcharge equivalent
to the overburden pressure associated with the embed-
ment). This is seen by the larger extent of the collapse
mechanism in the presence of soil above the footing base
compared with that for an equivalent surface footing. To
visualise this, one can compare Fig. 10(a) and Fig. 10(b).
It can be seen from this comparison that no displacement
of the soil is occurring on the right side of line A–A for
the case in which a surcharge load is used: so A–A
marks the boundary of the collapse mechanism in that
case. However, there is considerable displacement of soil
to the right of A–A for the case of the embedded footing.
So the fact that there is a soil-on-soil interaction at the

Table 5. Depth factor dq (obtained from weighted average of lower and upper bounds on strip footing bearing capacity) for D 0.1
to 2B and � 25–458

� D/B qbL (LB) qbL (UB) qbL q0 q0Nq 0.5ªBNª dq Error: %

258 0.1 10.62 11.07 10.65 0.2 2.13 6.49 1.95 2.11
0.2 13.90 14.41 13.94 0.4 4.26 6.49 1.75 1.83
0.4 19.99 20.73 20.05 0.8 8.53 6.49 1.59 1.85
0.6 25.92 26.87 25.99 1.2 12.79 6.49 1.52 1.83
0.8 31.93 33.16 32.02 1.6 17.06 6.49 1.50 1.92
1.0 38.08 39.67 38.20 2.0 21.32 6.49 1.49 2.08
2.0 70.85 73.95 71.09 4.0 42.65 6.49 1.51 2.18

308 0.1 21.90 23.07 22.06 0.2 3.68 14.75 1.99 2.65
0.2 27.59 28.88 27.76 0.4 7.36 14.75 1.77 2.32
0.4 38.07 39.91 38.32 0.8 14.72 14.75 1.60 2.40
0.6 48.37 50.67 48.68 1.2 22.08 14.75 1.54 2.36
0.8 58.76 61.47 59.13 1.6 29.44 14.75 1.51 2.29
1.0 69.21 72.81 69.70 2.0 36.80 14.75 1.49 2.58
2.0 125.44 132.52 126.40 4.0 73.60 14.75 1.52 2.80

358 0.1 46.99 50.04 47.63 0.2 6.66 34.48 1.98 3.20
0.2 57.29 60.89 58.05 0.4 13.32 34.48 1.77 3.10
0.4 76.49 81.09 77.46 0.8 26.64 34.48 1.61 2.97
0.6 95.11 100.74 96.30 1.2 39.96 34.48 1.55 2.92
0.8 113.46 120.65 114.98 1.6 53.27 34.48 1.51 3.13
1.0 132.07 140.95 133.95 2.0 66.59 34.48 1.49 3.31
2.0 232.93 248.15 236.15 4.0 133.18 34.48 1.51 3.22

408 0.1 108.09 117.84 111.43 0.2 12.84 85.57 2.01 4.37
0.2 128.53 139.60 132.32 0.4 25.68 85.57 1.82 4.18
0.4 165.62 179.30 170.31 0.8 51.36 85.57 1.65 4.02
0.6 201.32 217.82 206.98 1.2 77.03 85.57 1.58 3.99
0.8 237.00 256.76 243.77 1.6 102.71 85.57 1.54 4.05
1.0 273.13 295.84 280.91 2.0 128.39 85.57 1.52 4.04
2.0 463.99 499.86 476.28 4.0 256.78 85.57 1.52 3.77

458 0.1 277.45 312.38 290.39 0.2 26.97 234.21 2.08 6.01
0.2 321.10 360.05 335.53 0.4 53.95 234.21 1.88 5.80

0.4 401.50 447.54 418.56 0.8 107.90 234.21 1.71 5.50

0.6 479.00 531.41 498.42 1.2 161.85 234.21 1.63 5.26

0.8 555.46 614.58 577.37 1.6 215.80 234.21 1.59 5.12

1.0 631.77 696.15 655.63 2.0 269.75 234.21 1.56 4.91

2.0 1019.70 1117.08 1055.79 4.0 539.50 234.21 1.52 4.61
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level of the base of the footing, as opposed to simply a
surcharge applied on the soil surface with a footing also
resting on the soil surface, does have an impact on what
happens below the footing base level. When that is
ignored by making dª ¼ 1, the effects appear in the value
of dq.
The depth factor dq is plotted in Fig. 11 with respect to

the depth of embedment for the five friction angles exam-
ined: 258, 308, 358, 408 and 458. The following equation fits

well the numbers for � ¼ 258 to 458 in the D/B range from
0 to 2.

dq ¼ 1þ 0:0036�þ 0:393ð Þ D

B

� ��0:27

(14)

In this and all subsequent equations presented in the paper it
is assumed that the angle of soil internal friction, �, is
expressed in degrees.

Table 6. Lower and upper bounds on shape factors and their weighted averages.

Circular footing

� Nª sªNª (LB) sª (LB) sªNª (UB) sª (UB) ˜UB/˜LB w (LB) w (UB) sªNª,w sª,w

258 6.49 5.65 0.87 8.26 1.27 3.57 0.78 0.22 6.22 0.96
308 14.75 14.10 0.96 19.84 1.35 2.69 0.73 0.27 15.65 1.06
358 34.48 37.18 1.08 52.51 1.52 2.69 0.73 0.27 41.33 1.20
408 85.57 106.60 1.25 157.21 1.84 2.41 0.71 0.29 121.45 1.42
458 234.21 338.00 1.44 539.22 2.30 2.31 0.70 0.30 398.80 1.70

Square footing

� Nª sªNª (LB) sª (LB) sªNª (UB) sª (UB) ˜UB/˜LB w (LB) w (UB) sªNª,w sª,w

258 6.49 5.10 0.79 9.05 1.39 4.15 0.81 0.19 5.87 0.90
308 14.75 12.67 0.86 21.82 1.48 4.03 0.80 0.20 14.49 0.98
358 34.48 32.96 0.96 58.60 1.70 3.54 0.78 0.22 38.61 1.12
408 85.57 91.04 1.06 184.73 2.16 3.30 0.77 0.23 112.84 1.32
458 234.21 277.00 1.18 683.09 2.92 3.63 0.78 0.22 364.79 1.56

Rectangular footing, L/B ¼ 1.2

� Nª sªNª (LB) sª (LB) sªNª (UB) sª (UB) ˜UB/˜LB w (LB) w (UB) sªNª,w sª,w

258 6.49 4.77 0.73 13.60 2.10 6.80 0.87 0.13 5.90 0.91
308 14.75 11.57 0.78 30.31 2.05 5.22 0.84 0.16 14.58 0.99
358 34.48 28.48 0.83 79.11 2.29 3.93 0.80 0.20 38.75 1.12
408 85.57 71.91 0.84 268.98 3.14 4.44 0.82 0.18 108.14 1.26
458 234.21 194.70 0.83 1013.72 4.33 3.97 0.80 0.20 359.59 1.54

Rectangular footing, L/B ¼ 2

� Nª sªNª (LB) sª (LB) sªNª (UB) sª (UB) ˜UB/˜LB w (LB) w (UB) sªNª,w sª,w

258 6.49 5.10 0.79 12.47 1.92 5.99 0.86 0.14 6.15 0.95
308 14.75 12.10 0.82 27.57 1.87 4.44 0.82 0.18 14.94 1.01
358 34.48 28.87 0.84 71.77 2.08 3.78 0.79 0.21 37.84 1.10
408 85.57 71.10 0.83 233.92 2.73 4.60 0.82 0.18 100.19 1.17
458 234.21 189.60 0.81 870.00 3.71 5.38 0.84 0.16 296.19 1.26

Rectangular footing, L/B ¼ 3

� Nª sªNª (LB) sª (LB) sªNª (UB) sª (UB) ˜UB/˜LB w (LB) w (UB) sªNª,w sª,w

258 6.49 5.16 0.80 11.74 1.81 4.85 0.83 0.17 6.28 0.97
308 14.75 12.08 0.82 26.13 1.77 3.85 0.79 0.21 14.98 1.02
358 34.48 28.11 0.82 68.69 1.99 3.65 0.78 0.22 36.84 1.07
408 85.57 67.36 0.79 214.76 2.51 4.45 0.82 0.18 94.41 1.10
458 234.21 174.90 0.75 786.85 3.36 5.10 0.84 0.16 275.26 1.18

Rectangular footing, L/B ¼ 4

� Nª sªNª (LB) sª (LB) sªNª (UB) sª (UB) ˜UB/˜LB w (LB) w (UB) sªNª,w sª,w

258 6.49 5.15 0.79 11.30 1.74 3.97 0.80 0.20 6.39 0.98
308 14.75 11.98 0.81 25.20 1.71 3.40 0.77 0.23 14.98 1.02
358 34.48 27.50 0.80 67.50 1.96 3.75 0.79 0.21 35.92 1.04
408 85.57 64.78 0.76 203.40 2.38 4.17 0.81 0.19 91.58 1.07
458 234.21 165.00 0.70 739.00 3.16 5.19 0.84 0.16 257.66 1.10
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Determination of sª
For a square, circular or rectangular footing on the surface

of a soil deposit, equation (1) becomes

qbL ¼ 0:5ªBsªNª (15)

Given that 0.5ªB ¼ 1 in our calculations, the calculated
bounds on qbL are bounds on sªNª:

These values are shown
in Table 6. The lower-bound sª is obtained by dividing the
lower-bound sªNª by the corresponding Nª value from
Martin (2005), shown in the second column of the table
(and approximated by equation (7)). The bounds on sª are
also given in Table 6.

Taking the average of the upper and lower bounds as our
best estimate of sª would be appropriate if the lower and
upper bounds converged to a common value at the same rate
with increasing mesh refinement. It was observed, however,
particularly for rectangular footings (for which computation
accuracy drops significantly with increasing values of L/B
because of the coarser mesh that must be used), that the
convergence rates are different for lower- and upper-bound
calculations. A convergence study was performed for each
of the 3D shapes considered for footings in the present
paper by using progressively finer meshes. The convergence
rates are approximately the same for lower- and upper-bound
computations for the plane-strain case, as shown in Fig.
12(a), but the convergence rates for bounds on the bearing
capacity of footings with finite values of L are significantly
different (see Fig. 12(b)). This means that taking the average
of the two bounds does not give the best estimate of sª,
which is obtained instead from the asymptotes computed for
the lower- and upper-bound solutions. If, say LB1 and LB2

are two lower-bound estimates on some quantity obtained
with two different FE meshes, and UB1 and UB2 are two
upper-bound solutions from two meshes like the two lower-
bound meshes, then the ratio of convergence rates of bound-
ing solutions can be written as

Æ ¼ ˜UB

˜LB
¼ UB1 � UB2

LB2 � LB1

Given that information, the point of intersection of LB and
UB plots (which we may call a weighted-average approxima-
tion to the collapse load) can be estimated as

PI ¼ wLBLB1 þ wUBUB1

where

wLB ¼ Æ

1þ Æ
, wUB ¼ 1

1þ Æ

To assess the level of accuracy that can be expected from
this approach, Nª was calculated using the above formula
and coarse meshes with the same pattern as the cross-
sections of the 3D meshes used for circular and rectangular
footings. The results of this test are presented in the last two
columns of Table 4. The coarse meshes used in the Nª

computations result in a wide gap between bounds (as
observed in some of the 3D calculations), but the weighted
average estimates, Nª,w, are quite close to the exact values
of Nª.

Figure 13 shows the results of calculations for surface
footings. These results suggest that there are no simple
generalisations, based on physical rationalisations, as to what
the shape factor sª should be. It can be greater or less than
1, and increase or decrease with increasing B/L. Note that sª
is both less than 1 and decreases with increasing B/L for �

¼ 258 and � ¼ 308, whereas it is greater than 1 and
increases with increasing B/L for � ¼ 358–458 (which are
the cases of greater interest in practice). Note also that the
value of � that would lead to sª ¼ 1 for all values of B/L is
slightly greater than 308. Using the Martin (2005) Nª values
as a reference, our shape factors for � ¼ 358–458 are 15–
20% lower than the values of Erickson & Drescher (2002),
obtained using FLAC. A final interesting observation is that
the variation of sª with B/L is essentially linear for all �
values considered. Zhu & Michalowski (2005) also observed
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a linear relationship between sª and B/L for values of B/L
less than approximately 0.3, but a more complex trend for
B/L . 0.3. Their sª values were also less than 1 for � ,

308 and greater than 1 for � . 308.
The following equation approximates quite well the shape

factor for surface footings calculated using the present
analysis:

sª ¼ 1þ 0:0336�� 1ð Þ B
L

(16)

In deriving equation (16), we used the bearing capacity of
the square footing for B/L ¼ 1. The bearing capacity of the
circular footing is slightly greater: the shape factor for a
circular footing can be obtained by multiplying that of the
square footing under the same conditions by 1 + 0.002�.
There are a number of physical processes whose inter-

action produces the bearing capacities of strip and finite-size
footings. Two competing effects are the larger slip surface
area for finite-size footings and the larger constraint/confine-
ment imposed on the mechanism in the case of strip
footings. The larger slip surface area (or larger plastic area)
that would lead to sª . 1 was observed for circular footings
by Bolton & Lau (1993) and by Zhu & Michalowski (2005)
using finite element analysis; it was earlier hypothesised by

Meyerhof (1963). In contrast, Vesic (1973) and Brinch
Hansen (1970) proposed expressions yielding sª , 1 (refer
to Table 1).

Based on our results, it would appear that, for sufficiently
low � values, the greater constraint imposed on slip mechan-
isms in the case of the upper bound or greater confinement
imposed on the stress field in the case of the lower-bound
method more than compensates for the smaller slip surface
area, resulting in sª , 1. But for � values greater than
about 308, which is the range we tend to see in practice, the
larger slip surface area dominates, and sª . 1. This con-
trasts with the Vesic (1973) and Brinch Hansen (1970)
equations, popular in practice, which give sª , 1 under all
conditions. The physical reasoning that has been advanced
in support of these equations is that square and rectangular
footings generate smaller mean stress values below the
footing, which in turn lead to lower shear strength than that
available for a strip footing under conditions of plane strain.
However, that argument applies only for footings placed on
the surface of identical sand deposits, with the same relative
density, for which qbL will indeed be larger for a plane-
strain footing (for which � will be higher) than for a
circular or rectangular footing with the same width B. If
equations in terms of � are used in calculations, that

Table 7. Lower and upper bounds on sq for square footing and their weighted averages

� D/B qbL (LB) qbL (UB) qbL,w dqªDNq sq (LB) sq (UB) sq,w

258 0.0 5.10 9.05 5.87 0.00
0.1 10.53 14.88 11.37 4.16 1.30 1.40 1.32
0.2 15.50 21.06 16.58 7.45 1.40 1.61 1.44
0.4 25.88 34.54 27.56 13.56 1.53 1.88 1.60
0.6 37.03 49.21 39.39 19.50 1.64 2.06 1.72
0.8 48.94 65.37 52.13 25.53 1.72 2.21 1.81
1.0 61.71 82.94 65.83 31.71 1.79 2.33 1.89
2.0 138.40 198.80 150.12 64.60 2.06 2.94 2.23

308 0.0 12.67 21.82 14.49 0.00
0.1 23.58 34.50 25.75 7.31 1.49 1.74 1.54
0.2 33.44 47.44 36.22 13.01 1.60 1.97 1.67
0.4 54.04 76.94 58.59 23.57 1.76 2.34 1.87
0.6 76.22 109.35 82.80 33.93 1.87 2.58 2.01
0.8 100.10 145.60 109.14 44.38 1.97 2.79 2.13
1.0 125.60 185.41 137.49 54.95 2.06 2.98 2.24
2.0 280.60 429.60 310.21 111.65 2.40 3.65 2.65

358 0.0 32.96 58.60 38.61 0.00
0.1 55.87 85.73 62.45 13.15 1.74 2.06 1.81
0.2 76.58 117.27 85.55 23.57 1.85 2.49 1.99
0.4 119.60 188.92 134.88 42.98 2.02 3.03 2.24
0.6 165.70 265.33 187.66 61.82 2.15 3.34 2.41
0.8 215.20 347.35 244.33 80.50 2.26 3.59 2.56
1.0 268.60 432.52 304.73 99.47 2.37 3.76 2.68
2.0 594.20 959.73 674.77 201.67 2.78 4.47 3.15

408 0.0 91.04 184.73 112.84 0.00
0.1 143.30 260.76 170.64 25.86 2.02 2.94 2.23
0.2 190.50 341.83 225.72 46.75 2.13 3.36 2.41
0.4 287.00 508.50 338.55 84.74 2.31 3.82 2.66
0.6 391.10 683.55 459.16 121.41 2.47 4.11 2.85
0.8 502.80 876.80 589.84 158.20 2.60 4.37 3.02
1.0 622.10 1086.60 730.20 195.34 2.72 4.62 3.16
2.0 1340.00 2385.20 1583.24 390.71 3.20 5.63 3.76

458 0.0 277.00 683.09 364.79 0.00
0.1 412.40 890.12 515.67 56.18 2.41 3.68 2.69
0.2 533.80 1111.70 658.73 101.32 2.53 4.23 2.90
0.4 777.50 1599.56 955.21 184.35 2.71 4.97 3.20
0.6 1029.00 2121.28 1265.13 264.21 2.85 5.44 3.41
0.8 1307.00 2667.60 1601.13 343.16 3.00 5.78 3.60
1.0 1601.00 3234.50 1954.13 421.42 3.14 6.05 3.77
2.0 3344.00 6577.20 4042.95 821.58 3.73 7.17 4.48
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difference should not be accounted for by making sª , 1,
but rather by taking due account of the lower � for footings
in conditions other than plane-strain conditions. So a physi-
cal reasoning that does not comprehensively account for all
the active processes may lead to the wrong conclusion, as in
the case that has been made for sª less than 1 for equations
written in terms of �.

Determination of sq
The final factor to determine is the shape factor sq. Now

equation (1) is used directly. We can rewrite it so that sq is
expressed as

sq ¼
qbL � 0:5 sªdªð ÞªBNª

dqq0Nq

(17)
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Fig. 14. Shape factor sq against B/L for various D/B ranging from 0.1 to 2 and: (a) � 258; (b) � 308;
(c) � 358; (d) � 408; (e) � 458
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It is clear that we must know sª in order to calculate sq.
Here we make the operational assumption that sª is indepen-
dent of depth. When we make this assumption, we implicitly
decide that all of the depth-related effects that were not

reflected in the values of dq, because they are coupled with
the footing shape, will be captured by sq. Calculations are
summarised for square footings in Table 7. The results are
shown graphically for all values of L/B in Fig. 14. Note that
sq is not defined at D ¼ 0, when q0 ¼ 0, and that it must
equal 1 for B/L ¼ 0 (plane strain). The mathematical form

sq ¼ 1þ fq1 �,
D

B

� �

B

L

� � fq2 �,
D
B

� �

(18)

can be used to fit the results, where functions fq1 and fq2 of
� and D/B must be found such that the fit is optimal. For
low � values and B/L < 0.5, the behaviour is very nearly
linear, with fq2 being approximately equal to 1. The follow-
ing expression fits the limit analysis results:

sq ¼ 1þ 0:098�� 1:64ð Þ D

B

� �0:7�0:01�
B

L

� �1�0:16
D
B

� �

(19)

For small D/B values, equation (19) is approximately
linear in B/L. The equation, for B/L ¼ 1, may be applied to
square footings. For circular footings, the sq of equation (19)
must be multiplied by an additional factor equal to 1 +
0.0025�.

*Depth factor, dγ
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Table 8. Shape and depth factors, s�ª and d
�
ª , for circular, square and rectangular footings

� D/B qbL (2D) d�ª Circular Square L/B ¼ 2 L/B ¼ 3

qbL s�ª qbL s�ª qbL s�ª qbL s�ª

258 0.0 6.49 1.00 6.22 0.96 5.87 0.90 6.15 0.95 6.28 0.97
0.1 10.65 1.64 12.14 1.14 11.37 1.07 10.88 1.02 10.80 1.01
0.2 13.94 2.15 17.61 1.26 16.58 1.19 15.10 1.08 14.69 1.05
0.4 20.05 3.09 29.09 1.45 27.56 1.37 23.78 1.19 22.54 1.12
0.6 25.99 4.01 41.61 1.60 39.39 1.52 33.02 1.27 30.80 1.18
0.8 32.02 4.93 55.09 1.72 52.13 1.63 43.03 1.34 39.66 1.24
1.0 38.20 5.89 69.81 1.83 65.83 1.72 54.00 1.41 49.23 1.29

308 0.0 14.75 1.00 15.65 1.06 14.49 0.98 14.94 1.01 14.98 1.02
0.1 22.06 1.50 27.76 1.26 25.75 1.17 24.03 1.09 23.40 1.06
0.2 27.76 1.88 38.99 1.40 36.22 1.30 32.24 1.16 30.83 1.11
0.4 38.32 2.60 62.63 1.63 58.59 1.53 49.57 1.29 46.22 1.21
0.6 48.68 3.30 88.45 1.82 82.80 1.70 68.40 1.40 62.52 1.28
0.8 59.13 4.01 116.66 1.97 109.14 1.85 88.83 1.50 79.89 1.35
1.0 69.70 4.73 147.25 2.11 137.49 1.97 111.04 1.59 98.59 1.41

358 0.0 34.48 1.00 41.33 1.20 38.61 1.12 37.84 1.10 36.84 1.07
0.1 47.63 1.38 68.01 1.43 62.45 1.31 56.97 1.20 54.09 1.14
0.2 58.05 1.68 92.41 1.59 85.55 1.47 74.63 1.29 69.17 1.19
0.4 77.46 2.25 143.84 1.86 134.88 1.74 111.71 1.44 100.43 1.30
0.6 96.30 2.79 199.69 2.07 187.66 1.95 150.83 1.57 132.99 1.38
0.8 114.98 3.33 258.67 2.25 244.33 2.12 193.34 1.68 168.06 1.46
1.0 133.95 3.88 323.47 2.41 304.73 2.28 239.99 1.79 206.57 1.54

408 0.0 85.57 1.00 121.45 1.42 112.84 1.32 100.19 1.17 94.41 1.10
0.1 111.43 1.30 184.61 1.66 170.64 1.53 141.46 1.27 129.80 1.16
0.2 132.32 1.55 242.56 1.83 225.72 1.71 179.56 1.36 162.30 1.23
0.4 170.31 1.99 361.46 2.12 338.55 1.99 258.87 1.52 226.05 1.33
0.6 206.98 2.42 490.93 2.37 459.16 2.22 344.64 1.67 299.72 1.45
0.8 243.77 2.85 628.18 2.58 589.84 2.42 438.67 1.80 376.67 1.55
1.0 280.91 3.28 779.86 2.78 730.20 2.60 542.80 1.93 461.57 1.64

458 0.0 234.21 1.00 398.80 1.70 364.79 1.56 296.19 1.26 275.26 1.18
0.1 290.39 1.24 568.77 1.96 515.67 1.78 399.94 1.38 364.86 1.26
0.2 335.53 1.43 724.32 2.16 658.73 1.96 498.41 1.49 448.61 1.34
0.4 418.56 1.79 1040.75 2.49 955.21 2.28 704.88 1.68 621.22 1.48
0.6 498.42 2.13 1379.80 2.77 1265.13 2.54 925.73 1.86 800.91 1.61
0.8 577.37 2.47 1729.87 3.00 1601.13 2.77 1164.91 2.02 991.13 1.72
1.0 655.63 2.80 2120.67 3.23 1954.13 2.98 1422.37 2.17 1195.08 1.82
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Alternative form of bearing capacity equation for sands
As noted both in the present paper and in Salgado et al.

(2004) for clays, shape and depth factors are interdependent,
in contrast with the assumption that it is necessary to
propose a bearing capacity equation of the form of equation
(1). Whereas in the preceding subsections we retained the
traditional form of the bearing capacity equation, and deter-
mined expressions for sq, sª, dq and dª that take due account
of the interdependence of all quantities, we shall now
explore an alternative form of the bearing equation that is
simpler and does not attempt to dismember bearing capacity
into artificial components.

A much simplified form of the bearing capacity equation
can be proposed now that numerical limit analysis allows
the overburden to be treated as a soil and not a surcharge.
When we do that, the Nq term completely disappears, and
we are left with

qbL ¼ 1

2
ªBs�ª d�ª Nª (20)

As before, we follow tradition and separate depth and
shape effects in equation (20) by using two factors (d�ª and
s�ª ). If we set d�ª as a function of depth only, we can use
equation (20) to calculate the bearing capacity of strip
footings, for which s�ª is 1. For rectangular and circular
footings, we find that s�ª depends not only on B/L but also
on depth.

Using the same data as before, we can calculate d�ª by
using

d�ª ¼
qbL,stripjD

B

qbL,stripjD
B
¼ 0

(21)

Figure 15 shows the depth factor, calculated as per equa-
tion (21), against D/B for the five values of friction angle
considered. The relationship between d�ª and D/B is almost
perfectly linear. The following equation represents the
straight lines shown in the figure quite well:

d�ª ¼ 1þ 8:404� 0:151�ð Þ D
B

(22)

where the friction angle is given in degrees.
The shape factor is calculated for a given D/B value as

s�ª ¼
qbLjB

L

qbL,strip
(23)

The value of s�ª for D/B ¼ 0 is obviously the same as sª,
given by equation (16). The ratio of s�ª to sª is therefore a
function of D/B and B/L that takes the value of 1 at D/B ¼
0. The following equation captures this relationship quite
well:

s�ª
sª

¼ 1þ
�

0:31þ 0:95
B

L

�

(2:63þ 0:023�)

�

D

B

�1:15�0:54
B
L

(24)

In deriving the depth and shape factors, we assumed d�ª
to be independent of shape, with the result that the shape
factor depends on depth, as clearly shown by equation (24).
When we multiply together the shape factor and depth factor
in equation (20), the issue of whether it is the depth factor
that depends on B/L or the shape factor that depends on D/B
disappears. In other words, the same final equation would
have resulted had we assumed the shape factor to be
independent of depth and the depth factor to depend on B/L,
or, put more simply, had we assumed a single correction
factor, function of �, B/L and D/B.

All computed values of d�ª and s�ª for considered footing
shapes and the ranges of D/B and � are prsented in Table 8.

SUMMARY AND CONCLUSIONS
Rigorous upper- and lower-bound analyses of circular,

rectangular and strip footings in sand have been performed.
The analyses provided ranges within which the exact col-
lapse loads for the footings are to be found. This study
became possible because of the development of efficient
algorithms for optimisation of stress fields for lower-bound
analysis and velocity fields for upper-bound analysis.

We have also examined the traditional bearing capacity
equation and the underlying assumptions of superposition of
surcharge and self-weight terms and independence of shape
factors from depth and depth factors from shape of the
footings. It was found that these assumptions are not valid.
We proposed new shape and depth factors that do account
for the interdependence of all the terms. Additionally, the
derivation of these factors did not require making the
assumption of superposition.

An alternative bearing capacity equation with a single
term is simpler than the traditional form of the bearing
capacity equation. For surface strip footings, the equation
reduces to the traditional 1

2
ªBNª form. Depth is accounted

for by multiplying this term by a depth factor d�ª , and shape
by multiplication by a shape factor s�ª . As shape and depth
are not truly independent, the final equation can be viewed
as simply the basic 1

2
ªBNª term multiplied by factors that

are functions of B/L and D/B.
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