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Abstract. Solitary wave runup on a non-plane beach is

studied analytically and numerically. For the theoretical

approach, nonlinear shallow-water theory is applied to ob-

tain the analytical solution for the simplified bottom geom-

etry, such as an inclined channel whose cross-slope shape

is parabolic. It generalizes Carrier-Greenspan approach for

long wave runup on the inclined plane beach that is currently

used now. For the numerical study, the Reynolds Averaged

Navier-Stokes (RANS) system is applied to study soliton

runup on an inclined beach and the detailed characteristics

of the wave processes (water displacement, velocity field,

turbulent kinetic energy, energy dissipation) are analyzed.

In this study, it is theoretically and numerically proved that

the existence of a parabolic cross-slope channel on the plane

beach causes runup intensification, which is often observed

in post-tsunami field surveys.

1 Introduction

For the mitigation of tsunami hazard, the estimation of the

characteristics of the flooding zone of the tsunami attack is

one of the most important aspects of research. Analytical

and numerical methods are widely applied to analyze the

tsunami wave runup characteristics. Taking into account the

usual large scales of tsunami waves induced by strong earth-

quakes, the depth-averaged 1-D and 2-D models of nonlinear

shallow-water theory are used to study tsunami wave trans-

formation and runup. Some of the numerical models (TU-

NAMI, MOST, etc.), adapted to the global ocean bathymetry

datasets, are currently used in tsunami research (Goto et al.,

1997; Titov and Gonzalez, 1997). Observed data, as well
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as data from laboratory experiments, are applied to verify

the numerical models. The analytical approach, developed

for the simplified beach geometry (plane beach of constant

slope) and based on the Carrier-Greenspan transformation of

shallow-water equations, is also applied to analyze tsunami

runup characteristics (Yeh et al., 1997; Pelinovsky, 1997; Liu

et al., 2007).

Real bottom bathymetry and coastal topography are much

more complicated than the idealized plane beach. Runup of

long waves on beaches of complicated bathymetry is stud-

ied numerically, mainly in the framework of shallow-water

theory, see for instance (Zelt, 1986, Liu et al., 1995; Ozkan-

Haller and Kirby, 1997; Titov and Synolakis, 1997; Broc-

chini et al., 2001). It is also the case that the wave field

has large variability in temporal and spatial scales, especially

with different near-shore conditions, where full 3-D flow

characteristics appear. For these reasons, the existing ana-

lytical and numerical models are still not sufficient enough

to explain many natural phenomena such as extreme runup

height often observed in tsunami field surveys. For exam-

ple, in 1993, southwest of Hokkaido, an earthquake in the

Japan (East) Sea caused more than a 30-m runup height near

Hamatsumae (Hokkaido Tsunami Survey Group, 1993). It

is anticipated that this anomalously large runup height was

mainly caused by the unique geometrical shape that is the

existence of a channel on the beach whose cross-slope shape

is parabolic in form. To explain such extreme runup phenom-

ena, more accurate analytical and numerical models need to

be developed, and some of the recent progress in this field

is summarized in Dalrymple et al. (2006), Pelinovsky (2006)

and Liu et al. (2007).

The main goal of this paper is to study the runup of solitary

waves on non-plane beaches analytically and numerically.

The rigorous analytical solution of the nonlinear shallow-

water equations for the wave runup on the beach in a channel
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Fig. 1. The characterized cross-section and longitudinal projection

of the bay.

of parabolic cross-slope shape is obtained. It generalizes the

Carrier-Greenspan transformation that is currently used for

the long wave runup on a plane beach of constant slope. It

is theoretically shown that the runup height in the channel

whose cross-slope shape is parabolic is larger than that of

simple shaped cross-slope (Sect. 2). Numerical simulations

of solitary wave runup on an inclined beach with parabolic

cross-slope shape are performed in the framework of the 3-

D Reynolds Averaged Navier-Stokes system (Sect. 3). De-

tailed characteristics of the wave processes (water displace-

ment, velocity field, turbulent kinetic energy and energy dis-

sipation) are analyzed and compared. Results of 3-D com-

putations are compared, particularly with the experimental

data of Zelt (1986) reproduced in 2-D simulations by Ozkan-

Haller and Kirby (1997), and analytical formulas for soliton

runup.

2 Analytical theory of long wave runup on beaches in a

narrow bay of parabolic shape

Usually tsunami waves generated by strong earthquakes have

long wavelengths compared to water depth (in the order of

hundreds of km), and their fronts are almost straight (quasi-

plane waves). The characteristic width of the inclined chan-

nel we are interested in is significantly smaller than wave

length (in the order of 10 km), so that waves entering such

channels are assumed to have uniform flow in the cross-

section. For simplicity, we assume the analytical expression

for the bottom shape as

z(x, y) = −h(x) + f (y). (1)

This geometry is displayed in Fig. 1. If the wave propagates

along the x-axis, the two-dimensional equations of nonlinear

shallow water theory can be integrated on the cross-section,

and the corresponding equations are one-dimensional:

∂u

∂t
+ u

∂u

∂x
+ g

∂H

∂x
= g

dh

dx
,

∂S

∂t
+

∂

∂x
(Su) = 0, (2)

where H(x, t)=h(x)+η(x, t) is the total depth along the

channel, η(x, t) is the displacement of the water surface,

S(x, t) is the area of the cross-section of the channel, and

u(x, t) is the mean flow velocity. Integration of (1) makes

the system (2) closed, and the solution depends on the beach

geometry. The general approach to solve analytically the sys-

tem (2) is suggested in (Zahibo et al., 2006). Here we con-

sider a bay of parabolic shape

f (y) = qy2, (3)

therefore, the function, S is

S =
4

3q1/2
H 3/2, (4)

where q is an arbitrary constant. The next approximation is

a constant bottom slope of the channel axis; thus

h(x) = −αx. (5)

The system (2) under these conditions reduces to

∂u

∂t
+u

∂u

∂x
+g

∂H

∂x
= g

dh

dx
,

∂H

∂t
+u

∂H

∂x
+

2

3
H

∂u

∂x
= 0, (6)

and differs from the “classical” one-dimensional equations

for the wave runup on plane beach by the constant coeffi-

cient 2/3. As a result, the same methods of solution of the

hyperbolic system like the hodograph transformation can be

applied for such geometry.

Introducing the Riemann invariants

I± = u ± 2

√

3

2
gH + αgt, (7)

the system (6) is re-written in the form

∂I±
∂t

+ c±
∂I±
∂x

= 0, (8)

where the characteristic speeds are

c± =
2

3
I± +

1

3
I∓ − αgt. (9)

Multiplying (8) on the Jacobian ∂(t, x)/∂(I+, I−), assum-

ing that it is not zero (this value is achieved when the wave

“breaks”), it can be transformed to

∂x

∂I∓
− c±

∂t

∂I∓
= 0. (10)

The system (10) is nonlinear, due to the dependence c± from

I±, but it can be reduced to linear by eliminating x

∂2t

∂I+∂I−
+

2

I+ − I−

(

∂t

∂I−
−

∂t

∂I+

)

= 0. (11)

Let us introduce new arguments:

λ =
I+ + I−

2
= u + αgt, (12)

σ =
I+ − I−

2
=

√

6gH. (13)
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Then, Eq. (11) takes the form

∂2t

∂λ2
−

∂2t

∂σ 2
−

4

σ

∂t

∂σ
= 0. (14)

Extracting time from (12) and substituting

u =
1

σ

∂8

∂σ
, (15)

Eq. (14) is re-written in the final form

∂28

∂λ2
−

∂28

∂σ 2
−

2

σ

∂8

∂σ
= 0. (16)

In terms of the new variables, the physical variables can be

expressed as

η =
1

2g

[

2

3

∂8

∂λ
− u2

]

, u =
1

σ

∂8

∂σ
, (17)

x =
η

α
−

σ 2

6gα
, t =

λ − u

gα
. (18)

The Eq. (16) can be reduced to the 1-D wave equation, and

its solution can be presented explicitly through two arbitrary

functions

8(λ, σ ) =
91(λ − σ) + 92(λ + σ)

σ
. (19)

Taking into account that from physical point of view the

function 8 should be bounded everywhere including the

moving shoreline σ=0, and therefore only one arbitrary func-

tion 9 is in the solution (19). It transforms to

8(λ, σ ) =
9(λ − σ) − 9(λ + σ)

σ
. (20)

So, the initial set of nonlinear shallow water equations has

the analytical solution (20) and all physical variables can

be found via function 8(λ.σ) using simple operations. The

main advantage of this form is that the moving (unknown)

shoreline now corresponds to σ=0 (since the total depth

H=0) and therefore, solution (20) is determined in the half-

line −∞<σ<0 with fixed boundary. Such transformation

generalizes the Carrier-Greenspan transformation (Carrier

and Greenspan, 1958) actively used in the theory of long

wave runup on plane beaches (Spielfogel, 1976; Pedersen

and Gjevik, 1983; Synolakis, 1987; Pelinovsky and Mazova,

1992; Pelinovsky, 1996; Carrier et al., 2003; Kânoğlu, 2004;

Tinti and Tonini, 2005; Kânoğlu and Synolakis, 2006; Di-

denkulova et al., 2006; Antuono and Brocchini, 2007). It is

important to mention that in the case of the “parabolic” cross-

slope we have the simplified analytical solution to compare

with the classical case of a plane slope beach when the gen-

eral solution can be expressed in the integral form only. As a

result, only algebraic manipulations are required to describe

the tsunami wave runup on a beach. In fact, this approach

for a parabolic bay was developed in the paper (Zahibo et al.,

2006) and is reproduced here for better understanding of the

analytical solution obtained below.

The solution (20) has evident physical sense and describes

the reflection of incident waves from the beach. In the case of

non-breaking and non-dissipative waves the reflected wave

has the same parameters as the incident wave, but opposite

polarity. In this case where the incident wave is far from

the beach where it is linear, it can be described by the linear

expressions that follow from (17) and (18)

ηin(x, t) =
1

3g
√

6gh(x)

∂9(λ −
√

6gh)

∂λ

∣

∣

∣

∣

λ=gαt

, (21)

where the argument of the incident wave is

λ −
√

6gh(x) = gα

[

t −

√

6|x|
gα

]

, (22)

and the last term presents the travel time in a basin of variable

depth,
∫

dx/c(x), where c(x)=[2gh(x)/3]1/2 is the linear

long wave speed in the parabolic channel. Wave amplitude

is proportional to h−1/2 according to the Green’s law for a

parabolic channel. Fixing the distance from the beach, L or

equivalent depth, h0=αL, we may determine the function 9

knowing the time series of the tsunami wave at this point. In

particular, if the incident tsunami wave is a solitary wave

ηin(t) = Asech2

[

t−t0

T

]

(23)

with arbitrary amplitude, duration and phase, the function 9

is

9(λ) = 3g2αT A
√

6gh0 tanh

[

λ − λ0

gαT

]

(24)

and the solution (20) becomes fully determined. The calcula-

tion of the wave field (water elevation and particle velocity)

requires algebraic manipulations using (17) and (18).

Here we consider the runup characteristics only. The dy-

namics of the moving shoreline are given by (17) and (18)

at σ=0, thus the vertical displacement and velocity of the

shoreline can be expressed as a function of time by paramet-

ric curves

R(λ) = η(λ, 0) =
1

2g

[

2

3

∂8

∂λ
− u2

]

, (25)

u(λ, 0) =
1

σ

∂8

∂σ
, t =

λ − u(λ, 0)

gα
,

where 8 is determined by (20) and 9 by (24). In particular, if

the amplitude of the incident wave is small, we may neglect

nonlinear terms in (25). Also, from (20), on the shoreline

(σ→0), it follows that 8(λ, σ=0)=−2∂9/∂λ ∼ ηinc, (see

Eq. 21). As a result, the simplified formula for the vertical
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Fig. 2. Runup height of a solitary wave on a plane beach (solid red

line) and a parabolic beach (dash blue line), slope α=0.1.

displacement of the water level on a shore can be obtained

from

R(t) = −
2
√

6 L
√

gh0

dηin(t − τ)

dt
, (26)

where τ is the wave travel time from a fixed point to the

shore. It is important to mention that oscillations at the shore-

line end after the wave reflects. This differs from the case of

a plane beach, where oscillations formally continue for infi-

nite time. For moderate amplitudes the dynamics of the mov-

ing shoreline can be plotted from (25). However, it is easy

to show that for any values of the incident wave amplitudes

(in a non-breaking regime) the maximal values of runup and

rundown can be found as extremes of the function (26) as in

linear theory the velocities are too small in phases of high

or low water (the same situation exists for a plane beach).

As a result, the maximum runup height is calculated trivially

for any shape of incident wave. In particular, when a soli-

tary wave approaches to the beach, maximum vertical runup

height is

Rmax

A
=

16

3
√

3

L

λ0
, (27)

where λ0=c0T is the characteristic soliton length, and

c0=(2gh0)/31/2 is the linear speed of long waves in the

parabolic channel. The formula (27) differs significantly

from that in the case of the plane beach, where factor L/λ

has the exponent 1/2, (Pelinovsky and Mazova, 1992; Peli-

novsky, 2006). In fact, formula (27) can be obtained for an

incident wave of arbitrary shape and only the numeric co-

efficient will be changed. If we use as the initial wave the

solitary wave solution of the Korteweg-de Vries equation for

an even bottom

η(x) = Asech2

[
√

3A

4h0

x

h0

]

, (28)
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Fig. 3. Comparison of runup heights for planar and parabolic

beaches.

the runup formula can be rewritten in the another form

Rmax =
8

3

A

α

√

A

h0
∼ A3/2 (29)

For comparison we also provide the similar formula for a

plane beach (Synolakis, 1987)

Rmax = 2.8312
A

√
α

(

A

h0

)1/4

∼ A5/4. (30)

Recently, Antuono and Brocchini (2007) found the high-

order correction to (30). We should mention that formu-

las (29) and (30) are not valid for weak amplitudes of soli-

tons, since the length of these solitons is large and com-

parable with the distance to the shore. In the limited case

of a very large wavelength, the beach plays the role of a

vertical wall, where Rmax≈2A (this result is evident if the

plane beach is matched with a bottom of a constant depth).

Pelinovsky (1996) and Madsen and Fuhrman (2008) demon-

strated that the asymptotic expression (30) can be applied in

the range of Rmax >2A for a plane beach. The same can be

assumed for a parabolic beach. From the condition Rmax=2A

follows the minimal value of the soliton amplitude when for-

mulas (29) and (30) are valid

Amin

h
= qα2, (31)

where q=9/16=0.563 for a parabolic beach, and

(2/2.8312)4=0.249 for a plane beach.

Figure 2 demonstrates the maximal runup height for two

beach geometries: plane and parabolic beaches, with beach

slope α=0.1. The parabolic shape of the beach in this case

leads to the concentration of wave energy near the beach and

an increase in the runup height. A more detailed compari-

son of formulas (29) and (30), taking into account the limi-

tation (31), is given in Fig. 3. It confirms that generally, the

Nonlin. Processes Geophys., 15, 489–502, 2008 www.nonlin-processes-geophys.net/15/489/2008/
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amplification on the parabolic beach is higher than on a plane

beach, but for limited conditions of wave amplitude and bot-

tom slope the runup height in a parabolic channel is less then

on a plane beach.

Therefore, the rigorous solution of the nonlinear shal-

low water equations confirms the frequent observation that

tsunami waves in bays with a decreasing cross-section are

more energetic, and runup heights are usually larger than in

basins with a constant cross-section.

3 Three-dimensional runup computations

The bottom geometry used in the numerical simulations is

presented in Fig. 4. The numerical tank has the dimen-

sions: length, 13 m; width, 3.6 m; height, 0.55 m; water

depth, 0.35 m. At the end of the tank there is the inclined

wall (slopes: 30◦, 45◦ and 60◦) containing a concaved semi-

cylinder with radius 1.2 m. This geometry should adequately

demonstrate the “non-plane” effects during the runup pro-

cess.

For detail computing of the solitary wave runup, the CFD

code FLOW-3D developed by Hirt and Nichols (1981) is

applied. The program solves the 3-D Reynolds-Averaged

Navier-Stokes (RANS) equations with a free boundary. The

details of the code are described in Flow-Science, 2002. In

a previous study (Choi et al., 2007), we applied this code

to study solitary wave runup on a conical island, and the

model accuracy was verified by comparing the numerical re-

sults with the analytic solution and 2-D shallow water model

results (Liu et al., 1995) for solitary wave propagation over

constant depth. In this study three turbulent models [k−ε,

RNG (Renormalization Group) theory, LES (Large Eddy

Simulation)] are tested for solitary wave propagation and the

models accuracies are compared. The model results are gen-

erally similar to each other, except that k−ε results were

slightly under estimated. LES model and RNG model re-

sults were largely similar, but the RNG computational cost

was about 30% of the LES computation. This conclusion

was consistent with the previous report, i.e., RNG model is

known to describe more accurately low intensity turbulent

flows. Therefore we choose the RNG model for the turbulent

model, and other turbulent models are not considered in this

study.

The computational domain (numerical tank) used in this

study is described above. In total it contains 1 069 200 cells,

55 cells in the vertical direction, 72 cells in the longitudinal

direction, and 270 cells in the transverse direction. The grid

size in the vertical direction is 0.01 m and 0.20 m in the lon-

gitudinal direction. The grid size in the transverse direction

is not constant with the minimum size being 0.015 m.

The initial solitary wave height of 0.035 m (ratio ampli-

tude/depth is 0.1, so the wave nonlinearity is weak) enters

at the incident wave boundary and it propagates along the

channel. The procedure of the solitary wave generation by

ε

ε

12 

Fig. 4. Basin geometry for 3-D computing of solitary wave runup.

a piston wave maker is given by Katell and Eric (2002) and

the application of wave maker theory to the FLOW-3D model

simulation was tested and verified in the previous study (Choi

et al., 2007). The shape of solitary wave is the solution of the

Korteweg-de Vries Eq. (28).

Snapshots of the wave transformation and runup on the

beach are illustrated in Fig. 5 for a beach slope of 30◦. It

is clearly seen that the wave height distribution along the

front is almost cross-sectionally uniform when the wave is

climbing up on the beach, and this is consistent with the 1-

D analytical theory developed in Sect. 2. It is seen that the

wave runup at the central section (inner most part) is slightly

smaller than the maximum wave height up to t=7.5 s (Fig. 5a

and b). At t=8.7 s, the runup height of 0.45 m at the inner-

most point in the channel is calculated (Fig. 5d) and it is

115% of the runup height at the beach (0.39 m). In Fig. 5f,

it is seen that the runup height at the inner-most point is

slightly smaller than the reflected wave height at t=9.5 s, af-

ter it reaches its maximum height at t=8.7 s, In the reflected

wave the diverged cylindrical field (diffracted field) on the

“knife” edges is formed.

An enlargement of the “non-plane” structure of the runup

front is shown in Fig. 6. Such effects can not be described

in the framework of 1-D theory where the smoothness of the

coastal line and bottom topography is assumed and in this

case numerical study is more effective for the understanding

of the physical process of wave runup at the parabolic cross-

slope shaped channel. Figure 6 clearly shows the geometrical

effect on the wave runup intensification, i.e., the concaved

channel plays a major role in wave energy focusing so that

maximum wave height occurs at the inner-most point. As

previously described, maximum runup height at the inner-

most point is 15% larger than that of slope when nonlinearity

is 0.1. This justifies the theoretical estimation.

Qualitatively, the general feature of wave runup for the

wall slopes of 45◦ and 60◦ is almost the same as the case

of wall slope of 30◦, and corresponding figures are not dis-

played. Quantitatively, however, the bottom slope influences

www.nonlin-processes-geophys.net/15/489/2008/ Nonlin. Processes Geophys., 15, 489–502, 2008
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      (a) t = 7.0 sec     (b) t = 7.5 sec  

  

      (c) t = 8.0 sec    (d) t = 8.7 sec  

13 

  

      (e) t = 9.0 sec    (f) t = 9.5sec  

14 

Fig. 5. Contours of the sea level displacement near a concaved slope wall (slope: 30◦).
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15 

Fig. 6. Contours of the sea level displacement near concaved slope

wall at 8.7 s (slope: 30◦).

the wave height; see Fig. 7. As expected, the smaller the

slope, the bigger the maximum particular, the maximum

runup height is equal to 0.1055 m, 0.097 m and 0.0923 m

for slopes runup height is. In 30◦, 45◦ and 60◦ respec-

tively. However, according to the Synolakis’s formula (30)

for the plane beach the runup height is 0.077 m, 0.063 m and

0.054 m for the same slopes. The exceedance of the com-

puted values above theoretical ones illustrates the importance

of the “non-plane” geometry on the runup characteristics and

the strong influence of local features of the coastal topogra-

phy (up to 30% in height).

Figure 8 displays the spatial distribution of the velocity

field from 7.5 s, when the solitary wave approaches the front

of island, to 9.5 s, when the wave reflects from the beach. As

it is clearly seen, the velocity distribution along the vertical

coordinate is not uniform, and the velocity field is weaker

in the bottom layer and higher near the sea surface. We

mentioned this difference in (Choi et al., 2007), discussing

the results of computing the wave runup on a conical island

in the framework of the same model. The vertical velocity

component is not weak at the runup stage (Fig. 8b–e), and it

suggests the limitation of the previous model study based on

shallow-water equations, where the vertical velocity compo-

nents are assumed to be zero.

The wave flow is not uniform in the transverse direction

either (Fig. 9). The runup in the concave channel is accom-

panied by the biggest flow velocities. The appearance of

wave energy concentration in the channel during the water

runup stage is very often observed in tsunami field surveys.

In particular, this situation can explain the anomalous runup

height of 30 m during the 1993 Okushiri tsunami (Hokkaido

Tsunami Survey Group, 1993; Titov and Synolakis, 1997).

The numerical solution demonstrates the non-monotonic de-

pendence of the maximal velocity on the bottom slope and

therefore the velocity of the wave runup on the almost ver-
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Fig. 7. Maximum wave height versus time.

tical wall can be higher. The same effect is manifested in

a fully nonlinear non-hydrostatic 2-D case as pointed out

in Cooker et al. (1997), Wood et al. (2000) and Longuet-

Higgins and Drazen (2002).

In Fig. 10, the role of the turbulent dissipation on the bot-

tom boundary layer on the runup stage is demonstrated for

the case of bottom slope of 45◦, by presenting the turbulent

kinetic energy (TKE in m2/s2) and the turbulent kinetic en-

ergy dissipation (DTKE in m2/s3) at the water surface The

non-uniform spatial distribution pattern of turbulent energy

is clearly seen. TKE is concentrated in the region where the

water surface touches the solid bottom boundary.

In fact, the vertical distribution of the turbulent charac-

teristics is not uniform either (Fig. 11) underlying the im-

portance of the 3-D numerical models to describe the wave

runup in basins with real topography. The temporal varia-

tion of the maximum values of these characteristics for a

bottom slope of 45◦ is presented in Fig. 12. Maximal tur-

bulent motion appears at the moment of maximal runup of

the solitary wave on the beach, when its energy increases

by several orders. The same behavior is obtained for other

bottom slopes. The maximum value of turbulent kinetic en-

ergy is 0.1 m2/s2 for slope 30◦, 0.03 m2/s2 for slope 45◦,

and 0.04 m2/s2 for slope 60◦. Non-monotonic variations of

turbulent kinetic energy, in principle, correlate with non-

monotonic behavior of the velocity in the climbing wave.

The behavior of the turbulent kinetic energy dissipation is

also non-monotonic (1.39 m2/s3 for slope 30◦, 1.46 m2/s3 for

slope 45◦, and 0.44 m2/s3 for slope 60◦) but the maximum of

DTKE is reached when TKE is at a minimum.

Zelt (1986) conducted a physical experiment for concave-

type sloping bathymetry with maximum slope about 11.3◦

and minimum slope 5.7◦, with incoming solitary waves, and

the experiment data are compared with model simulations

results (Zelt, 1986; Ozkan-Haller and Kirby 1997). In this

study, we apply the numerical model to the same physical ex-

periment and show the three-dimensional snapshots as well

as the time history of runup at several locations. Figure 13

shows the three-dimensional water surface snapshots when

www.nonlin-processes-geophys.net/15/489/2008/ Nonlin. Processes Geophys., 15, 489–502, 2008
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 (a) t = 7.0 sec        (b) t = 7.5 sec 

16 

  
(c) t = 8.0 sec        (d) t = 8.7 sec 

  
(e) t = 9.0 sec        (f) t = 9.5 sec 

 

17 

Fig. 8. Velocity distribution in the center of basin and at the periphery near the concave slope with slope: 30◦.
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the runup reaches its maximum and minimum respectively.

As shown in the figure, the shape of the runup at its maximum

and minimum is quite different. At its maximum (Fig. 13a),

the runup is focused at the center of the bathymetry and the

surface slope is steep toward the center as illustrated by the

contour of water surface. On the other hand, at its minimum

(Fig. 13b) the runup is directed onshore and the surface slope

is lower than at the maximum. It can be interpreted that the

wave energy has focused at the center at the run-up stage and

spread to the on/off shore direction at its run-down stage.

Figure 14 shows the normalized runup in the cross-shore

direction as a function of non-dimensional time and space

scales at different locations along the bay. In general, a good

agreement is found between the physical experiment and nu-

merical simulation in terms of water surface variation in time

and space. These results verify the model accuracy and sta-

bility.

4 Conclusions

The runup of solitary waves on a “non-plane” beach is stud-

ied analytically and numerically. In the analytical study the

nonlinear shallow water equations are solved rigorously for

the parabolic cross-slope shaped bay using the generalized

Carrier-Greenspan transformation. It is shown that the wave

runup in basins with decreasing cross-sections leads to in-

crease of the runup height, confirming many field observa-

tions of tsunami waves. More complicated coastal zone ge-

ometry (plane beach containing the concaved semi-cylinder)

is studied numerically using the 3-D Reynolds averaged

Navier-Stokes equations realized in FLOW-3D. The com-

puted values of the runup heights for this geometry exceed

the similar ones for a plane beach demonstrating the impor-

tance of local features of coastal topography in the process

of wave runup. This fact has also been demonstrated for the

one-dimensional case (Pelinovsky, 1996; Kanoglu and Syn-

olakis, 1998), but for two-dimensional case it leads to big

variations in wave amplitude. The flow velocity field is non-

uniform in the vertical and transverse directions. The runup

velocities in the concave area are bigger then on the periph-

ery. The characteristics of the turbulent kinetic energy and

the turbulent kinetic energy dissipation are computed also.

They are also non-uniform in the vertical and transverse di-

rections. The strong turbulent motion appears at the stage of

the maximum wave runup. The values of the velocity, turbu-

lent kinetic energy and turbulent kinetic energy dissipation

are not monotonic functions of the bottom slope. Analyti-

cal and numerical results for beaches of different geometries

show the importance of complicated seafloor bathymetry in

the vicinity of the shoreline on runup characteristics, and

quantitatively agree with tsunami observations in many ar-

eas of the world’s ocean.
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(b)

(b) slope: 45° 
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(c)

Fig. 9. Maximum velocity versus time for various slopes

(a) slope: 30◦ (b) slope: 45◦ (c) slope: 60◦.
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(b) t = 8.5 sec        (e) t = 8.5 sec 

19 

  
Fig. 10. Spatial distribution of turbulent kinetic energy (left) and turbulent kinetic energy 

19 

Fig. 10. Spatial distribution of turbulent kinetic energy (left) and turbulent kinetic energy dissipation (right) with slope 45◦.
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8.0 sec 

  

8.5 sec 

  

9.5 sec 

Fig. 11. Vertical distribution of turbulent kinetic energy (left) and turbulent kinetic energy 

20 

Fig. 11. Vertical distribution of turbulent kinetic energy (left) and turbulent kinetic energy dissipation (right) for slope 45◦.
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(b)

Fig. 12. Maximal values of turbulent kinetic energy (a) and turbulent kinetic energy dissipation (b) versus time for slope 45◦.

 

(a)      (b) 
(a)   
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(b)

Fig. 13. Snapshots of the free surface distribution at its maximum (a) and minimum (b) at the central point.
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Fig. 14b. The bathymetry of the runup test with axis and orientation.
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