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TWO APPROACHES TO SUPERMANIFOLDS
BY

MARJORIE BATCHELOR

Abstract. The problem of supplying an analogue of a manifold whose sheaf of
functions contains anticommuting elements has been approached in two ways.
Either one extends the sheaf of functions formally, as in the category of graded
manifolds [3], [8], or one mimicks the usual definition of a manifold, having
replaced Euclidean space with a suitable product of the odd and even parts of an
exterior algebra as in the category of supermanifolds [6]. This paper establishes the
equivalence of the category of supermanifolds with the category of graded mani-
folds.

Introduction. Supermanifolds or graded manifolds were defined to provide a
"space" whose "functions" would include anticommuting elements. There have
been two approaches to the definition of these objects, emerging from two
approaches to the study of the geometry of a manifold. Traditionally, the differen-
tial geometer regards the space itself as the primary object, but it is also possible to
take the algebraic geometer's point of view and study the geometry of the space
through the algebraic structure of its sheaf of functions. Supermanifolds as defined
by de Witt [6] for example, follows the first approach, while graded manifolds, as
defined by Kostant [8] are inspired by the algebraic geometer's approach. The
purpose of this paper is to establish the equivalence of the category of supermani-
folds with the category of graded manifolds.

In the first section, basic definitions are given and the main theorem is stated.
Smooth maps on "super-Euclidean space" are constructed in §2, and the proof of
the equivalence theorem is given in §3.

I would like to thank Professor S. Steinberg for bringing de Witt's work to my
attention, and for subsequent discussions, and also Carolyn Schroeder for her help
in finding the "right" definition for smooth maps on super-Euclidean space.

1. Definitions and results. All algebras and vector spaces are over the real
numbers, although similar constructions could be carried out using complex
numbers. All (ordinary) manifolds are considered to be real, smooth, Hausdorff
paracompact manifolds.

1.1. Definition. An algebra A is called a Z2-graded algebra (or simply a graded
algebra) if A can be written as a direct sum of linear subspaces A = A0 © A, such
that

AjAj C ^4,-+;(mod2).
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An element a in A¡ is said to be homogeneous of degree i. Let \a\ denote the degree
of a homogeneous element a. The algebra A is said to be graded commutative if
ab - (-l)HI»l&j.

1.2. Examples. (1) Let F be a vector space and suppose that V is given a
decomposition into two linear subspaces, F= V0 © F,. Then End(F) has the
structure of a graded algebra setting End(F) = (End F)0 © (End V)x where

(End(F)),. = {5 G End(F): SVj c F,+y(mod2)}.
(2) Let AR* denote the exterior algebra on s-dimensional real space. Then AR*

has the structure of a graded commutative algebra, setting AR* = (AR5),, © (AR*),
where (AR*)0 is the subspace spanned by elements of even exterior degree, and
(AR*), is the subspace spanned by elements of odd exterior degree.

1.3. Definition. A graded manifold is a pair (X,A) where X is an ordinary
manifold, called the underlying manifold of (X, A), and A is a sheaf of Z2-graded
commutative algebras over X which satisfies the following conditions

(i) There exists a surjective map of sheaves of graded algebras

9:A-*C°°
where C°° is the sheaf of smooth functions on X equipped with the grading
(C °°( F))0 = C °°( F) for any open set V in X.

(ii) Local triviality condition. There exists an open cover {V¡) of X and
isomorphisms F, of graded algebras

Ti:A\Vi^Cca®AW\v¡

where the sheaves A\v¡ and C°° G AR*|^. are the sheaves A and C°° ® AR*
restricted to the open set V„ and where the grading on C °° <8> AR* is determined by
(C°°(V) <g> AR*)0 = C°°(F) ® (AR*)0 for any open set F in X. The integer j is
called the odd-dimension of (A', A).

A morphism of graded manifolds from (X, A) to another graded manifold (X', A')
is an algebra homomorphism

a:A'(X')^A(X).
Let § ÇTt^ denote the category of graded manifolds, with odd dimension s < L for
some fixed integer L.

1.4. Examples. (1) The pair (X, C°°) is a graded manifold. If Bs is the sheaf over
a point * determined by Bs(*) = AR*, then (*, Bs) is a graded manifold.

(2) The pair (X, ñ) is a graded manifold where ñ is the sheaf of smooth forms on
X. More generally, if F -» X is any finite dimensional vector bundle over X, one
can form AF-> X, the exterior bundle associated with F. If T( , AE) denotes the
sheaf of sections of AF, then (X, T( , AE)) is a graded manifold. In fact, if (X, A)
is any graded manifold, there exists a vector bundle F such that (X, A) is
isomorphic to (X, T(, AE)). The proof of this is given in [1].

Supermanifolds are defined by mimicking the usual definition of a manifold,
replacing the real numbers by a large exterior algebra. Except for a difference in
the definition of "smooth maps", the definition is essentially that given by de Witt
[6].
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1.5. Definition. Let L, r, s be integers and assume that L > s. Define (r, s)-di-
mensional super-Euclidean space, Er,s, to be the product of r copies of (ARL)0 with í
copies of (ARL),, i.e.

Fr'* = (AR¿)ó©(ARz-)1.

The topology on Fr* is defined in the following manner.
The augmentation map

e: ARL-»R
which assigns u in ARL to its component of exterior degree 0 gives rise to a map
which will also be denoted by e,

e:F'-*-,Rr

given by e(ux, . . ., ur, vx, . . . , vs) = (e(ux), . . . , e(ur)). A set U in Fr>* is open if
and only if U = e ~ x( V) for an open set F in Rr. The integer L will be regarded as
fixed throughout the paper unless it is indicated otherwise.

1.6. Remark. This topology on F'-* is not Hausdorff, but its failure to be
Hausdorff may be regarded as compensation for the fact that AR£ fails to be a
field. If a and b are elements in AR£ = Fl'1, then a and b have disjoint neighbour-
hoods if and only if a-b is invertible in ARL.

1.7. Definitions and notation. If F and S are sets, let F(R, S) denote the set of
functions from F to S. If U is an open set in Frr!, multiplication in AR£ gives
F(U, AR£) the structure of a graded-commutative algebra. In §2 we will define a
subalgebra MX(U, ARL) of F(U, AR1-), called the algebra of smooth functions on
U. Assuming this definition, define the set of smooth maps from U to another
super-Euclidean space Er's', MX(U, Er's') to be the subset of F(U, Fr-*) consisting
of elements 9" such that the function F followed by projection onto any factor of
Fr'y is in MK(U, ARL). If W in Fr'*' is the image of U under F, F is called a
superdiffeomorphism from U to IF if F is smooth and has a smooth inverse.

Let S be a topological space. A super-Euclidean chart on 8 is a pair ( U, <¡>) where
U is an open set in S and <i> is a homeomorphism of U with an open set in some
super-Euclidean space. A smooth atlas of super-Euclidean charts is a collection
{(Ua, <pa)} = &■ of charts such that { Ua} is an open cover of S and

W1: *ß(u« n ^)-**-(£4 n uß)
is a superdiffeomorphism for all pairs a, ß. Such an atlas is maximal if, given any
chart (U, <j>) such that

H>ßu- <t>ß(u n £/,)-»*(£/ n uß)
is a superdiffeomorphism for all ß, then (U, </>) is in &.

Finally, a supermanifold 5 is a topological space together with a maximal smooth
atlas of super-Euclidean charts. Let S and S' be supermanifolds with atlases & and
&' respectively. A map T: S -> S' is said to be smooth if for every chart (U, <j>) in
& and every chart (If, </>') in & ', the map

*-'(£/n r-'(í/'))-^£/n r-1^')-^ W)n t/'X</>'(F(r/) n U')
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is smooth. The category of supermanifolds and smooth maps will be denoted

Each supermanifold S is associated with an ordinary manifold. The following
notation is useful. If A and F are algebras, let Alg(^, B) denote the space of
algebra homomorphisms. If A and B are graded algebras, let Z2Alg(y4, B) denote
the space of algebra homomorphisms which respect the grading. The following
proposition will be proved in §3.

1.8. Proposition, (i) Alg(M °°(S, ARL), R) can be given the structure of a mani-
fold.

(ii) There is a continuous open map

es:S->Alg(M°°(S, ARL), R).

That part (ii) makes sense depends on Proposition 1.10.
Definition. If S is a supermanifold define the underlying manifold S of S to be

the manifold Alg(Af °°(5, AR£), R).
We can now state the main theorem.

1.9. Theorem. There exist functors

HL: § 9HL -» S <DHL,      HL(X, A) = Z2A\g(A(X), ARL),

ML: S 9HL -> % 91^,       ML(S) = (S, M*>(e¿\ ), ARL)),

and functorial homomorphisms

V- WL -* MLHL,    f : lg^ -» HLML,

which establishes the equivalence of the categories § 9H.L and S ÇTL^.

So far L has been a fixed integer. If L' is another positive integer, we can define
categories S 91LL. and § 9HL. in a similar fashion. The resulting categories are
related in the following proposition

1.10. Proposition. Let L and L' be integers with L < L'.
(i) S "DIL^ includes as a full subcategory of S <D1li/.
(ii) § 91LL includes as a full subcategory of § ^\lL..

Notice that % CÏK0 and § 9ïtn are both just the category of smooth manifolds and
smooth maps.

Definition-Corollary. Define the category S 911 to be the direct limit of the
categories S <DHL. Define the category § 911 to be the direct limit of the categories
§ 91tL. Then S 91t and % 9H are equivalent categories.

Proofs will be given in §3.

2. Smooth functions on super-Euclidean space. The method of obtaining smooth
functions is based on a technique described by Kostant [8, §2.18]. The guiding
principle is that polynomials should approximate smooth functions.
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2.1. Definitions. In F(Er,s, ARL), there are projections p,, / = 1, . . ., r, ttj,
j = 1, . . . , s given by

p,(«„ . . . ,Ur,Vx, . . . ,VS) =  U¡, 1Tj(ux, . . . , Ur, VX, . . . , Vs) = Vj.

Define the algebra of superpolynomials P to be the (real) subalgebra of F(Ers, ARL)
generated by the projections. Then F is a graded commutative algebra. Let Sym(p,)
denote the symmetric algebra generated by the elements p¡, and let A^.) denote the
exterior algebra generated by the elements w,. Then F a Sym(p,) <S> A(tTj).

Define the space of super-derivations D to be the linear subspace of End(F)
determined by D = D0 © F», where

Dt = [d E (End(F )),: d(ab) = (da) + (-l)'|a|ad6 for all a, b in F }.
Define the algebra of superdifferential operators ^ to be the subalgebra of End(F)
generated by D.

2.2. Notation. Denote by M(r) (or simply M when there is little danger of
confusion) the set of /--tuples (/„ . . . , /,) of nonnegative integers. Denote by N(s)
(or simply N) the set of j-tuples (/,, . . . ,js) where each jk is either 0 or 1. If
p = (/,, . . . , ir) in M and v = (/,, . . . ,js) in N then write

pvr(n, v) - p{' ■ ■ ■ p'r"ir{ ■ ■ ■ 7TJS:

Let 9p, be the element of D determined by dpj>j = Su and op,^ = 0 for all
/ = 1, . . . , s. Similarly let ditj be the superderivation corresponding to w*. Write

d(n, v) = 3p¡> • • • dp¡rdiri' ■ ■ ■ for,'.
We can define a partial ordering on M X N be setting ( p, v) < ( p', v') if ih < i'h
and/fc <j'k for every h = \, . . . , r and k = \, . . . , s. We can also define the length
of elements of M, N and M X N, denoted by | | via

r s

IH=  2 «a.    M=  Sá    and    |(p, v)\ =|p| + \v\.
A=l k=\

2.3. Remarks. D is a free F module generated by the elements 9p„ Bw,. ̂  is a
free F-module generated by the elements d( p, v) for ( p, i») in M(r) X 7V(i).

Definitions. Define Diff to be the subalgebra of ^ generated (over the real
numbers) by the elements d( p, v), for ( p, v) inM(r) X N(s).

Let F* denote the subspace of the full linear dual F' of F given by

F* = {a G F': ker a contains an ideal of finite codimension}.
If a is in F* andp is in F, denote the evaluation of a onp by (a,p~). The properties
of this space that will be used are summarized in the following proposition.

2.4. Proposition, (i) There is a right action of ty on P* given by (a.d,p} =
<a, dp} for a in P*, d in tf) andp in P.

(ii) There is an inclusion Rr C F* given by

<(*,, . . . , xr),p) = p(xx, . . . , xr, 0, . . . , 0)

regarding (xx,. . . , xr, 0, ... ., 0) as an element of Fr'*. This inclusion induces a map
r>:F^C°°(R).

(iii) F* is a free Diff module generated by elements of Rr.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



262 marjorie batchelor

Proof. Parts (i) and (ii) are not hard. For part (iii), notice that F can be given
the structure of a Hopf algebra with antipode where the comultiplication A is
determined by

A(p,) = 1 ® p, + p, <S> 1,       A(tTj) = 1 ® Wj» + Vj ® 1,

and the antipode j is determined by

s(Pi) = -Pi»       ■*(")) = -*j.

Then F* is also a Hopf algebra with antipode. Let G denote the grouplike elements
of F* and let U(H) denote the universal enveloping algebra of the Lie algebra H of
primitive elements of F*. Then there is an isomorphism of vector spaces

a:RG ® t/(//)-»F*.
(See Sweedler [10] for basic properties of Hopf algebras.) Notice that G = Rr and
U(H) = Diff. The result follows by observing that a is the map determined by the
action of Diff on F*.

2.5. Definition-Proposition. For an open set U c Er,s, define

P*(U) = e(U)- Diff
and let P*(U)' denote the full linear dual of P*(U). Then:

(i) P*(U)' is an algebra containing P.
(ii) Diff acts on P*(U)' on the left.
(iii) The homomorphism <b: P —> C°°(Rr) extends to a homomorphism

4>:P*(U)'-*F(e(U),R).
(iv) There is an algebra homomorphism

I:P*(U)'^F(U,ARL),
given by

A/)(«. ») =     S     ci p)¿(¿( p, v)f)e(u)M p, v)(u-e(u), r),

where

c( f*) = ■■ i . . . ■• i     f°r f1 = 0i> • • • » 'r)-
11. tr.

Moreover, for an element q in P < P*(U)', I(q)(u, v) = q(u, v).

Proof. Parts (i), (ii) and (iii) are easy. To check that / of part (iv) is an algebra
homomorphism, let / and g be elements of F*( £/)' and compute I(fg) directly,
making use of the following identities.

d{ P, v)fg = S (_1)**>*>+KI \nd{ ̂ „0/</( ̂ 0g>
(^'•O-Kf'>") = ( f.»)

Mm, ") = (-i)y(,,>V(m', "OMm". "").
where yi^', v") and -/(i»', i>") are determined by

MO, v) = (-1)Y(,,>V(0, p')/w(0, r"),
d(0, y) = (-\)n*'y)d(0, v')d(0, v").
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A direct computation shows that

(_1)Y(">") + Y(.'>">+K'| I* =   j      when i^i = |yj_

2.6. Definition. Let U be an open set in Fr'*. Define the set of smooth functions
from U to AR¿, MX(U, ARL) by

M°°(U,ARL) = {/G F*(í/)':^(a*/)isinC00(e(í/))foralla'in6D}.

The properties of MX(U, ARL) are summarized in the following proposition.

2.7. Proposition, (i) M°°(U, ARA) is closed under multiplication.
(ii) MX(U, AR¿) = {/ G P*(U)': I(df) is continuous for every din6!)}.
(iii) If 9( p) denotes the ordinary differential operator

8'"' _3_^
dxx axr

on Cx(e(U)), where p = (/„... , ir), then for fin MX(U, ARL),

4>(d(ti,v)f) = dii$(d(0,v)f).
(iv) F/ie homomorphism I of 2.5(i\) is injective on Mco(U, AR¿).
(v) The map </*: MX(U, ARA) -». C"(e(£/)) ® A(w,) ¿wen ¿y

(0,")

« an isomorphism of algebras.

Indications of proofs, (i) This follows since ^ is generated by superderiva-
tions, since <j> is an algebra homomorphism, and since C°°(e(i/)) is closed under
multiplication.

(iii) For an open set V in Rr, define the space CX(V)* to be the subspace of the
full linear dual CX(V)' of C°°(F) given by

C°°(V)* = {a E CX(V)': where a contains an ideal of finite codimension}.
Since <j>: P -» C°°(V) separates points in V, the induced map

<t>*: C°°(V)*^P*
is injective. In fact, if V = e( U), then

<b*: C°°(V)*^P*(U).
If x is in V, denote by x.ö(p) the element of C°°(F)* given by (x.d(n), h} =
3( n)h(x) for any element h in C °°( V). It is not hard to see that

<b*(x.d(ix)) = x.d(n,0). (A)
Taking the full linear dual of C °°( V)* and F*( U), we have a map of algebras

<í>*':F*(í/)'-*C°°(F)*'.
The map <j>: MX(U, ARL) -» C°°(F) is just the restriction of </>*' to the inverse
image of CX(V) c C°°(F)*' under <?>*'. The result then follows from (A).

(iv) Suppose that 1(f) = 0 for some / in M°°(U, AR*"). Then ¿(¿(p, v)f) is
identically zero whenever | ¡i, v\ < L. If /is not zero, then for some (m, v) and some
x in e(U), (x.d(¡x, v),f} = <$>(d(n,v)f(x)) is nonzero. Choose (po, p0) such that
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ip(d( p,,, i>0)f) is not identically zero on e( U), and such that if <j>(d( m, v)f) is not
identically zero; then \¡í,v\ > | Mo^ol- Notice that | Mol > 0» since \p.0,v0\> L > s.
Then ¡}>(d( p,,, v0)f) = 3( Mo)^(^(0, v0)f) by part (iii) which implies that <j>(d(0, ¡>0)f) is
not identically zero.  But  |0, v0\ < \ ¡jlq, t>0\  which contradicts the minimality of
(Mo> »'o)-

(v) The proof is by direct computation.
(ii) Using part (iii), notice that

MX(U, AR¿) = {/ G P*(U)': $(df) is continuous for every a"in <$>}.

The result then is a consequence of the following characterization of continuous
maps in F(U, AR1).

2.8. Lemma. Let U, U' be open sets in Er,s and Fr'* respectively. Then an element f
in F(U, U') is continuous if and only if there exists a continuous map h: e(U)—>
e(U') such that e ° / = h ° e.

Proof. Assume / is continuous. Notice that if «, and u2 are in U and e(ux) =
e(u2), then ef(ux) = ef(u2). If not, there would be open sets Ox and 02 in U' with
f(ux) E Ox and f(u2) E 02 and Ox n 02 = 0. But then ux Ef~x(Ox) and u2 E
f~x(02). Since e(ux) = e(u2) and w, and u2 cannot be separated by open sets so
f~x(Ox) and/_1(02) have nonempty intersection, which contradicts the fact that
Ox and 02 are disjoint. Then h: e(U)—> e(U') given by h(x) = ef(u) for u in e~x(x)
is a well-defined map. It is not hard to show that h is continuous and that
e ° / = h » e. The implication the other way is also not hard to see.

2.9. Remark. M°°(U, ARL) and C°°(e(i7)) ® A^) can be topologized so that i//
is a homeomorphism. Let {K¡} be a collection of compact sets indexed by the
natural numbers such that (J, F, = U and F, c IntF,+ 1. Define a family of
seminorms on C °°(e( U)),

p,(f) = max{|3(p)/(x)|: |p| < /, x G Kt}.
A local base for a topology on C °°(e( U)) is given by

Vt ={/GC-(e(i/)):p,(/)<l//}.

Finally,   give   C °°(e( U)) ® A(vf)  the  topology  of  a  product  of  2*   copies  of
C°°(e(U)).

On MX(U, ARL), define seminorms

°,(g) = max{|^(a"(p, v)g)(x)\: x G K„ \¡i, v\ < t).

Give M °°( ¡7, AR£) the topology determined by the local base corresponding to the
seminorms {a,}. With respect to these topologies we have the following proposi-
tion.

2.10. Proposition, (i) The map \p o/2.7(v) is a homeomorphism.
(ii) MX(U, AR¿) is complete and P is dense in M°°(U, ARL).

Proof. Part (i) is straightforward. Part (ii) is a consequence of the corresponding
nontrivial results for C°°(e(i7)). See [9, p. 31] and [11, p. 189].
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Let U¡ be an open set in Er>s<, i = 1, 2, 3. Using the definition at M°°(U, U')
given in 1.7, the following proposition guarantees that the composition of two
smooth maps is again smooth.

Proposition. Let f be in MX(UX, U2) and let g be in MX(U2, U3). Then g ° f is
inMx(Ux, i/3).

Proof. Since g ° / will be in M°°(UX, U3) if and only if g ° /, composed with any
projection, is in MX(UX, ARL). It is sufficient to consider the case where g is in
MX(U2, ARL). If g is a projection, g ° f is in M°°(Ux, ARL) since/ is smooth. If g
is a superpolynomial, then g ° /is the sum of products of element in M°°(UX, ARL)
and hence g ° f is in MCC(UX, ARA). MX(UX, U^ has a topology induced by the
inclusion MX(UX, U2) -> (MX(UX, ARL)y2+*2 given by the projections. The algebra
P(r2, s2) of superpolynomials on F'2'*2 has a topology as subset of MX(U2, ARL).
The map determined by composition

C: MX(UX, U2) X P(r2, s2) -+ MX(U, AR¿)

is continuous. Now if g is an arbitrary element of MX(U2, AR¿), let {g,} be a
sequence of superpolynomials in P(r2, s2) such that g, —» g. Then g, » / is a Cauchy
sequence in MX(U, AR£) converging to g ° /.

Supermanifolds finally can be defined as in 1.7. We have the following corollary
of Proposition 2.10.

2.11. Corollary. Supermanifolds and smooth maps between supermanifolds form a
category, denoted by § 911^.

2.12. Remark. The definition of smooth functions on super-Euclidean space is
chosen to make the main theorem true. Another reasonable description of smooth
maps following this same procedure would be to define an algebra SP to be the
algebra of superpolynomials with coefficients in ARL, that is, the algebras over
AR¿ generated by the projections p, and Wj. Then SP*, SP*(U)' and
SMX(U, ARL) can be defined by analogy with P*, P(U)' and MX(U, ARL). It
turns out that

SP = ARL ® F,
SMX(U, ARA) s AR¿ ® M°°(U, AR¿).

The advantage of SMX(U, AR¿) over MX(U, ARL) is that SMX(U, ARA) con-
tains the constant maps: U —> u0 E ARL. This definition also seems to coincide
exactly with de Witt's definition of smooth maps. In practice, SM x( U, AR¿) may
be the more useful definition.

3. Proof of the main theorem.
3.1. Proof of Theorem 1.9. Step 1. Definition of HL: §91LL^S9HL on

objects.
Let (A', A) be a graded manifold. It must be shown that

H(X, A) = Z2 Alg(,4X AR¿)
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is a supermanifold. H(X, A) is a topological space where open sets in H(X, A) are
the images of the maps

Z2 Alg(A(V),ARL)^ Z2 Alg(AX, AR¿)
induced by the restriction maps A(X)-» A(V) for an open set V in X. We can
choose a cover { V¡) of X such that

F,:,4(F,) ^CX(V¡)<S) AR*.
We can assume that each F, is homeomorphic to an open set in Rr. The following
lemma is then sufficient to ensure that H(X, A) is covered by open sets homeomor-
phic to open sets in Fr"*.

3.2. Lemma. Let V be an open set in Rr. Then there is a bijection
Q: Z2 Alg{Cx(V) ® ARS, ARL) ^> e~x(V) c Fr-*

given by
Q(a) = (a(x,), . . . , a(xr), a(irx), ..., a(ir,))

where x¡: F—» R is projection onto the ith coordinate, and Wj,j ™»1,..., s,is a basis
for R*.

Proof. Since a is a homomorphism preserving the Z2-grading, each a(x¡) is in
(AR¿)0 and each «(tt,) is in (AR¿), so Q(a) is in Fr>*. To see that e(Q(a)) is in V,
consider the algebra homomorphism p: CX(V) —> R given by p(/) = ea(f). Since p
is an algebra homomorphism, p(/) = f(xp) for some point xp in V, and for all / in
C °°( V). But p(x¡) = ea(x¡) which implies that eQ(a) = xp which is in V.

Inactivity of Q. Notice that an algebra homomorphism a: C°°(F)<8> AR*-»
ARL is a continuous map, since a is continuous if e ° a is continuous, and
e ° a = p = evaluation at xp, which is a continuous map. Suppose now that
Q(a) = Q(a'). Then a(x¡) = a'(x¡) and a'(irf) = a(w,) for all appropriate / and /,
and hence a(q) = a'(q) for any "polynomial" q in the x¡ and w,. Since such
"polynomials" are dense in C°°(V) ® AR*, and since a and a' are continuous,
a = a'.

Surjectivity of Q. Let (u, v) = (ux, .. ., ur, vx, . . . , vs) be in e~x(V). Define a
map a(l()0): C°°(F) <8> AR* ̂  ARL by

«(„,„)(/ ® /w(0, »<)) =    2    c( p)3( m)/(«(«)W( M> ")(«-«(")> »)
|/i|<¿

where

c( **) = .- i . . . .-1    for f1 = Ci» • • • ' 'r)-
i j. *r.

The proof that this is an algebra homomorphism is similar to the proof of 2.5(iv).
Again the calculation is unpleasant and is omitted. It is immediate that ô(a(Uj„)) =
(u, v).

In order to show that H(X, A) is a supermanifold, it remains to show that the
isomorphisms

T,Tfl\ CxiV; n Vj) (8) AR* -» CxiVt n Vj) ® AR*
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give rise to superdiffeomorphisms. This will be a consequence of Lemma 3.4 and
the remark following Lemma 3.4.

3.3. Step 2. Definition of HL on morphisms. Let (X, A) and (Y, B) be graded
manifolds. If /: (X, A) -» ( Y, B) is a morphism of graded manifolds, then

a: B(Y)^A(X)
is a homomorphism of Z2-graded algebras, and thus induces a map (of sets) given
by

HL(a): Z2 A\g{A(X), AR¿) -* Z2 Alg{B(Y), ARL) = HL(a)(a) = a ° a.

The problem of deciding whether H(a) is smooth reduces to the following lemma.

3.4. Lemma. Let a be a homomorphism of Z2-graded algebras

a : C °°(R) ® AR -> C °°( V ) ® AR*   for an open set V in R*.
Then the map induced by a,

HL(a): e-x(V)^ARL,        e"'(F) C F'-*,

is smooth.

Proof. Define an element g in P*(e~x(V))' as follows. Let x E C°°(R) denote
the function determined by x(t) = t. Let y be a generator of AR. Define g by
setting

(x.^p, v),g) = 3(p)o-(*M0, v)a(y).
Then it is not hard to see that g is in Mx(e~x(V), ARA). Finally by evaluation 1(g)
and HL(a) on elements in e~x(V), it can be shown that 1(g) = HL(a).

Remark. If a': (Y, F) -» (Z, C) is another morphism of graded manifolds, it is
clear that HL(a')HL(a) = HL(a', a) and H is a well-defined functor.

3.5. Step 3. Definition of ML: § 9HL -> § 911^ on objects. We begin by proving
Proposition 1.8, which defines the underlying manifold of a supermanifold S.

Let {(Ua, <#>„)} be an atlas for S. There are restriction homomorphisms

pa: MX(S, ARL) ^ MxiUa, ARL)

which induce an injection

p: MX(S, ARL)^\(fa) E u MxiUa, ARL): fa(x) = fß(x)
\ a

for all x in Ua n Uß, for all pairs a, ß \.

If aa: MX(U, ARA)-»R is an algebra homomorphism, aa induces an algebra
homomorphism

aaPa: MX(S, ARL) -* M°°(C/a, ARL) -» R.
We then have a map

U   A\g{MxiUa, AR¿), R) ^ Alg(M~(S, ARL), R)
a

which induces a bijection

U   Alg(M°°(t/a, AR1"), R)/-» Alg(M»(S, ARL), R)
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where, if aa, bß are in Alg(Mx(Ua, ARL), R) and Alg(M°°(Uß, ARL), R) respec-
tively, aa ~ bß if there exists caß in Alg(Mx(Ua n Uß, AR1-), R) such that aa =
caßpß and bß = caBpa. Notice that Alg(M °°( Ua, ARL), R) can be identified with
e ° <KUa). Then

Alg(M~(S, AR¿), R) = S « U   e ° <¡>a(Ua)/~ '.
a

where aa~' bß if aa = «„^è^, where

V efoitf« n £//,))-»^(i/. n up)).
Using 2.7(h), it is possible to show that haß is a diffeomorphism. This gives S a
smooth structure.

Define es by setting

%(")(/) = e ° /(")    for any element/in MX(S, AR1").

It is not hard to check that es has the desired properties.
In order to check that ML(S) = (S, Mx(egX, AR¿)) is a graded manifold, it is

sufficient to show that the sheaf Mx(egX( ), ARL) satisfies the local triviality
condition. To see this, choose an atlas {(Ua,<j>a)} at S. Then the open cover
{es(Ua)} has the desired properties, by 2.7(v) and the following comment 3.6.

3.6. Step 4. Definition of ML on morphisms. Let F: S-» S" be a smooth map
between two supermanifolds. It is sufficient to show that

ML(R ): M°°(S', AR¿) -* MX(S, ARL)

is a well-defined map of algebras. Well-definition is a consequence of the fact that
the composition of smooth maps is a smooth map. The fact that ML(R) preserves
the algebraic structure is immediate.

It is also trivial to check that if F': S" —» S" is another morphism of supermani-
folds, ML(R' o R) = ML(R) ° ML(R').

Step 5. Equivalence.
3.7. Definition of tj. For a graded manifold (X, A), define £: MLHL(X, A) ->

(X, A) by defining
¿: A(X ) -> MxiZ2 A\g(AX, AR1"), ARL)

by
Í{a)(y) = y(a)   for ally in Z2 Alg^*, ARL).

It must be shown that £(a) is smooth. This is a "local" result, and it is enough to
show that for a in C °°( V) ® AR* for some open set F in Rr,

|(a): Z2 Alg(C°°( V) ® AR*, ARL) -♦ ARA
is smooth. This follows by observing that ¿(a) = \p~x ° Q, where Q is the bijection
of Lemma 3.2 and \p is the isomorphism of 2.7(v).

By general properties of sheaves, we can choose an open cover {[/} of X and
write AX in terms of the algebras A(U¡),

A(u¡) = j (a,) e II A(U¡): a, = a, when restricted to^(i7, n U/) for all /,/].
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That £ is an algebra homomorphism then also depends on "local" properties. If
V C W are open sets in Rr, it is enough to show that £ induces isomorphisms
which make the following diagrams commute.

C°°(W)® AR*     Z     MxiZ2Alg(Cx(W)®AR*,ARL),ARL)
restriction,], ¿restriction

C°°(F)<8>AR*      4      A/°°(Z2 Alg(CX(V)® AR*, AR¿), ARL)

Using Q to identify Z2 Alg(C°°(IF) ® AR*, ARL)) with £-\W) c Fr-*, £w is seen
to be \¡/ *x of 2.7(v). Similarly t\v is an isomorphism and the diagram is easily shown
to be commutative.

Define tj: (X, A) -h» MLHL(X, A) to be | " '.
3.8. Definition at f. Let S1 be a supermanifold. Define

?: 5 -* Z2 A\g{Mx(S, AR¿), AR¿) = HLML(S )

by
?(*)(/) = /(*)    for all/in A/°°(S, ARL).

The map $(s) is an algebra homomorphism since the map / of 2.5(iv) is an algebra
homomorphism.

That f is a superdiffeomorphism follows from the fact that f restricts to
superdiffeomorphisms on charts. It is enough to show for an open set U in Fr'*,

f : U^ Z2 A\g{Mx(U, AR¿), ARL)

is a superdiffeomorphism. By 2.7(v), ^: MX(U, ARL) -+ C x(e(U) ® Aty)) is an
isomorphism. Then f can be written as the composition of two maps,

HM) ° Q~x: U-+Z2AlgiCx(e(U))® AR*, AR¿)
-* Z2 Aig{Mx(U, ARL), ARL),

where Q is the bijection of Lemma 3.2. The map Q ~ ' defines the smooth structure
on Z2 Alg(Cx(e(U) ® AR*), AR£), and HL(\p) is a smooth map by Lemma 3.4.
Since HL is a functor, the fact that \p is an isomorphism implies that f is a
superdiffeomorphism.

The proof is completed by observing that the following diagrams are commuta-
tive, for any morphism a: (X, A) -» (X', A') of graded manifolds or t: S —> S' of
supermanifolds.

(X,A)      ^       MLHL(X,A)       S      ->     HLML(S)
Ï» lMLHL(o) |t I^JI/^t)

(*',¿')     -*     MLttL(*',;T)       S'     -*     HLML(S)

3.9. Proof of Proposition 1.10. Part (ii) is immediate. For part (i), write Fr'*(F)
and Er,s(L') in order to distinguish Fr* defined via ARL. Similarly write eL and iL,
to distinguish between the corresponding augmentation maps. Let S be a super-
manifold in § 9H¿ and let a = {(í/a, <j>a)} be the maximal atlas which defines S.
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Then define

S=  Ue^xeLi<t>a(Ua))/~,
a

where the equivalence relation ~ is defined as follows. Notice that if U is an open
set in Er-S(L),

MX(U, ARL) « Cx(eL(U) ® AR*) = Mxie£,xeL{U), ARL). (B)

Then the superdiffeomorphisms

W/: *fi(ua n up)^>+aiua n ufi)
give rise to superdiffeomorphisms

faß-'D\^Ua n Uß) ^ e-,xeLifa{Ua n Uß).

Then if a is in e¿ xeL<¡>a( Ua) and if b is in e¿ xeL<j>ß( Uß), then a ~ b'û raßb = a.
It is not hard to check that S is in S 91lz/. That S 91LL includes as a full

subcategory in S 91LA- also follows from (B).
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