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Abstract In this paper we address the problem of integrating independent and pos-
sibly heterogeneous data warehouses, a problem that has received little attention so
far, but that arises very often in practice.

We start by tackling the basic issue of matching heterogeneous dimensions and
provide a number of general properties that a dimension matching should fulfill. We
then propose two different approaches to the problem of integration that try to en-
force matchings satisfying these properties. The first approach refers to a scenario of
loosely coupled integration, in which we just need to identify the common informa-
tion between data sources and perform join operations over the original sources. The
goal of the second approach is the derivation of a materialized view built by merging
the sources, and refers to a scenario of tightly coupled integration in which queries
are performed against the view.

We also illustrate architecture and functionality of a practical system that we have
developed to demonstrate the effectiveness of our integration strategies.
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1 Introduction

1.1 Motivations

Data warehousing can be considered today a mature technology. Many advanced
tools exist to support business analysts in the rapid construction, the effective main-
tenance and the efficient analysis of data marts, the building blocks of a data ware-
house. As it often happens, however, the rapid and uncontrolled spreading of these
tools within organizations has led in many cases a number of previously uncharted
and rather involved challenges.

One problem that needs to be solved in many practical cases is the integration of
data marts that have been developed and operated independently. Indeed, a common
practice for building a data warehouse is to implement a series of data marts, each
of which provides a dimensional view of a single business process [17]. These data
marts should be based on common dimensions and facts but, very often, different
departments of the same company develop their data marts independently, and it turns
out that their integration is a difficult task.

Actually, the need for combining autonomous data marts arises in other common
scenarios. For instance, when different companies merge or get involved in a feder-
ated project or when there is the need to combine a proprietary data warehouse with
data available elsewhere, for instance, in external (and likely heterogeneous) infor-
mation sources or in multidimensional data wrapped from the Web.

1.2 Goal and contributions

The goal of this paper is the investigation of theoretical and practical issues related to
the design of an integration tool for data warehouses, similar in spirit to other tools
supporting the integration of heterogeneous data sources [23], but specific for multi-
dimensional databases. In fact, we believe that this problem can be tackled in a sys-
tematic way, for two main reasons. First, multidimensional databases are structured
in a rather uniform way, along the widely accepted notions of dimension and fact.
Second, data quality in data warehouses is usually higher than in generic databases,
since they are obtained by reconciling several data sources.

We start by addressing the basic problem of integrating a pair of autonomous di-
mensions. To this end, we have introduced the basic notion of dimension compat-
ibility, which extends an earlier notion proposed by Kimball [17]. Intuitively, two
dimensions of different data marts are compatible if their common information is
consistent. In a preliminary study [8], we have shown that dimension compatibility
gives the ability to correlate, in a correct way, multiple data marts by means of drill-
across queries [17], which are basically joins, over common dimensions, of different
data marts.

Building on this notion, we identify a number of desirable properties that a match-
ing between dimensions (that is, a correspondence between their levels) should sat-
isfy: (i) the coherence of the hierarchies on levels, (ii) the soundness of the paired
levels, according to the members associated with them, and (iii) the consistency of
the functions that relate members of different levels within the matched dimensions.
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We then propose two different approaches to the problem of integration that try
to enforce “good” matchings, according to the above properties. The first technique
refers to a scenario of loosely coupled integration, in which we need to identify the
common information between sources (intuitively, the intersection), while preserv-
ing their autonomy. With this approach drill-across queries are performed over the
original sources. The goal of the second technique is rather merging the sources (in-
tuitively, making the union) and refers to a scenario of tightly coupled integration,
in which we intend to build a materialized view that includes the sources. With this
approach, queries are then performed against the view built from the sources. As
a preliminary tool, we introduce a powerful technique, the chase of dimensions, that
can be used in both approaches to test for consistency and combine the content of the
dimensions to integrate.

Finally, we show architecture and functionality of a system called DaWaII (Data
Warehouse IntegratIon) that we have developed to test the effectiveness and efficiency
of our approach. To our knowledge, DaWaII is the first CASE tool supporting the user
in the integration of heterogeneous data warehouses.

1.3 Related work

The integration of heterogeneous databases has been studied in the literature exten-
sively [11, 15, 18, 22, 27]. This problem presents, in general, many facets both at
scheme and instance level (see [5, 27] for a comprehensive classification and for
a survey of the solutions proposed). In this paper, we concentrate our attention on
the integration of multidimensional data, which is clearly an instance of the general
problem of database integration. Therefore, we do not address the general issues of
the integration problem, such as the automatic matching of terms [13] or the resolu-
tion of structural conflicts [5]. Rather, we propose methods and techniques that take
advantage of the multidimensional nature of data warehouses. It turns out that the
techniques presented here are complementary to the approaches for the generic case
and so, in the implementation of an effective tool, they need to be used in combina-
tion with other general integration methods. This issue will be discussed further in
Sect. 6, where we will present the development of a practical integration system that
incorporates some known integration approaches.

To our knowledge, the problem of data warehouse integration has never been stud-
ied in a systematic way and so this paper proposes the first approach to its solution.
There are however a number of issues that are related to this problem and have been
investigated in the literature.

First of all, the concept of compatibility among dimensions, which is at the basis
of our work, has been discussed, under the name of “conformity”, by Kimball [17]
in the context of data warehouse design. However, our notion of compatibility has
been introduced purposely for the goal of integration and therefore is more suitable
than the notion of conformity to study how existing autonomous data marts can be
combined.

An issue related to the integration of data warehouses, which has been studied in
the context of statistical databases, is the derivability of summary data. This notion
has been defined by Sato [28] as the problem of deciding whether a summary data,
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which is the counterpart of a fact table in a statistical database, can be inferred from
another summary data organized over a different classification, that is, aggregated in
a different way. The concept has been extended by Malvestuto et al., by considering
the case in which the source is composed by several heterogeneous data sets [20, 21].
They proposed an algebraic approach to this problem and provided some necessary
and sufficient conditions of derivability. However, both the framework and the goal
of these studies is rather different from ours. Their statistical model has some similar-
ity with a multidimensional data model but also some important diversities [29]. For
instance, the notions of dimension and of aggregation hierarchy, which are important
ingredients in OLAP applications, are not explicit in this model. Moreover, we fol-
low here a constructive approach, by providing methods and algorithms that can be
actually used in an integration system.

Some work has been done on the problem of integrating a data mart with external
data, stored in various formats: XML [16, 25, 31] and object-oriented [24]. This is
clearly related with but different from the integration of heterogeneous data marts.
More specifically, this problem is related to our tightly coupled approach to integra-
tion, in that a dimension is “enriched” with data coming from another external data
source, not necessarily multidimensional. On the other hand, our loosely coupled ap-
proach to integration is related to the problem of applicability of drill-across queries.
This issue has been addressed by Abelló et al. [1] by introducing a number of rela-
tionships that can be used to navigate between different data marts of the same data
warehouse. Again, this problem (as well as the context) is related but different form
ours.

Finally, we mention that the chase of dimensions can be viewed as an exact method
of missing value imputation, which has been studied in statistical data analysis and
classification, for instance, by use of estimation with the EM algorithm [26].

Some of the results of this paper have been presented, in a preliminary form, in [9].
The short description of DaWaII has been done in [30] and a demo of this tool has
been given in [10].

1.4 Organization of the paper

The paper is organized as follows. In Sect. 2 we recall a multidimensional model
that will be used throughout the paper. In Sect. 3 we present the notion of dimension
matching and provide a basic tool, called d-chase, for the management of matchings.
In Sect. 4 we illustrate two techniques for dimension integration and, in Sect. 5, we
describe how they can be used to integrate heterogeneous data marts. In Sect. 6 we
present the practical system that we have developed to test the approach and finally,
in Sect. 7, we draw some conclusions and sketch future work.

2 Preliminaries

In this section, we introduce a number of preliminary notions that are at the basis of
our investigation, namely, a conceptual model for multidimensional databases and an
algebra for the manipulation of dimensions. These are preceded by an introductory
section to multidimensional data.
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2.1 Multidimensional databases

A data warehouse is an integrated collection of operational, enterprise-wide data that
is built to support decision making. Traditionally, the elements of a data warehouse
that are subject of analysis are called facts and the specific aspects of a fact that are
relevant for decision making are called measures. For instance, in a data warehousing
application for a retail company, possible facts are the sales an the measures can be
the number of units sold, the income and the cost.

It is widely recognized that the effectiveness of analysis strictly depends on the
ability of describing facts in a data warehouse according to appropriate dimensions,
that is, “perspectives” under which facts can be examined. For instance, in the above
application for a retail company, it is useful to organize the sales along dimensions
like products commercialized by the company, stores selling these products and days
in which sales occur. Each dimension is usually structured into a hierarchy of lev-
els, obtained by grouping in different ways elements of the dimension. For instance,
we might be interested in grouping products by brands and categories, and days by
months and years. When the members of a level l1 can be grouped to members of
another level l2 it is often said that l1 rolls up to l2. For instance, the level “product”
rolls up to the level “brand”.

When a database is organized according to facts and dimensions it is often called
multidimensional. In practical tools, a multidimensional database is usually presented
to the analyst as a collection of data cubes (also called data marts) having a “physi-
cal” dimension for each “conceptual” dimension of measurement: a coordinate of the
data cube specify a combination of level members and the corresponding cell con-
tains the measure associated with such combination. If the application relies on the
relational database technology, the content of a data mart is stored in a star schema,
having a central table for the fact on which the analysis is focused, and a number of
tables for the dimensions of analysis [17].

In order to make our study independent of a specific technology, we will present
in the following section a conceptual multidimensional data model that includes the
notions presented informally in this section and generalizes the way in which multi-
dimensional databases are implemented in commercial systems. We have shown that
this high-level representation can be easily mapped to the data models adopted by
practical systems [6].

2.2 A dimensional data model

MD is a conceptual data model for multidimensional databases that we have intro-
duced, in an earlier study, with a different goal [6]. As we have said in the previous
section, this model generalizes the notions commonly used in multidimensional sys-
tems and, for this reason, is adopted as framework of reference for the present study.
MD is based on two main constructs: the dimension and the data mart.

Definition 1 (Dimension) An MD dimension d is composed of:

• A scheme S(d), made of:
– A finite set L = {l1, . . . , ln} of levels, and
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– A partial order � on L (if l1 � l2 we say that l1 rolls up to l2);
• An instance I (d), made of:

– A function m associating members with levels; and
– A family of functions ρ including a roll up function ρl1→l2 : m(l1) → m(l2) for

each pair of levels l1 � l2.

We assume that L contains a bottom element ⊥ (w.r.t. �) whose members represent
real world entities that we call basic.1 Members of the other levels represent groups of
basic members. Let {τ1, . . . , τk} be a predefined set of base types, (including integers,
real numbers, etc.).

Definition 2 (Data mart) An MD data mart f over a set D of dimensions is com-
posed of:

• A scheme f [A1 : l1, . . . ,An : ln] → 〈M1 : τ1, . . . ,Mm : τm〉, where each Ai is
a distinct attribute name, each li is a level of some dimension in D, each Mj is
a distinct measure name, and each τj is some base type; and

• An instance, which is a partial function mapping coordinates for f to facts for f ,
where:
– A coordinate is a tuple over the attributes of f mapping each attribute name Ai

to a member of li ;
– A fact is a tuple over the measures of f mapping each measure name Mj to

a value in the domain of type τj .

Example 1 Figure 1 shows a Sales data mart that represents daily sales of products in
a chain of stores. This data mart is organized around four dimensions: p1 (product), s1

(store), m1 (promotion) and t1 (time). The measures of this data mart are the quantity
sold, the total income and the cost of the products sold in a given day and store, and
(possibly) offered in a given promotion.

In MD, a data warehouse is a collection of data marts.
It is worth noting that, according to the traditional database terminology, MD is

a conceptual data model, since its schemes represent real world entities. We will show
that this property allows us to keep the study general and simple at the same time. It
follows that MD schemes can be implemented using several logical data models [4].
An approach to the design of a data warehouse, which includes the implementation
in a logical model, has been presented in [6].

2.3 An algebra for dimensions

We now introduce the dimension algebra (DA), a useful tool for the manipulation of
existing dimensions. DA is based on three operators, as follows. Let d denote a di-
mension having scheme S(d) = (L,�) and instance I (d) = (m,ρ).

1In [8], we called them ground members.
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Fig. 1 Sales data mart

Definition 3 (Selection) Let G be a subset of the basic members of d . The selection
σG(d) of G over d is the dimension d ′ such that:

• The scheme of d ′ is the same of d ,
• The instance of d ′ contains: the basic members occurring in G, the members of d

that can be reached from them by applying roll-up functions in ρ, and the restric-
tion of the roll-up functions of d to the members of d ′.

Definition 4 (Projection) Let X be a subset of the levels of d that includes ⊥d . The
projection πX(d) of d over X is the dimension d ′ such that:

• The scheme of d ′ contains X and the restriction of � to the levels in X,
• The instance of d ′ contains: the members of d that belong to levels in X and the

roll-up functions ρl1→l2 of d involving levels in X.

Definition 5 (Aggregation) Let l be a level in L. The aggregation ψl(d) of d over l

is the dimension d ′ such that:

• The scheme of d ′ contains l, the levels of d to which l rolls up, and the restriction
of � to these levels,

• The instance of d ′ contains: the members of d that belong to levels in d ′ and the
roll-up functions ρl1→l2 of d involving levels in d ′.

For a DA expression E and a dimension d , we denote by E(d) the dimension
obtained by applying E to d .
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Fig. 2 Application of a DA expression

Example 2 Let us consider the time dimension t1 of the data mart in Fig. 1 and let
D2004 denote the days that belong to year 2004. The DA expression

E = πday, month, year(σD2004(t1))

generates a new dimension with level day, month and year having as basic members
all the days of 2004 (see Fig. 2).

The following is a desirable property of DA expressions.

Definition 6 (Lossless expression) A DA expression E over a dimension d is lossless
if for each member o in E(d), all the basic members that roll up to o in d , or none of
them, belong to E(d).

In [8] we have shown that the satisfaction of this property prevents inconsistencies
between aggregations computed over d and aggregations computed over E(d).

DA expressions involving only projections and aggregations are always loss-
less [8]. On the other hand, if a DA expression involves selections, the lossless prop-
erty can fail to hold: it depends on the particular sets of elements chosen to perform
the selections.

3 Matching autonomous dimensions

In this section we address the basic problem of matching heterogeneous dimension
and introduce a basic procedure, called d-chase, for the management of matchings
between dimensions.

In what follows, d1 and d2 denote two dimensions, belonging to different data
marts, having scheme S(d1) = (L1,�1) and S(d2) = (L2,�2), and instance I (d1) =
(m1, ρ1) and I (d2) = (m2, ρ2), respectively.

3.1 Dimension matching and its properties

Let us start with the basic notion of dimension matching.
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Fig. 3 A matching between two dimensions

Definition 7 (Dimension Matching) A matching between two dimensions d1 and d2
is a (one-to-one) injective partial mapping μ between L1 and L2.

With a little abuse of notation, given a matching μ, we will denote by μ also its
inverse. We also extend μ to sets of levels in the natural way (that is, μ(L) is the set
containing μ(l) for each level l in L). Also, we will assume that μ is the identity on
the levels on which it is not defined.

Example 3 Figure 3 shows an example of matching between two geographical di-
mensions that associates store with shop, city with town, zone with area, and country
with state.

As we have said in the Introduction, we will not address the problem of the auto-
matic derivation of a dimension matching, since this is outside the goal of this paper.
However, standard techniques for semantic reconciliation [27] can be used for this
purpose. Actually, we have implemented some of them in our system, which is ca-
pable to suggest possible matchings according to both a top-down and a bottom-up
strategy, as described in more detail in Sect. 6.

A number of desirable properties can be defined over a matching between dimen-
sions. Intuitively, we say that a matching is: (i) coherent if it preserves the hierarchy
defined on their levels, (ii) sound if it preserves level membership, and (iii) consistent
if it preserves the roll-up relationships between members of different levels. More
precisely, we have the following definition.

Definition 8 (Matching Properties) Let μ be a matching between two dimensions d1
and d2. Then:

• Coherence: μ is coherent if, for each pair of levels l, l′ of d1 on which μ is defined,
l �1 l′ if and only if μ(l) �2 μ(l′);

• Soundness: μ is sound if, for each level l ∈ L1 on which μ is defined, m1(l) =
m2(μ(l));
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Fig. 4 Possible instances of the dimensions in Fig. 3

• Consistency: μ is consistent if, for each pair of levels l �1 l′ of d1 on which μ is

defined, ρl→l′
1 = ρ

μ(l)→μ(l′)
2 .

A total matching that is coherent, sound and consistent is called a perfect matching.

Example 4 The matching in Fig. 3 is clearly coherent since, roughly speaking, no
correspondence intersects another. Now assume that levels of the two dimensions be
populated by the members reported in Fig. 4. Then the matching is consistent, since
the roll-up functions are not contradictory, but it is not sound, since there are members
in one dimension that do not appear in the other.

Note that, for sake of simplicity, soundness refers, in the theoretical investigation,
to a conceptual view, under which two levels coincides if they are populated by the
same real world entities. This choice allows us to take apart the problem of using dif-
ferent values to represent the same entity (or, similarly, the same value for different
entities). This is clearly an important issue but, as we have said in the Introduction, is
outside the scope of the paper. In Sect. 6 we will show that, in the development of a
practical system, we have followed a logical approach, based on standard techniques
supporting the derivation of mappings between identifiers representing the same en-
tity.

Clearly, a perfect matching is very difficult to achieve in practice. In many cases
however, autonomous dimensions actually share some information. To identify this
common information, we need the ability to select a portion of a dimension. This
comment leads to the following definition.

Definition 9 (Dimension Compatibility) Two dimensions d1 and d2 are μ-compatible
if there exist two lossless DA expressions E1 and E2 over d1 and d2, respectively, such
that μ is a perfect matching between E1(d1) and E2(d2).
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The rationale underlying the definition of compatibility is that: (i) two dimensions
may have common information; (ii) the intersection can be identified by DA expres-
sions; and (iii) lossless expressions guarantee the correctness of OLAP operations
over the intersection [8].

Example 5 The dimensional matching reported in Fig. 3 can be made perfect by
applying, for instance, the following expressions to d1 and d2, respectively:

πstore, city, zone, country(σ{1er}(d1)), πshop, town, area, state(σ{1er}(d2)).

3.2 Chase of dimensions

We now describe a procedure called d-chase (for chase of dimensions) that applies
to members of autonomous dimensions and show that it can be used for integration
purposes.

Let V be a set of variables and L = l1, . . . , lk be a set of levels. A tableau T over
L is a set of tuples t mapping each level li to a member of li or a variable in V .

Now, let μ be a matching between two dimensions d1 and d2.

Definition 10 (Matching Tableau) The matching tableau over d1, d2 and μ, denoted
by Tμ[d1, d2], is a tableau over L = L1 ∪ μ(L2) having a tuple tm for each member
m of a level l ∈ L such that:

• tm[l] = m,
• tm[l′] = ρl→l′(m), for each level l′ to which l rolls up,
• tm[l′′] = v, where v is a variable not occurring elsewhere, for all other levels in L.

Example 6 Let us consider the dimension matching in Fig. 3 and assume that lev-
els of these two dimensions be populated by the members reported in Fig. 4. The
corresponding matching tableau is the following.

Store City Zone Country District State Prov. Region

1st NewYork v1 USA v2 NY v3 v4
2nd LosAng. U2 USA Melrose CA v5 v6
1er Paris F2 France Marais v7 v8 v9

1mo Rome I3 Italy v10 v11 RM Lazio
1st NewYork U1 USA v12 v13 v14 v15
1er Paris F2 France v16 v17 75 IledeFr

In this example, the first three tuples represent members of d1 and the others mem-
bers of d2. The first four columns represent the matched levels and the other columns
represent levels of the two dimensions that have not been matched. Note that a vari-
able occurring in a tableau may represents an unknown value (for instance, in the
first row, the zone in which the store 1st is located, an information not available in
the instance of d1) or an inapplicable value (for instance, in the last row, the district
in which the store 1er is located, a level not present in the scheme of d2).
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We point out that this tableau can be easily built, in an automatic way, by just ex-
tending, with fresh labelled nulls, the members of the original dimensions (which,
in relational systems, are usually just tuples in dimension tables) to the levels not
occurring in them.

The d-chase (chase of dimensions) is a procedure inspired by an analogous proce-
dure used for reasoning about dependencies in the relational model [2]. This proce-
dure takes as input a tableau T over a set of levels L and generates another tableau
that, if possible, satisfies a set of roll-up functions ρ defined over the levels in L. This
procedure modifies values in the tableau, by applying chase steps. A chase step ap-
plies when there are two tuples t1 and t2 in T such that t1[l] = t2[l] and t1[l′] 
= t2[l′]
for some roll up function ρl→l′ ∈ ρ and modifies the l′-values of t1 and t2 as follows:
if one of them is a constant and the other is a variable then the variable is changed
(is promoted) to the constant, otherwise the values are equated. If a chase step tries
to identify two constants, then we say that the d-chase encounters a contradiction,
and the process stops generating a special tableau that we denote by T∞ and call the
inconsistent tableau.

Definition 11 (D-chase) The d-chase of a tableau T , denoted by DCHASEρ(T ), is a
tableau obtained from T and a set of roll-up functions ρ by applying all valid chase
steps exhaustively to T .

Example 7 By applying the d-chase procedure to the matching tableau of Example 6
we do not encounter contradictions and obtain the following tableau.

Store City Zone Country District State Prov. Region

1st NewYork U1 USA v2 NY v3 v4
2nd LosAng. U2 USA Melrose CA v5 v6
1er Paris F2 France Marais v7 75 IledeFr
1mo Rome I3 Italy v10 v11 RM Lazio

The d-chase promotes, for instance, v1 to U1, and v8 to 75.

Note that in the d-chase procedure, a promotion of a variable always corresponds
to the detection of an information present in the other dimension and consistent with
the available information but not previously known.

An important result about the d-chase, which just extend a known result of rela-
tional theory [2], is the following.

Lemma 1 The d-chase process terminates on any input with a unique end result.

Proof The d-chase is a variant of the chase procedure, a theoretical tool introduced
to study the implication of constraints [3, 19] and later extended to solve other prob-
lems related to the management of relational databases [2]. In particular, the matching
tableau can be viewed as a representative instance over a relation scheme that in-
cludes a table for each dimension. A representative instance is a tableau that includes
all the tuples of the tables occurring in a relational database instance [14]. Under
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this view, roll-up functions correspond to functional dependencies over such scheme.
The steps of the d-chase are therefore equivalent to chase steps based on functional
dependencies of a standard chase procedure. One of the main result that has been
proved for the chase is that it satisfies the Church-Rosser property [2], that is, the
termination is guaranteed on any input and the final result is unique up to a renaming
of variables. �

The following result states that the d-chase provides an effective way to test for
consistency. The proof is based on a reduction of the problem to the problem of testing
the consistency of a relational database against a set of functional dependencies, for
which correctness results of such procedure are known [2].

Theorem 1 A matching μ between two dimensions d1 and d2 is consistent if and
only if DCHASEρ1∪μ(ρ2)(Tμ[d1, d1]) 
= T∞.

Proof Under the interpretation of the d-chase given in the proof of Lemma 1, the
application of this procedure to the tableau Tμ[d1, d1] corresponds to the application
of the standard chase procedure on a representative instance IR built from a rela-
tional database R that includes a relation R1 with a tuple for each basic member of
d1 and a relation R2 with a tuple for each basic member of d2. Also, each roll-up
function ρl→l′ in ρ1 ∪ μ(ρ2) corresponds to a functional dependency Xl → Xl′ over
IR . By a result in [14], the chase of IR terminates without encountering contradic-
tions if and only if IR globally satisfies the functional dependencies defined for it.
This means that, for each functional dependency Xl → Xl′ and each pair of tuples
t1 originating from R1 and t2 originating from R2 such that t1[Xl] = t2[Xl], it is the
case that t1[Xl′ ] = t2[Xl′ ]. Since R1 and R2 represent the two dimensions d1 and
d2 and the functional dependencies the corresponding roll-up functions, this implies
that the roll-up functions of the two dimensions coincide. Therefore, we have that we
do not encounter contradictions by applying the d-chase to Tμ[d1, d1] if and only if

ρl→l′
1 = ρ

μ(l)→μ(l′)
2 , that is, if and only if μ is consistent. �

We finally define a special operation over a tableau that will be used in the fol-
lowing. Let T be a tableau over a set of levels L and S = (L′,�) be the scheme of a
dimension such that L′ ⊆ L.

Definition 12 (Total projection) The total projection of T over S, denoted by π
↓
S (T ),

is an instance (m,ρ) of S defined as follows.

• For each level l ∈ L, m(l) includes all the members occurring in the l-column of
T .

• For each pair of levels l1, l2 in L such that l1 � l2 and for each tuple t of T such
that: (i) both the l1-value and the l2-value are defined, and (ii) there is no other
tuple t ′ in T such that t[l1] = t ′[l1] and t[l2] 
= t ′[l2], then ρl1→l2(t[l1]) = t[l2] and
is undefined otherwise.

Example 8 The total projection of the chased tableau of Example 7 over dimension
d1 contains all the basic members that appear in the first six columns of the tableau.
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Let d be a dimension and μ be a matching between d and any other dimension d ′,
and assume that DCHASEρ1∪μ(ρ2)(Tμ[d1, d1]) 
= T∞. We can easily show the following.

Lemma 2 I (d) ⊆ π
↓
S(d)(DCHASEρ∪μ(ρ′)(Tμ[d, d ′])).

Proof The fact that each member and each roll-up function of I (d) is also in the
total projection over S(d) of DCHASEρ1∪μ(ρ2)(Tμ[d1, d1]) easily follows from the de-
finitions of matching tableau and of d-chase. Moreover, Example 8 illustrates a case
in which the containment is strict. For instance, the total projection over d1 contains
for instance the member 1mo that was not in the original instance of d1. �

This result states an interesting property of the chase that goes beyond the test of
consistency. If we apply the d-chase procedure over a matching tableau that involves
a dimension d and then project the result over the scheme of d , we obtain the original
instance and, possibly, some additional (and consistent) information that has been
identified in the other dimension.

4 Two approaches to dimension integration

In this section we propose two different approaches to the problem of the integration
of autonomous data marts that rely on the issues introduced in the previous section.
As we have said in the Introduction, the first approach refers to a scenario of loosely
coupled integration, in which we need to identify the common information between
sources and perform drill-across queries over the original sources. The second refers
to a scenario of tightly coupled integration, in which we want to build a view that
combine the different information sources and perform queries over this view. The
d-chase procedure presented in the previous section will be used in both approaches.

4.1 A loosely coupled approach

In a loosely coupled integration scenario the goal is to select data that is shared be-
tween the sources. Thus, given a pair of dimensions d1 and d2 and a matching μ

between them, the approach aims at deriving two expressions that makes μ perfect.
The approach is based on Algorithm 1, which is reported in Fig. 5 and is structured
as follows.

• First of all, the algorithm selects the levels L of d1 involved in the matching μ

(Step 1). Then, for each minimal level lm in L (that is, for which there is no other
level l ∈ L such that l �1 lm), it selects only the levels to which lm rolls up (Step 3).
The rationale is to find the expressions that detect the intersection of d1 and d2 in
the levels above lm. If there are several minimal levels, the algorithm iterates over
all of them (Step 2) thus possibly generating several pairs of expressions.

• Step 4 consists of a test for the coherence of μ according to Definition 8. Actually,
this test can be done efficiently by taking advantage of the transitivity of �.

• In Step 5 two preliminary expressions E1 and E2 are identified: they aggregate
over lm (μ(lm)) and project over L (μ(L)).
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Algorithm 1
Input: two dimensions d1 and d2 and a matching μ;
Output: two expressions E1 and E2 that make μ perfect;
begin
(1) L := the levels of d1 involved in μ;
(2) for each minimal level lm of L do
(3) L := L − {l ∈ L such that lm 
�1 l};
(4) if there exist l1, l2 ∈ L such that

l1 �1 l2 and μ(l1) 
�2 μ(l2)

then output ‘not coherent’ and exit;
(5) E1 := πL(ψlm (d1)); E2 := πμ(L)(ψμ(lm)(d2));
(6) M := m1(lm) ∩ m2(μ(lm));
(7) T := Tμ[σM(E1(d1)), σM(E2(d2))];
(8) T := DCHASEρ1∪μ(ρ2)(T );
(9) if T = T∞ then output ‘not consistent’ and exit;
(10) d1 := π

↓
S(d1)

(T ); d2 := π
↓
S(d2)

(T );

(11) for each non basic member m ∈ m1,2(l) in T do
(12) if ∃ a basic m′ ∈ m1,2(l′) such that l′ �1,2 l and

ρl′→l
1,2 (m′) = m and m′ does not occur in T

then T := T − {t | t[l] = m}
(13) M := {m | t[lm] = m for some t ∈ T };
(14) E1 := σM(E1(d1)); E2 := σM(E2(d2));
(15) output E1 and E2;

endfor
end

Fig. 5 An algorithm for deriving the common information between two dimensions

• The rest of the algorithm aims at finding the selection that, applied to E1 and
E2, identifies only the common members in the two dimensions. This is done by
building a matching tableau over the members that occur both in lm and μ(lm)

(Steps 6 and 7) and then chasing it (Step 8). This serves to test for consistency on
the restriction of μ to the levels in L.

• Step 10 serves to guarantees the soundness of the matching: by projecting the result
of the d-chase over the original dimensions we are sure that there are not members
of one dimensions that do not appear in the other dimension.

• Steps 11 and 12 serves to identify, from the members occurring in the working
tableau T , all the members that invalidate the property of lossless expression (De-
finition 6).

• Finally, all the members that still occur in T at level lm are used to perform the
final selection (Steps 13 and 14).

Example 9 Let us consider the application of Algorithm 1 to the dimensions and the
matching in Fig. 3, assuming that the dimensions are populated by the members re-
ported in Fig. 3. Since the matching involves the bottom levels of the two dimensions,
no aggregation is required and the first part of the algorithm generates the following
expressions: πstore, city, region, country(d1) and πshop, town, area, state(d2). The intersec-
tion of the basic members contains only the stores 1st and 1er and so the d-chase
produces the following tableau:

Store City Zone Country District State Prov. Region

1st NewYork U1 USA v2 NY v3 v4
1er Paris F2 France Marais v7 75 IledeFr
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Fig. 6 The dimensions generated by Algorithm 1 on the matching in Fig. 3

This tableau contains, at the country level, the member USA to which the member
2nd of d2 rolls up, but 2nd is not present in the tableau. It follows that in Step 12
the first row is deleted and we obtain as output of the algorithm the following final
expressions:

σ{1er}(πstore, city, region, country(d1)),

σ{1er}(πshop, town, area, state(d2)).

The schemes of the dimensions we obtain by applying these expressions to the origi-
nal dimensions are reported in Fig. 6.

On the basis of to the results of the previous section, we can state the following
correctness result. The proof proceed by construction, showing that the various step
of the algorithm guarantee, according to the basic results provided in Sect. 3, the
satisfaction of the properties that make perfect a dimension matching. Namely, its
consistency, soundness and coherence.

Theorem 2 The execution of Algorithm 1 over two dimensions d1 and d2 and a
matching μ between them returns two expressions E1 and E2 that make μ perfect
if and only if d1 and d2 are μ-compatible.

Proof (If) If d1 and d2 are μ-compatible then by definition there exist two expres-
sions E1 and E2 that make μ perfect. By the coherence of μ over E1(d1) and
E1(d1) it follows that there is not a pair of levels l1, l2 ∈ L such that l1 �1 l2 and
μ(l1) 
�2 μ(l2), and therefore Algorithm 1 does not exit at Step 4. Moreover, by the
consistency of μ and by Theorem 1 it follows that the matching tableau over d1, d2

and μ does not encounter contradictions, and so Algorithm 1 does not exit at Step 4.
Hence, Algorithm 1 terminates and correctly returns two expressions.
(Only if) Let E1 and E2 the expressions returned by the execution of the Algorithm 1
over d1, d2 and μ. As discussed above, Step 4 of the algorithm consists of testing
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for coherence of μ according to Definition 8. Step 5 generates two preliminary ex-
pressions E1 and E2 that aggregate over lm (μ(lm)) and project over L (μ(L)). Since
no selection is involved in these expressions, by a result in [8], they are lossless. In
Steps 6 and 7 the algorithm builds a matching tableau over the members that occur
both in lm and μ(lm) and, in Step 8, it applies the d-chase procedure. Then, by Theo-
rem 1, Step 9 corresponds to a test of consistency for the restriction of μ to the levels
in L. By Lemma 2, it follows that the d-chase can identify new members of a level of
one dimension in the corresponding level of other dimension. To preserve soundness
of μ, the total projections performed by Step 10 guarantees that the matched levels
have the same members. All the members that occur in the working tableau T and
that can invalidate the lossless property of the expression are eliminated in Steps 11
and 12, according to Definition 6. Finally, Steps 13 and 14 perform the final selection
of the members that still occur in T . Since the properties of coherence, soundness,
and consistency of μ and of the lossless of E1 and E2 have been guaranteed in the
construction of these expressions, it follows that μ is a perfect matching between
E1(d1) and E2(d2), and therefore d1 and d2 are μ-compatible. �

The most expensive step of the algorithm is the d-chase that requires time polyno-
mial with respect to the size of the tableau, which in turn depends on the cardinality
of the dimensions involved. It should be said however that the size of dimensions in
a data warehouse is much smaller than the size of the facts. Moreover, the content of
a dimension is usually stable in time. It follows that the algorithm can be executed
off-line and occasionally, when it arises the need for integration or when changes on
dimensions occur.

4.2 A tightly coupled approach

In a tightly coupled integration, we want to build a materialized view combining
different data sources and perform queries over this view. Our goal is the derivation
of new dimensions obtained by merging the dimensions of the original data sources.
In this case, given a pair of dimensions d1 and d2 and a matching μ between them,
the integration technique aims at deriving a new dimension obtained by merging the
levels involved in μ and including, but taking apart, all the other levels. The approach
is based on Algorithm 2, which is reported in Fig. 7 and consists of phases.

• Similarly to Algorithm 1, Algorithm 2 performs first a check for coherence of the
input matching.

• If the test of coherence is successful, it builds a new (preliminary) dimension
scheme S = (L,�) by merging the levels (Step 3) and the roll-up relations between
levels (Step 4) of the input dimensions (the transitive closure serves to guarantee
that the relation we obtain is a partial order).

• The next step takes into account the special case in which the relation � we obtain
has more than one minimal level. In this case, in Steps 6 and 7, two new auxiliary
bottom levels ⊥′

1 and ⊥′
2 are added below the original bottom levels ⊥1 and ⊥2

of d1 and d2, respectively, and populated by the same members. Then, the map
(⊥′

1,⊥′
2) is added to μ (Step 8) and the scheme S = (L,�) is modified accordingly

(Steps 9 and 10).
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Algorithm 2
Input: two dimensions d1 and d2 and a matching μ;
Output: a new dimension d that embeds d1 and d2;
begin
(1) L := the levels of d1 involved in μ;
(2) if there exist l1, l2 ∈ L such that

l1 �1 l2 and μ(l1) 
�2 μ(l2)

then output ‘not coherent’ and exit;
(3) L := L1 ∪ μ(L2);
(4) �:= (�1 ∪μ(�2))+ ;
(5) if � has several minimal levels

then
(6) d ′

1 := d1 augmented with a new bottom level ⊥′
1;

(7) d ′
2 := d2 augmented with a new bottom level ⊥′

2;
(8) μ′ := μ ∪ {(⊥′

1,⊥′
2)};

(9) L := L ∪ ⊥′
1;

(10) �:= (�′
1 ∪μ(�′

2))+ ;
else d ′

1 := d1; d ′
2 := d2; μ′ := μ;

(11) T := DCHASE
ρ′

1∪μ(ρ′
2)

(Tμ′ [d ′
1, d ′

2]);
(12) if T = T∞ then output ‘not consistent’ and exit;
(13) d := π

↓
(L,�)

(T );
(14) output the dimension d ;
end

Fig. 7 An algorithm for merging two dimensions

• A matching tableau is then built on the (possibly modified) dimensions and a d-
chase procedure is applied to the tableau (Step 11).

• Finally, if no contradiction is encountered in the d-chase, the total projection of
the resulting tableau over the scheme S generates the output dimensions (Steps 12
and 13).

Example 10 Let us consider again the matching between dimensions in Fig. 3 but
assume that the level store does not map to the level shop. This means that the cor-
responding concepts are not related. It follows that the union of the schemes of the
two dimensions produces two minimal levels. Then, the application of Algorithm 2
to this matching introduces two bottom levels below store and shop. The scheme of
the dimension generated by the algorithm is reported in Fig. 8. If the dimensions are
populated by the members in Fig. 3, the output instance contains all the members
occurring in the chased tableau reported in Example 7.

We say that a dimension d embeds another dimension d ′ if there exists a DA ex-
pression E such that E(d) = d ′. On the basis of the discussion above, we can state the
following result. Also in this case, the proof proceed by construction, showing that
the various step of the algorithm guarantee, according to the basic results provided
in the previous sections, that the dimension generated by the algorithm correctly in-
cludes the original dimensions and satisfy the basic properties of consistency and
coherence.

Theorem 3 The execution of Algorithm 2 over two dimensions d1 and d2 and a co-
herent and consistent matching μ between them returns a new dimension d embed-
ding both d1 and d2.
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Fig. 8 The dimension
generated by Algorithm 2 on a
variant of the matching in Fig. 3

Proof In Step 2, the algorithm performs a check for coherence of the input matching.
If the test is successful, Steps 3 and 4 build a new dimension scheme S = (L,�) by
merging the levels and the roll-up relations between levels of the input dimensions.
For the latter, we need to guarantee that the relation we obtain is a partial order. Ir-
reflexivity and asymmetry follow by the coherence of the matching. To enforce tran-
sitivity, the transitive closure is computed over the union of the two roll-up relations.
Assume that the relation � we obtain in this way has more than one minimal level.
In this case, in Steps 6 and 7, two new auxiliary bottom levels ⊥′

1 and ⊥′
2 are added

below the original bottom levels ⊥1 and ⊥2 of d1 and d2, respectively. In order to
guarantee the uniqueness of the bottom level for L without generating undesirable
inconsistencies, these levels are populated with copies of the basic members of ⊥1

and ⊥2, suitably renamed so that the intersection of the two sets of copies is empty.
Then, two new roll-up functions ρ⊥′

1→⊥1 and ρ⊥′
2→⊥2 mapping each copy to the

corresponding member are added to the instances of the dimensions. Step 8 adds the
map (⊥′

1,⊥′
2) to μ and Steps 9 and 10 modify the scheme S = (L,�) accordingly.

By Theorem 1 Step 11 corresponds to a test for consistency, and Steps 12 and 13
perform the total projection of the resulting tableau over the scheme S. By Lemma 2
and by construction, it follows that d embeds both d1 and d2. �

Again, the complexity of the algorithm is bounded by the d-chase procedure that
requires polynomial time in the size of the dimensions involved. Hence, we can make
for this algorithm the same considerations done for Algorithm 1.
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5 Data mart integration

Drill-across queries have the goal of combining and correlating data from multiple
data marts, and are especially useful to perform value chain analysis [17]. These
queries are based on joining different data marts over common dimensions. Since join
operations combine relations on the basis of common data, the existence of shared
information between data marts is needed in order to obtain meaningful results. In
this section we discuss how the techniques described in Sect. 4 can be used to perform
this kind of queries.

5.1 An algebra for data marts

In order to show how data marts can be manipulated, we will use an abstract algebra
for data marts, called DMA, that we have introduced in an earlier paper [7]. This
allows us to keep the approach general and independent of a specific technology.

DMA is based on a number of operators that apply to MD data marts and produce
an MD data mart as result. In this way, the various operators can be composed to
form the expressions of the language. We do not present all of them here, but just
recall those that will be used in the examples that follow.

• Join: if f and f ′ are data marts having schemes f [A1, . . . ,Ai, . . . ,An] →
〈M1, . . . ,Mm〉 and f ′[A′

1, . . . ,A
′
j , . . . ,A

′
n′ ] → 〈M ′

1, . . . ,M
′
m′ 〉, respectively, then

f ��Ai=A′
j
f ′ is a data mart f ′′ having scheme f ′′[A1, . . . ,An,A

′
1, . . . ,A

′
n′ ] →

〈M1, . . . ,Mm,M ′
1, . . . ,M

′
m′ 〉. This data mart contains a tuple τ ′′ for each pair of

tuples τ ∈ f and τ ′ ∈ f ′ such that τ [Ai] = τ [A′
j ]; the tuple τ ′′ coincides with τ on

the attributes and measures of f and with τ ′ on the attributes and measures of f ′.
• Roll up: If f is a data mart having scheme f [A1, . . . ,Ai, . . . ,An] → 〈M1, . . . ,

Mm〉 and A′ is an new attribute over a level l′, such that the level of Ai rolls up
to l′, then �A′:l′

Ai:li(f ) is a data mart f ′ having scheme f ′[A1, . . . ,Ai, . . . ,An,A
′] →

〈M1, . . . ,Mm〉. This data mart contains a tuple τ ′ for each tuple τ of f obtained
by extending τ with a value o for A′, where o is the value to which τ [Ai] rolls up.

• Aggregation: If f is a data mart having scheme f [A1, . . . ,Ai, . . . ,An] →
〈M1, . . . ,Mm〉 and g1, . . . , gm are aggregate functions, then
ψN1=g1(M1),...,Nm=gm(Mm)

A1,...,Ai
(E) is a data mart having scheme f ′[A1, . . . ,Ai] →

〈N1, . . . ,Nm〉. This data mart contains a set of tuples obtained by first grouping
over the attributes A1, . . . ,Ai the tuples of f , an then applying to each group the
aggregate functions g1, . . . , gm to the measures M1, . . . ,Mm, respectively.

DMA also includes selection and projection operators for data marts, an operator to
apply scalar functions to measures, and an operator to transform measures into at-
tributes and vice versa [7].

5.2 Loose integration of data marts

Let us consider the example in Fig. 9, in which we wish to integrate a sales data mart
with a data mart storing weather information, in order to correlate sales of products
with weather conditions. As indicated in the figure, the integration between these data
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Fig. 9 Integration of Sales and Weather Station data marts

sources can be based on the matchings between the time dimensions (t1 and t2) at day
level (since information on sales at a specific time are not available), and the location
dimensions (s1 and ws2) at the city level (to correctly obtain the whether in a given
store location).

In a loose integration of these data marts, we first identify the intersection between
these pairs of dimensions using the algorithm proposed in Sect. 4.1 and then generate
an integrated view obtained by joining the original data marts. Actually, the algorithm
also checks for the quality of such intersection, according to the property of dimen-
sion compatibility, which guarantees the correctness of aggregate operations over the
integrated view, as discussed in Sect. 3.

The application of Algorithm 1 to this input returns two pairs of expressions. The
first pair allows the generation, from the original time dimensions, of two identical
dimensions containing the shared information:

t̂1 = πday, month, year(σdayt1
∩dayt2

(t1)), t̂2 = ψday(σdayt1
∩dayt2

(t2)),

where dayt1
∩ dayt2

denotes the days in common that make the matching between t1
and t2 perfect.

The second pair does the same for the location dimensions:

̂l1 = ψcity(σcitys1
∩cityws2

(s1)), ̂l2 = ψcity(σcitys1
∩cityws2

(ws2)),

where citys1
∩ cityws2

denotes the cities in common that make the matching between
s1 and ws2 perfect.

It turns out that we can join the two data marts to extract daily and city-based data,
but hourly or store-based data can not be computed. Moreover, if we apply the above
expressions to the underlying dimensions before executing the drill-across operation
we prevent inconsistencies in subsequent aggregations over the result of the join.
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Fig. 10 The integration based on the common portions of the dimensions

It follows that, to build an integrated view, we need to apply the following DMA
expressions over the original data marts:

DS1 = ψQ′=sum(Q),I′=sum(I)s,C′=sum(C)

P,D,S′ (�S′:city
S:store(Sales)),

W1 = ψTp′=avg(Tp),P′=avg(P)s,H′=avg(H)

T ′,C,WS′ (�WS′:town
WS:station(�

T ′:day
T:timeOfDay(Weather))).

Finally, these data marts can be joined over the new dimensions with the following
expression:

DS1��t̂1.day=̂t2.day, ̂l1.city=̂l2.townW1

and we obtain the view shown in Fig. 10. Drill-across queries can now be performed
over this view. The above definitions suggest how translate queries against the view
to queries over the original sources.

5.3 Tight integration of data marts

The tightly coupled approach aims at combining data from different dimensions, in-
tuitively, by computing their union rather than their intersection. This can be useful
when we need to reconcile and merge two data marts that have been developed inde-
pendently.

Consider again the example in Fig. 9 and assume that now we want to follow
this approach. By applying Algorithm 2 over the time and location dimensions, we
generate two new dimensions reported in Fig. 11. Note that, the location dimension
that we have obtained contains a new bottom level, which includes all the stores and
the whether stations. These dimensions can be materialized and used for both data
marts in the place of the original ones. We can then refer to the homogeneous inte-
grated scenario reported in Fig. 11 and perform drill-across queries over the shared
dimensions.

Note that, similarly to the approach illustrated in the previous section, to perform
a join operation we first need to: (i) aggregate the Wheatear data mart at the day
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Fig. 11 The integration based on the merged dimensions

level of the time dimension and at the city level on the location dimension, and (ii)
aggregate the Sales data mart at the city level. That is, we need to apply the DMA
expressions reported above over the original data marts. However, differently from
the other case, further combinations of the two data marts are possible. For instance,
we can correlate sales and whether conditions on a weekly base.

We close this section by observing that the approach illustrated in this section can
also be adopted when we wish to extend local dimensions with data from external data
sources, in order to extend local querying capabilities. For instance, with the goal of
performing further selections and groupings, as suggested in [25]. As an example, the
Sales data mart could be integrated with an external and more sophisticated location
dimension in order to select, for instance, sales in cities having more than 100,000
inhabitants.

6 The integration tool

The various techniques described in the previous sections have been implemented in
an interactive tool called DaWaII (Data Warehouse IntegratIon) that has been pre-
sented as a demo in [10]. Screen-shots of the current version of this tool are re-
ported in Fig. 12. More information about the tool can be found on the Web site:
http://torlone.dia.uniroma3.it/dawaii/.

6.1 Features of the system

DaWaII supports various activities related to the integration of multidimensional
databases. More specifically, it provides the following general functionalities.

• Schemes of data marts stored in a variety of external systems (currently DB2, Ora-
cle, and SQL Server) can be accessed and imported in DaWaII. Metadata describ-
ing cubes and dimensions in these systems are translated into a uniform internal
format based on the MD model.
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• Matchings between heterogeneous dimensions can be specified manually by the
user by means of a graphical interface.

• Possible matchings between levels of heterogeneous dimensions can be proposed
automatically by DaWaII. As it will be illustrated in more details in the following
subsection, this feature relies on a number of (rather standard) heuristics that try to
infer whether two levels of different dimensions can refer to the same concept.

• A dimension matching can be tested for coherence, consistency, and soundness.
The checks for soundness and for consistency are not based merely on name equal-
ity, but also on name matching according to known similarity measures. Also this
issue is discussed in the next subsection. If one of these tests fails, a detailed report
on the corresponding cause is returned.

• The common data in two matched dimensions can be derived, according to the
loosely integration approach. This function generates two new virtual dimensions
that can be attached to an imported data mart.

• Two matched dimensions can be merged, according to the tightly integrated ap-
proach. This function generates a new materialized dimension that can be either
attached to an imported data mart or exported to an external system.

• Drill-across queries over heterogeneous data marts can be specified. These opera-
tions make use of the new dimensions that have been built according to either the
tightly coupled approach or the loosely coupled one and that are shared by the data
marts involved in the query.

• Dimensions and cubes operated by DaWaII can be exported to external systems.

6.2 System architecture

The basic components of the architecture of DaWaII are reported in Fig. 13. A num-
ber of data warehouses stored in external Data Warehouse Management Systems
(DWMS) are accessed by the tool through a collection of DW Interfaces (DWI). For
each DWMS, the corresponding DWI is able to:

• Extract meta data describing the sources.
• Translate these descriptions into an internal representation based on the multidi-

mensional model described in Sect. 3 and store these representations in a local
data dictionary.

• Import/export dimension members to/from a local data repository.

The Dimension Manager is in charge to specify and verify matching between di-
mensions stored in the data dictionary. Matchings can be either specified manually
by the user or proposed automatically by the system. This work is performed by a
Match Maker that implements known inference techniques for the automatic deriva-
tion of mappings between levels of different dimensions. More specifically, the Match
Maker module adopts both:

• A top-down approach, based on the use of a data dictionary over the level names
(Wordnet [12], available at gt;lt;http://wordnet.princeton.edu), to identify relation-
ships between level names; and

• A bottom-up approach, based on the identification of shared members between
pair of levels, under the assumption that two concepts that take values from the
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Fig. 13 The architecture of DaWaII

same domain are more likely to be similar than if they take values from completely
different domains.

We stress however the fact that a deep investigation of such strategies is outside the
original goal of the project.

The Integrator performs the actual integrations of pair of dimensions according to
either the loosely coupled approach or the tightly coupled one using the algorithms
presented in Sect. 4. In the former case, new dimension definitions are generated
and stored in the data dictionary for later use. In the latter, a new dimension is built
and the corresponding members are stored in the local data repository. The d-chase
procedure, which is used in both approaches, takes advantage of the Match Maker to
equates names of members from different dimensions.

Finally, the Query Processor receives requests of drill-across queries over au-
tonomous data marts and, on the basis of the information available in the internal
repositories, performs queries to the external systems through the corresponding DW
interfaces. Actually, it should be said that the query facility has been added to the
system just for testing purposes. In fact, as we have clarified in the Introduction, our
goal is not development of yet another data warehouse system but rather of a CASE
tool able to support the user in the design of integrated data marts, built over hetero-
geneous sources, that can be later queried by a suitable (and efficient) OLAP systems.
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6.3 Usability and effectiveness

DaWaII has been used in different practical applications with very satisfactory results.
Some notable examples are the following:

• We have used the tool for a telecommunication company to merge a number of data
marts developed autonomously by different designers but using the same DBMS.
In this case, it was quite easy to integrate similar dimensions presenting structural
and syntactic differences. The tight integration strategy has been preferred in this
application since the goal was to built a new, homogeneous data warehouse includ-
ing the various multidimensional sources.

• The tool has been used in our University to combine some analyses on students
done on the local data warehouse with demographical data published by ISTAT
(the National Institute of Statistics), which is the main supplier of official statisti-
cal information in Italy. In this application the main problem was the construction
of a DW Interface (see Sect. 6) over semi-structured files extracted by the ISTAT
Web site. After this, it was however simple to combine local and global data with
our system to known, for instance, the percentage of students coming from a geo-
graphical area with other Universities.

• We have been involved in a large research project in Italy with different University.
During the application for funding of this project, DaWaII has been very effective
to integrate several multidimensional repositories of biographical data to calculate
the publications of the participants by, e.g., the year of publication and by funding
support.

In almost all our use cases, the tool has demonstrated its effectiveness. The good
degree of usability of the system has been confirmed by the users of the tool and
by the attendees of our demo sessions [10]. With respect to the efficiency of the
tool, we stress the fact that the main capabilities of DaWaII are the integration of
dimensions and the construction of integrated view over local repositories of data.
According to the complexity results discussed in Sect. 4, the basic operations can be
always performed very efficiently, since they operate over dimensions whose size is
very small with respect to the number of facts of a data warehouse. Conversely, the
actual queries over the underlying fact databases are basically demanded by DaWaII
to external systems. This is because, as we have said in the previous section, our
goal is the development of a CASE integration tool able to support the user in the
design phase of integrated data marts, which can be later queried by a efficient query
engines.

7 Conclusions

In this paper we have illustrated the development of a tool for the integration of het-
erogeneous multidimensional databases. We have first addressed the problem from a
conceptual point of view, by introducing the desirable properties of coherence, sound-
ness and consistency that “good” matchings between dimensions should enjoy.

We have then presented two practical approaches to the problem that refer to the
different scenarios of loosely and tightly coupled integration. We have shown that, if
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possible, both approaches guarantee the fulfillment of the above properties. To this
end, we have introduced a practical tool, the chase of dimensions, that can be effec-
tively used in both approaches to compare the content of the dimensions to integrate.

We have finally developed a tool to test on the field the effectiveness of the overall
approach. Under this aspect, the tests we have done on real world scenarios are very
satisfactory and the system is also very efficient [10].

In order to focus on the main aspects of the problem, we have intentionally left
out the case in which data marts to be integrated present some anomaly, such as the
presence of non-strict hierarchies or many-to-many relationships between facts and
dimensions [29]. Adaptations and extensions of the integration techniques presented
here in order to deal with such and further scenarios are subject of future research.

As a final comment, we believe that the techniques presented in this paper can
be generalized to much more general contexts in which, similarly to the scenario of
this study, we need to integrate heterogeneous sources and we possess a taxonomy of
concepts that describe their content. As a matter of fact, we note that dimensions have
structural and functional similarities with ontologies, which provide descriptions of
concepts in a domain and are used to share knowledge. It turns out that some of the
notions and the techniques presented here can provide a contribution to the problem
of integrating generic information sources using ontologies. This is subject of current
investigation.
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