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Two-Archive Evolutionary Algorithm for

Constrained Multi-Objective Optimization

Ke Li# Member, IEEE, Renzhi Chen#, Guangtao Fu, and Xin Yao, Fellow, IEEE

Abstract—When solving constrained multi-objective optimiza-
tion problems, an important issue is how to balance convergence,
diversity and feasibility simultaneously. To address this issue, this
paper proposes a parameter-free constraint handling technique,
a two-archive evolutionary algorithm, for constrained multi-
objective optimization. It maintains two collaborative archives
simultaneously: one, denoted as the convergence-oriented archive
(CA), is the driving force to push the population toward the
Pareto front; the other one, denoted as the diversity-oriented
archive (DA), mainly tends to maintain the population diversity.
In particular, to complement the behavior of the CA and
provide as much diversified information as possible, the DA
aims at exploring areas under-exploited by the CA including the
infeasible regions. To leverage the complementary effects of both
archives, we develop a restricted mating selection mechanism
that adaptively chooses appropriate mating parents from them
according to their evolution status. Comprehensive experiments
on a series of benchmark problems and a real-world case study
fully demonstrate the competitiveness of our proposed algorithm,
in comparison to five state-of-the-art constrained evolutionary
multi-objective optimizers.

Index Terms—Multi-objective optimization, constraint han-
dling, evolutionary algorithm, two-archive strategy

I. INTRODUCTION

THE CONSTRAINED multi-objective optimization prob-

lem (CMOP) considered in this paper is defined as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to gj(x) ≥ aj , j = 1, · · · , q
hj(x) = bj , j = q + 1, · · · , ℓ
x ∈ Ω

(1)

where x = (x1, . . . ,xn)
T is a candidate solution, and Ω =

[xL
i ,x

U
i ]

n ⊆ Rn defines the search (or decision variable)

space. F : Ω → Rm constitutes m conflicting objective

functions, and Rm is the objective space. gj(x) and hj(x)
are the j-th inequality and equality constraints respectively.

For a CMOP, the degree of constraint violation of x at the

j-th constraint is calculated as [1]:

cj(x) =

{

〈gj(x)/aj − 1〉, j = 1, · · · , q
〈|hj(x)/bj − 1| − ǫ〉, j = q + 1, · · · , ℓ (2)
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where ǫ is a sufficiently small tolerance term (e.g. ǫ = 10−6)

for relaxing the equality constraints to the inequality con-

straints. 〈α〉 returns 0 if α ≥ 0 otherwise it returns the negative

of α. The constraint violation value of x is calculated as:

CV (x) =

ℓ∑

j=1

cj(x), (3)

x is feasible in case CV (x) = 0; otherwise x is infeasible.

Given two feasible solutions x1, x2 ∈ Ω, we said that x1

dominates x2 (denoted as x � x2) in case F(x1) is not worse

than F(x2) in any individual objective and it at least has one

better objective. A solution x∗ is Pareto-optimal with respect

to (1) in case ∄x ∈ Ω such that x � x∗. The set of all Pareto-

optimal solutions is called the Pareto set (PS). Accordingly,

PF = {F(x)|x ∈ PS} is called the Pareto front (PF).

Since evolutionary algorithm (EA) is able to approximate

a population of non-dominated solutions, which portray the

trade-offs among conflicting objectives, in a single run, it

has been recognized as a major approach for multi-objective

optimization. Over the past two decades, much effort has

been devoted to developing evolutionary multi-objective opti-

mization (EMO) algorithms, e.g. elitist non-dominated sorting

genetic algorithm (NSGA-II) [2], indicator-based EA [3] and

multi-objective EA based on decomposition [4]. Nevertheless,

although most, if not all, real-life optimization scenarios

have various constraints by nature, it is surprising that the

research on constraint handling is lukewarm in the EMO

community [5], comparing to algorithms designed for the

unconstrained scenarios.

Generally speaking, convergence, diversity and feasibility

are three basic issues for CMOPs. Most, if not all, current

constraint handling techniques at first tend to push a population

toward the feasible region as much as possible, before consid-

ering the balance between convergence and diversity within

the feasible region. This might lead to the population being

stuck at some locally optimal or locally feasible regions, espe-

cially when the feasible regions are narrow and/or disparately

distributed in the search space.

In this paper, we propose a two-archive EA, denoted as C-

TAEA, for solving CMOPs. Specifically, we simultaneously

maintain two collaborative and complementary archives: one

is denoted as the convergence-oriented archive (CA); while the

other is denoted as the diversity-oriented archive (DA). The

main characteristics of C-TAEA are delineated as follows:

• As the name suggests, the CA is the driving force to

maintain the convergence and feasibility of the evolution

process. It provides selection pressure toward the PF.
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• In contrast, without considering the feasibility, the DA

mainly tends to maintain the convergence and diversity

of the evolution process. In particular, the DA explores

the areas that have not been exploited by the CA. This not

only improves the population diversity of the CA within

the currently investigating feasible region, but also helps

jump over the local optima or locally feasible regions.

• To leverage the complementary effect and the elite infor-

mation of these two collaborative archives, we develop a

restricted mating selection mechanism that selects the ap-

propriate mating parents form the CA and DA separately

according to their evolution status.

The idea of using two archives in EMO has been around

since 2006 [6]. For example, [6]–[8] developed several two-

archive EMO algorithms that use two “conceptually” comple-

mentary populations to strike the balance between convergence

and diversity of the evolutionary process. Li et al. [9] devel-

oped a dual-population paradigm that combines the strengths

of decomposition- and Pareto-based selection mechanisms. In

this paper, we would like to, for the first time, explore the

potential advantages of the two-archive strategy for CMOPs.

The rest of this paper is organized as follows. Section II

briefly overviews the state-of-the-art evolutionary approaches

developed for CMOPs and then elicits our motivations. Sec-

tion III describes the technical details of the proposed al-

gorithm step by step. Afterwards, in Section IV and Sec-

tion V, the effectiveness and competitiveness of the proposed

algorithm are empirically investigated and compared with

five state-of-the-art constrained EMO algorithms on various

benchmark problems. Finally, Section VI concludes with a

summary and ideas for future directions.

II. PRELIMINARIES

In this section, we first briefly review some recent de-

velopments of constraint handling techniques in the EMO

community. A more recent empirical comparisons of the

performance of various constrained EMO algorithms can be

found in [10]–[12]. Afterwards, we will give our motivations

based on some examples.

A. Literature Review

Generally speaking, the ideas of the existing constraint

handling techniques in multi-objective optimization can be

divided into the following three categories.

The first category is mainly driven by the feasibility infor-

mation where feasible solutions are always granted a higher

priority to survive to the next iteration. As early as the 90s,

Fonseca and Flemming [13] developed a unified framework

for solving MOPs with multiple constraints. In particular, they

assign a higher priority to constraints than to objective func-

tions. This results in a prioritization of the search for feasible

solutions over optimal solutions. In [14], Coello Coello and

Christiansen proposed a naı̈ve constraint handling method that

simply ignores the infeasible solutions. Although this method

is easy to implement, it suffers the loss of selection pressure

when tackling problems with a narrow feasible region. In

particular, this algorithm will have no selection pressure when

the population is filled with infeasible solutions. In [2], Deb

et al. developed a constrained dominance relation for CMO.

Specifically, a solution x1 is said to constraint-dominate x2,

if: 1) x1 is feasible while x2 is not; 2) both of them are

infeasible and CV (x1) < CV (x2); 3) or both of them

are feasible and x1 ≺ x2. By simply replacing the Pareto

dominance relation with this constrained dominance relation,

the state-of-the-art NSGA-II and NSGA-III [15] can be readily

used to tackle CMOPs. Borrowing the similar idea, several

MOEA/D variants [15]–[17] use the CV as an alternative cri-

terion in the subproblem update procedure. Different from [2],

Oyama et al. [18] developed a modified dominance relation

according to which solutions who violate fewer number of

constraints are preferred. To improve the interpretability of

infeasible solutions, Takahama et al. [19] and Martı́nez et

al. [20] proposed an ǫ-constrained dominance relation where

two solutions violate constraints equally in case the difference

of their CVs is smaller than a threshold ǫ. In particular, this

threshold can be adaptively tuned according to the ratio of

feasible solutions in the population. In [21], Asafuddoula et

al. proposed an adaptive constraint handling method that treats

infeasible solutions as feasible ones in case their CVs are less

than a threshold. Analogously, Fan et al. [22] developed an

angle-based constrained dominance principle by which two

infeasible solutions are regarded as non-dominated from each

other when their angle is larger than a threshold.

The second category aims at balancing the trade-off between

convergence and feasibility during the search process. In [23],

Jiménez et al. proposed a min-max formulation that drives

feasible solutions to evolve toward optimality and drives

infeasible solutions to evolve toward feasibility. In [24], Ray

et al. suggested a Ray-Tai-Seow algorithm that uses three

different methods to compare and rank non-dominated solu-

tions. Specifically, the first ranking procedure is conducted

by sorting the objective values; the second one is performed

according to different constraints; while the last one is based

on a combination of objective values and constraints. Based on

the same rigour, Young [25] proposed a constrained dominance

relation that compares solutions according to the blended rank

from both the objective space and the constraint space. A

similar approach is developed by Angantyr et al. [26] that

uses the weighted average rank of the ranks in both the

objective space and the constraint space. By transforming each

of the original objective functions of a CMOP into the sum

of the distance measure and penalty function, [5] developed a

new constraint handling technique for CMO. In particular, the

modified objective functions are used in the non-dominated

sorting procedure of NSGA-II to facilitate the search of

optimal solutions in both feasible and infeasible regions. To

improve the population diversity, Li et al. [27] developed a

method that preserves infeasible solutions in case they are in

the isolated regions. To exploit useful information contained

in infeasible solutions, Peng et al. [28] proposed to use a

set of infeasible weights, distributed in the infeasible region,

to maintain a number of well-diversified infeasible solutions.

In [29], Ning et al. proposed a constrained non-dominated

sorting method where each solution is assigned a constrained

non-domination rank based on its Pareto rank and constraint
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rank. In [30], a duality evolution is proposed where infeasible

particles evolve toward feasibility and feasible particles evolve

toward PF.

The last category tries to repair the infeasible solutions

in order to drives them toward the feasible region. For ex-

ample, Harada et al. [31] proposed a so-called Pareto de-

scent repair operator that explores possible feasible solutions

around infeasible solutions in the constraint space. However,

the gradient information is usually unavailable in practice.

In [32], Singh et al. suggested to use simulated annealing to

accelerate the progress of movements from infeasible solutions

toward feasible ones. Jiao et al. [33] developed a feasible-

guiding strategy in which the feasible direction is defined

as a vector starting from an infeasible solution and ending

up with its nearest feasible solution. Afterwards, infeasible

solutions are guided toward the feasible region by leveraging

the information provided by the feasible direction.

B. Challenges to Existing Constraint Handling Techniques

From the above literature review, we find that most, if not

all, constraint handling techniques in multi-objective optimiza-

tion overly emphasize the importance of feasibility, whereas

they rarely consider the balance among convergence, diversity

and feasibility simultaneously. This can lead to an ineffective

search when encountering complex constraints.

Let us first consider a test problem C1-DTLZ3 defined

in [15], where the objective functions are the same as the

classic DTLZ3 problem [34] while the constraint is defined

as:

c(x) = (

m∑

i=1

fi(x)
2 − 16)(

m∑

i=1

fi(x)
2 − r2) ≥ 0, (4)

Fig. 1 shows a two-objective example where r is set to

6. From this figure, we can see that the feasible region of

this test problem is intersected by an infeasible ribbon. In

addition, within this infeasible region, the CV of a solution

increases when it moves away from the feasible boundary,

and decreases otherwise. Therefore, it is not difficult to infer

that a feasibility-driven strategy will be easily trapped in

the outermost feasible boundary. To validate this assertion,

we employ the state-of-the-art C-MOEA/D and C-NSGA-

III [15] as the benchmark algorithms where the corresponding

parameters are set the same as [15]. As shown in Fig. 1,

solutions found by both algorithms are stuck in the outermost

feasible boundary after 1,000 generations.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

f1

f 2

PF
feasible boundary
feasible region

0 1 2 3 4 5 6
0

1

2

3

4

5

6

f1

f 2

PF
feasible boundary
feasible region
C-NSGA-III

0 1 2 3 4 5 6
0

1

2

3

4

5

6

f1

f 2

PF
feasible boundary
feasible region

C-MOEA/D

Fig. 1: Comparative results on the two-objective C1-DTLZ3.

Let us consider another test problem C2-DTLZ2 defined

in [15], where the objective functions are the same as the

classic DTLZ2 problem [34] while the constraint is defined

as:

c(x) = max

{
m

max
i=1

[

(fi(x)− 1)2 +
m∑

j=1,j 6=i

f2
j − r2

]

,

[ m∑

i=1

(fi(x)−
1√
m
)2 − r2

]}

, (5)

Fig. 2 gives an example in the two-objective scenario, where

the feasible region is disjointly distributed on the PF. If the size

of each feasible segment is small, a feasibility-driven strategy

will be easily trapped in some, not all, of the feasible segments.

Furthermore, it is highly likely that none of the weight

vectors used in the state-of-the-art decomposition-based EMO

algorithms, e.g. C-MOEA/D and C-NSGA-III, cross these

feasible segments if their sizes are sufficiently small. This

results in significant difficulties for the decomposition-based

EMO algorithms to find feasible solutions. The results shown

in Fig. 2 fully validate our assertions, where neither C-

MOEA/D nor C-NSGA-III can find Pareto-optimal solutions

on all three feasible segments when we set r to be a relatively

small value, say 0.1.
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Fig. 2: Comparative results on the two-objective C2-DTLZ2.

Based on these discussions, we find that an excessive use

of the feasibility information can restrict the search ability

of a constrained EMO algorithm. In Section III, we will

demonstrate how to use a two-archive strategy to balance the

convergence, diversity and feasibility simultaneously in the

entire search space. In particular, we find that an appropriate

use of the infeasibility information can help to resolve the

dilemma between exploration versus exploitation.

III. PROPOSED ALGORITHM

The general flow chart of our proposed C-TAEA is given

in Fig. 3. As its name suggests, C-TAEA maintains two

collaborative archives, named CA and DA, each of which

has the same and fixed size N . Specifically, CA, as the

main force, is mainly responsible for driving the population

toward the feasible region and approximating the PF; DA,

as a complement, is mainly used to explore the areas under-

exploited by the CA. It is worth noting that, to provide as much

diversified information as possible, the update of the DA does

not take the feasibility information into account. During the

reproduction process, mating parents are separately selected

from the CA and the DA according to their evolution status, as

described in Section III-D. Afterwards, the offspring are used

to update the CA and the DA according to the mechanisms

described in Section III-B and Section III-C separately.
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Initialization Stop? Reproduction Update CA

Output CA

Y
e
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No
Update DA

Fig. 3: Flow chart of C-TAEA.

A. Density Estimation Method

Before explaining the update mechanisms of the CA and

the DA in C-TAEA, we first introduce the density estimation

method that is useful for both cases. To facilitate the density

estimation, we borrow the idea from [35] to divide the objec-

tive space into N subregions, each of which is represented by

a unique weight vector on the canonical simplex. In particular,

we employ our previously developed weight vector generation

method [27], which is scalable to the many-objective scenar-

ios, to sample a set of uniformly distributed weight vectors,

i.e., W = {w1, · · · ,wN}. Specifically, a subregion ∆i, where

i ∈ {1, · · · ,N}, is defined as:

∆i = {F(x) ∈ Rm|〈F(x),wi〉 ≤ 〈F(x),wj〉}, (6)

where j ∈ {1, · · · ,N} and 〈F(x),w〉 is the acute angle

between F(x) and w. After the setup of subregions, each so-

lution x of a population is associated with a unique subregion

whose index is determined as:

k = argmin
i∈{1,··· ,N}

〈F(x),wi〉, (7)

where F(x, t) is the normalized objective vector of x, and its

i-th objective function is calculated as:

f i(x) =
fi(x)− z∗i
znadi − z∗i

, (8)

where i ∈ {1, · · · ,m}, z∗ and znad are respectively the

estimated ideal and nadir points, where z∗i = min
x∈S

fi(x) and

znadi = max
x∈S

fi(x) and S is the current solution set. Algo-

rithm 1 gives the pseudo-code of this association procedure.

After associating solutions with subregions, the density of a

subregion is counted as the number of its associated solutions.

B. Update Mechanism of the CA

The effect of the CA is similar to the other constrained

EMO algorithms in the literature. It first pushes the population

toward the feasible region as much as possible, then it tries

to balance the convergence and diversity within the feasible

region. The pseudo-code of the update mechanism of the CA

is given in Algorithm 2. Specifically, we first form a hybrid

population Hc, a combination of the CA and the offspring

population Q. Feasible solutions in Hc are chosen into a

temporary archive Sc (lines 3 to 5 of Algorithm 2). Afterwards,

the follow-up procedure depends on the size of Sc:

Algorithm 1: Association Procedure

Input: Solution set S, weight vector set W
Output: Subregions ∆1, · · · , ∆N

1 ∆1 ← ∅, · · · , ∆N ← ∅;
2 foreach x ∈ S do

3 foreach w ∈W do

4 Compute d⊥(x,w) = x−wTx/‖w‖;
5 k ← argmin

w∈W

d⊥(x,w);

6 ∆k ← ∆k
⋃{x};

7 return ∆1, · · · , ∆N

• If the size of Sc equals N (i.e., the predefined size of the

CA), it is directly used as the new CA and this update

procedure terminates (lines 6 and 7 of Algorithm 2).

• If |Sc| > N , we use the fast non-dominated sorting

method [2] to divide Sc into several non-domination

levels, i.e., F1, F2, and so on. Starting from F1, each

non-domination level is sequentially chosen to construct

a temporary archive S until its size equals or for the first

time exceeds N (lines 9 to 11 of Algorithm 2). If we

denote the last acceptable non-domination level as Fl,

solutions belonging to Fl+1 onwards are exempt from

further consideration. Note that S can be used as the

new CA if its size equals N ; otherwise we associate

each solution in S with its corresponding subregion and

calculate S’s density information afterwards. Iteratively,

a worst solution from the most crowded subregion (tie

is broken randomly) is trimmed one at a time until S’s

size equals N (line 11 to 21 of Algorithm 2). Note that,

to improve the population diversity within a subregion,

we propose the following process to identify the worst

solution xw. First, we calculate the distance between each

solution x in ∆i and its nearest neighbor:

dist(x) = min
x′∈∆i,x 6=x′

‖x− x′‖, (9)

where ‖ · ‖ indicates the ℓ2-norm. Afterwards, the so-

lutions having the smallest distance are stored in a

temporary archive St, while xw is defined as

xw = argmax
x∈St

{gtch(x|wi, z∗)}, (10)

where

gtch(x|wi, z∗) = max
1≤j≤m

{|fj(x)− z∗j |/wi
j}. (11)
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• Otherwise, if the feasible solutions in Hc do not fill the

new CA (|Sc| < N ), we formulate a new bi-objective

optimization problem as follows:

minimize F(x) = (f1(x), f2(x))
T

where

{

f1(x) = CV (x)

f2(x) = gtch(x|wi, z∗)

(12)

Based on (12), we use the fast non-dominated sorting

method to divide the infeasible solutions in Hc into

several non-domination levels (lines 24 and 25 of Al-

gorithm 2). Solutions in the first several levels have a

higher priority to survive into the new CA. Exceeded

solutions are trimmed according to their CVs, i.e., the

solution having a larger CV is trimmed at first (lines 28

to 29 of Algorithm 2). These operations tend to further

balance the convergence, diversity and feasibility.

C. Update Mechanism of the DA

Different from the CA, the DA aims at providing as much

diversified solutions as possible. In particular, its update mech-

anism has two characteristics: 1) it does not take the constraint

violation into consideration; 2) it takes the up to date CA

as a reference set so that it complements the behavior of

the CA by exploring its under-exploited areas. The pseudo-

code of this update procedure is presented in Algorithm 3.

Specifically, similar to Section III-B, we at first combine

the DA with the offspring population Q to form a hybrid

population Hd. Then, we separately associate each solution

in Hd and the up to date CA with its corresponding subregion

according to the method introduced in Section III-A (lines 1

to 3 of Algorithm 3). Afterwards, we iteratively investigate

each subregion and decide the survival of solutions in Hd to

the new DA. In particular, at the itr-th iteration, at most itr
solutions, including those in the CA and Hd, can survive in

each subregion. In other words, for the currently investigating

subregion, say ∆i, i ∈ {1, · · · ,N}, if there already exists itr
solutions in CA at ∆i, no solution in Hd will be considered

to survive at ∆i during this iteration. Otherwise, the best non-

dominated solutions in Hd associated with ∆i, denoted as

Oi, will be chosen to survive to the new DA (lines 10 to

12 of Algorithm 3). Here the best solution xb is identified as:

xb = argmin
x∈Oi

{gtch(x|wi, z∗)}. (13)

This iterative investigation continues till the DA is filled.

D. Offspring Reproduction

The interaction and collaboration between two archives

is a vital step in C-TAEA. Apart from the complementary

behavior of the update mechanisms of the CA and the DA, the

other contributing factor for this collaboration is the restricted

mating selection. Generally speaking, its major purpose is to

leverage the elite information from both archives for offspring

reproduction. Algorithm 4 provides the pseudo code of this

restricted mating selection procedure. Specifically, we first

combine the CA and the DA into a composite set Hm.

Algorithm 2: Update Mechanism of CA

Input: CA, offspring population Q, weight vector set W
Output: Updated CA

1 S← ∅, Sc ← ∅, i← 1, Hc ← CA
⋃
Q;

2 foreach x ∈ Hc do

3 if CV (x) = 0 then

4 Sc ← Sc
⋃{x};

5 if |Sc| = N then

6 CA← Sc;

7 else if |Sc| > N then

8 Use non-dominated sorting to divide Sc into

{F1,F2, · · · } based on the MOP defined in (1);

9 while |S| < N do

10 S← S
⋃
Fi, i← i+ 1;

11 if |S| > N then

12 foreach x ∈ S do

13 Fk(x) =
F(x)−z

∗

znad−z∗ ;

14 {∆1, · · · , ∆N} ← Association(S,W);
15 while |S| > N do

16 Find the most crowded subregion ∆i;

17 foreach x ∈ ∆i do

18 dist(x)← min
x′∈∆i,x 6=x′

‖x− x′‖;

19 St ← argmin
x∈∆i

{dist(x)};
20 xw ← argmax

x∈St

{gtch(x|wi, z∗)};
21 S← S \ {xw};

22 CA← S;

23 else

24 SI ← Hc \ Sc;

25 Use non-dominated sorting to divide SI into

{F1,F2, · · · } based on the MOP defined in (12);

26 while |Sc| < N do

27 S← S
⋃
Fi, i← i+ 1;

28 while |S| > N do

29 xw ← argmax
x∈Fi−1

{CV (x)}, S← S \ {xw};

30 CA← S;

31 return CA

Afterwards, we separately evaluate the proportion of non-

dominated solutions of the CA and the DA in Hm (lines 2 and

3 of Algorithm 4). If ρc > ρd, it means that the convergence

status of the CA is better than that of the DA. Accordingly,

the first mating parent is chosen from the CA; otherwise,

it comes from the DA (lines 4 to 7 of Algorithm 4). As

for the other mating parent, whether it is chosen from the

CA or the DA depends on the proportion of non-dominated

solutions in the CA (lines 8 to 11 of Algorithm 4). The

more non-dominated solutions CA has, the larger chance it

has to be chosen as the mating pool. As shown in lines 5

to 11 of Algorithm 4, we use a binary tournament selection

to choose a mating parent. As shown in Algorithm 5, the
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Algorithm 3: Update Mechanism of the DA

Input: CA, DA, offspring population Q, weight vector

set W
Output: Updated DA

1 S← ∅, i← 1, Hd ← DA
⋃
Q;

2 {∆1
d, · · · , ∆N

d } ← Association(Hd,W);
3 {∆1

c , · · · , ∆N
c } ← Association(CA,W);

4 itr← 1;

5 while |S| ≤ N do

6 for i← 1 to N do

7 if |∆i
c| < itr then

8 for i← 1 to itr− |∆i
c| do

9 if ∆i
d 6= ∅ then

10 Oi ← non-dominated solutions in ∆i
d;

11 xb ← argmin
x∈Oi

{gtch(x|wc, z∗)};
12 ∆i

d ← ∆i
d \ {xb}, S← S

⋃{xb};
13 else

14 break;

15 itr← itr + 1;

16 DA← S;

17 return DA

Algorithm 4: Restricted Mating Selection

Input: CA, DA
Output: Mating parents p1, p2

1 Hm ← CA
⋃
DA;

2 ρc ←proportion of non-dominated solution of CA in Hm;

3 ρd ←proportion of non-dominated solution of DA in Hm;

4 if ρc > ρd then

5 p1 ←TournamentSelection(CA);
6 else

7 p1 ←TournamentSelection(DA);

8 if rand < ρc then

9 p2 ←TournamentSelection(CA);
10 else

11 p2 ←TournamentSelection(DA);

12 return p1, p2

same as the one proposed in [2], this tournament selection

procedure is feasibility-driven. Specifically, if the randomly

selected candidates are all feasible, they are chosen based on

the Pareto dominance; if only one of them is feasible, the

feasible one will be chosen; otherwise, the mating parent is

chosen in a random manner. Once the mating parents are

chosen, we use the popular simulated binary crossover [36]

and the polynomial mutation [37] for offspring reproduction.

In principle, any other reproduction operator can be readily

applied with a minor modification.

IV. EXPERIMENTAL SETUP

Before discussing the empirical results, this section briefly

introduces the benchmark problems, performance metrics and

Algorithm 5: Tournament Selection

Input: Solution set S
Output: Mating parent x

1 Randomly pick two solutions x1 and x2 from S;

2 if x1 and x2 are feasible then

3 if x1 � x2 then

4 x← x1;

5 else if x2 � x1 then

6 x← x2;

7 else

8 x←Randomly pick one from x1 and x2;

9 else if Only one solution is feasible then

10 x←feasible one from x1 and x2;

11 else

12 x←Randomly pick one from x1 and x2;

13 return x

the state-of-the-art constrained EMO algorithms used for peer

comparisons in our empirical studies.

A. Benchmark Suite

Five constrained test problems (i.e. C1-DTLZ1/DTLZ3,

C2-DTLZ2 and C3-DTLZ1/DTLZ4) from [15] and six

newly proposed test problems (DC1-DTLZ1/DTLZ3, DC2-

DTLZ2/DTLZ4 and DC3-DTLZ1/DTLZ4) are chosen to form

the benchmark suite. All these test problems are scalable to any

number of objectives, where we set m ∈ {3, 5, 8, 10, 15} here.

Detailed descriptions, including the mathematical definitions

and properties, of these test problems are given in Section I

of the supplementary document.

B. Performance Metrics

Two widely used metrics are chosen to assess the perfor-

mance of different algorithms.

1) Inverted Generational Distance (IGD) [38]: Given P ∗ as

a set of points uniformly sampled along the PF and P
as the set of solutions obtained from an EMO algorithm.

The IGD value of P is calculated as:

IGD(P ,P ∗) =

∑

z∈P∗ dist(z,P )

|P ∗| , (14)

where dist(z,P ) is the Euclidean distance between z

and its nearest neighbor in P .

2) Hypervolume (HV) [39]: Let zr = (zr1 , · · · , zrm)T be

a worst point dominated by all the Pareto optimal

objective vectors. The HV of P is defined as the volume

of the objective space dominated by solutions in P and

bounded by zr:

HV (P ) = VOL(
⋃

z∈P

[z1, z
r
1 ]× · · · × [zm, zrm]), (15)

where VOL indicates the Lebesgue measure.

To calculate the IGD, we need to sample sufficient amount

of points from the PF to form P ∗. For C-DTLZ benchmark
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problems, we use the method developed in [27] to fulfill this

purpose. Before calculating the HV, we remove the solutions

dominated by the zr, which is set as (1.1, · · · , 1.1
︸ ︷︷ ︸

m

)T in

our empirical studies, except for C3-DTLZ4 where zr =
(2.1, · · · , 2.1
︸ ︷︷ ︸

m

)T . Note that only feasible solutions are used for

performance metric calculation. Both IGD and HV can eval-

uate the convergence and diversity simultaneously. A smaller

IGD or a larger HV value indicates a better approximation

to the PF. Each algorithm is independently run 51 times.

The median and the interquartile range (IQR) of the IGD

and HV values are presented in the corresponding tables. In

particular, the best results are highlighted in boldface with

a gray background. To have a statistically sound conclusion,

we use the Wilcoxon’s rank sum test at a significant level

of 5% to validate the significance of the better performance

achieved by the proposed C-TAEA with respect to the other

peer algorithms.

C. EMO Algorithms Used for Comparisons

Five state-of-the-art constrained EMO algorithms, i.e., C-

MOEA/D, C-NSGA-III, C-MOEA/DD [27], I-DBEA [21]

and CMOEA [5], are chosen for peer comparisons. Due to

the page limit, the description of these algorithms and their

corresponding parameter settings can be found in Section II

of the supplementary document.

V. EMPIRICAL STUDIES

In this section, we discuss the empirical results on different

benchmark problems separately.

A. C-DTLZ Benchmark Suite

The comparison results of IGD values are given in Table I

while the results on HV values are given in Table VI and Table

VII of the supplementary document. Generally speaking, our

proposed C-TAEA produces superior IGD and HV values on

most test instances.

Let us first look at the Type-1 constrained problem. Al-

though the feasible region of C1-DTLZ1 is only a narrow

region above the PF, it actually does not pose any difficulty

to all algorithms. In particular, all algorithms, especially

those purely feasibility-driven ones, just simply push solutions

toward the feasible boundary. As for C1-DTLZ3, C-TAEA

shows the best performance on all 3- to 15-objective problem

instances. In particular, it obtains around 50 times smaller

IGD values than the other peer algorithms on average; only

C-TAEA obtains effective HV values while the HV values ob-

tained by the other peer algorithms are always 0, which means

that the obtained non-dominated solutions are all dominated

by zr. As shown in Fig. 2 of the supplementary document, C1-

DTLZ3 places an infeasible barrier in the attainable objective

space, which obstructs the population for converging to the

true PF. As discussed in Section II-B, due to their feasibility-

driven selection strategy, the other peer algorithms cannot

provide any further selection pressure to push the population

forward when it approaches the outer boundary of this in-

feasible barrier, as shown in Fig. 41. In contrast, since the

selection mechanism of the DA does not take the feasibility

information into account, it can constantly push the solutions

of the DA toward the PF without considering the existence

of this infeasible barrier. In the meanwhile, the CA can at

the end overcome this infeasible barrier via the restricted

mating selection between the CA and the DA. We also notice

that C-TAEA cannot push solutions to fully converge on the

PF in high-dimensional cases as shown in Fig. 17 to 20 of

the supplementary document. This is because the size of the

infeasible barrier increases with the dimensionality. It makes

C1-DTLZ3 even more difficult in a many-objective scenario.

Nevertheless, the solutions obtained by C-TAEA are much

closer to the PF than the other peer algorithms.
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Fig. 4: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on C1-DTLZ3 (median IGD value).

The feasible region of the Type-2 constrained problem,

i.e. C2-DTLZ2, is disjointedly distributed along the PF. All

algorithms do not have any difficulty in finding at least one

feasible PF segment, whereas only C-TAEA can find all

disparately distributed small feasible PF segments as shown

in Fig. 5. The reason that leads to this phenomenon is similar

to C1-DTLZ3. Specifically, each feasible segment is small

when setting a small r in C2-DTLZ2, thus different feasible

segments are separated by large infeasible barriers. In this case,

if an algorithm finds one of the feasible PF segments, it hardly

has any sufficient selection pressure to jump over this locally

feasible PF segment. However, due to the existence of the

DA in C-TAEA, it complements the coverage of the CA. As

shown in Fig. 6, solutions in the CA and the DA perfectly

complements each other in terms of the coverage over the PF.

Thus the DA helps the CA to explore new feasible segments.

As for the Type-3 constrained problems, i.e. C3-DTLZ1 and

C3-DTLZ4, the original PF of the baseline problem becomes

infeasible when considering the constraints while the new PF

is formed by the feasible boundaries. In terms of the constraint

handling, this type of problems does not provide too much

difficulty. From the comparison results shown in Table I and

Table VI of the supplementary document, we find that all

1We only show the 3-objective scatter plots in this paper, while the high-
dimensional plots, which are not as intuitive as the 3-objective scenarios, are
put in the supplementary document.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

0

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f
3

C-TAEA

0

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f
3

C-NSGA-III

0

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f
3

C-MOEA/D

0

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f
3

I-DBEA

0

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

f1

f2

f
3

CMOEA

0

0.5

1

1.5

2

2.5

0
0.5

1
1.5

2
2.5

0

0.5

1

1.5

2

2.5

f1

f2

f
3

C-MOEA/DD

Fig. 5: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on C2-DTLZ2 (median IGD value).
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Fig. 6: Comparison of the solutions finally obtained in CA and

DA on C2-DTLZ2 (median IGD value).

algorithms obtain comparable IGD and HV values on all C3-

DTLZ1 and C3-DTLZ4 problem instances. In particular, C-

TAEA is outperformed by C-MOEA/D on the 5-objective C3-

DTLZ1 problem instance; and it is outperformed by C-NSGA-

II on the 8- and 10-objective C3-DTLZ4 problem instances. In

general, due to the advanced selection mechanisms of the CA

and the DA for balancing convergence and diversity, C-TAEA

obtains better IGD and HV values on most cases.

B. DC-DTLZ Benchmark Suite

The comparison results of IGD and HV values on the

DC-DTLZ benchmark suite are given in Table III and Table

VII of the supplementary document respectively. From these

results, it is obvious to see the overwhelmingly superior

performance of C-TAEA over the other peer algorithms, given

the observation that C-TAEA obtains the best IGD and HV

values in all comparisons. The following paragraphs try to

decipher the potential reasons that lead to the ineffectiveness

of the other peer algorithms.

Let us start from the Type-1 constrained problem. As

described in Section I-B1) of the supplementary document,

the constraints restrict the feasible region to a couple of

narrow cone-shaped strips. Similar to C2-DTLZ2, the other

peer algorithms have a risk of being trapped in one feasible

region thus fail to find all feasible PF segments. However,

DC1-DTLZ1 and DC1-DTLZ3 seem to be less challenging

than C2-DTLZ2 with a small r setting, given the observation

that some peer algorithms are able to find a good number of

solutions in different feasible PF segments as shown in Fig. 7

and Fig. 8. This might be attributed to the g(x) function of

the baseline test problems, i.e., DTLZ1 and DTLZ3, which can

make the crossover and mutation generate offspring far apart

from their parents. Therefore, we can expect that solutions

have opportunities to jump over the locally feasible region.

Nevertheless, as shown in Table III and Table VII of the

supplementary document, the IGD and HV values obtained

by our proposed C-TAEA constantly outperform the other

peer algorithms and the better results are with a statistical

significance.
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Fig. 7: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on DC1-DTLZ1 (median IGD value).
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Fig. 8: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on DC1-DTLZ3 (median IGD value).

The Type-2 constrained problem seems to be similar to C1-

DTLZ1, at first glance, as shown in Fig. 8 and Fig. 9 of

the supplementary document, where the constraints make the

feasible region be reduced to a thin ribbon zone above the PF.

However, it is more challenging due to the fluctuation in the

CV of an infeasible solution when it approaches the PF, as

shown in Fig. 10 of the supplementary document. Table II

shows the number of runs, out of 51 runs in total, where

feasible solutions were found. From this table, we clearly see

that all algorithms, except C-TAEA, can hardly find feasible

solutions in most cases. This is also demonstrated from Fig. 9

and Fig. 10, where we can clearly see that all other peer

algorithms are trapped in a region far away from the PF. As the

problem definitions of DC2-DTLZ1 and DC2-DTLZ3 shown

in the supplementary document, all solutions obtained by the

other peer algorithms are infeasible. Their failures on this type

of constrained problems can be attributed to their feasibility-

driven selection mechanisms, which drive the population to
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TABLE I: Comparison results on IGD metric (median and IQR) for C-TAEA and the other peer algorithms on C-DTLZ

benchmark suite

m C-TAEA C-NSGA-III C-MOEA/D C-MOEA/DD I-DBEA CMOEA

C1-DTLZ1

3 2.069E-2(1.33E-5) 2.037E-2(7.06E-5)‡ 2.110E-2(3.17E-4)† 2.116E-2(4.75E-4)† 2.180E-2(6.03E-6)† 2.140E-2(5.45E-4)†

5 5.278E-2(1.16E-3) 5.427E-2(1.62E-3)† 5.294E-2(7.79E-5)† 5.287E-2(1.81E-5) 5.285E-2(6.62E-5) 5.284E-2(1.97E-5)

8 9.912E-2(1.60E-3) 1.009E-1(1.59E-3) 1.006E-1(6.93E-4) 1.024E-1(1.86E-3)† 1.009E-1(5.30E-4) 1.008E-1(5.76E-4)

10 1.061E-1(3.82E-3) 1.038E-1(8.86E-3)‡ 1.074E-1(7.81E-2) 1.065e-1(9.08E-2) 1.072E-1(7.87E-3) 1.072E-1(3.39E-3)

15 2.233E-1(8.02E-4) 2.351E-1(3.40E-3)† 2.608E-1(7.62E-3)† 2.490E-1(6.53E-3)† 2.506E-1(4.47E-3)† 2.611E-1(7.25E-3)†

C1-DTLZ3

3 5.661E-2(8.49E-3) 8.020E+0(4.22E-3)† 8.007E+0(1.72E-3)† 8.012E+0(1.08E-3)† 8.013E+0(7.59E-3)† 8.007E+0(2.07E-3)†

5 5.364E-1(9.03E-1) 1.162E+1(3.96E-2)† 1.154E+1(4.41E-3)† 1.155E+1(1.12E+1)† 1.153E+1(4.79E-3)† 1.154E+1(9.23E-3)†

8 4.115E-1(1.31E-2) 1.180E+1(8.59E-2)† 1.160E+1(2.64E-3)† 1.161E+1(4.47E-4)† 1.160E+1(6.98E-3)† 1.159E+1(1.84E-2)†

10 3.896E-1(8.75E-2) 1.430E+1(3.30E-2)† 1.414E+1(1.93E-2)† 1.414E+1(7.36E-3)† 1.416E+1(6.11E-3)† 1.412E+1(2.90E-2)†

15 8.749E-1(3.16E-2) 1.470E+1(5.33E-3)† 1.466E+1(8.22E-2)† 1.461E+1(4.30E-2)† 1.463E+1(1.26E-2)† 1.461E+1(6.31E-2)†

C2-DTLZ2

3 1.594E-2(2.95E-3) 9.043E-1(1.25E-4)† 9.069E-1(3.74E-1)† 5.648E-1(3.67E-1)† 9.069E-1(1.76E-3)† 9.069E-1(1.05E-2)†

5 3.386E-1(1.46E-1) 1.068E+0(2.59E-5)† 4.863E-1(5.93E-1)† 1.069E+0(3.97E-2)† 1.070E+0(1.54E-3)† 1.074E+0(4.35E-3)†

8 1.310E-4(8.22E-4) 1.206E+0(1.25E-5)† 1.220E+0(7.64E-3)† 1.237E+0(2.27E-6)† 1.051E+0(1.84E-1)† 1.223E+0(6.64E-4)†

10 2.600E-5(1.03E-6) 1.241E+0(7.00E-6)† 1.254E+0(5.57E-3)† 1.273E+0(1.28E-5)† 1.263E+0(1.46E-1)† 1.257E+0(4.48E-3)†

15 5.658E-1(2.38E-3) 1.287E+0(3.34E-4)† 1.317E+0(6.43E-2)† 1.320E+0(7.21E-1)† 1.315E+0(3.64E-2)† 1.316E+0(3.79E-2)†

C3-DTLZ1

3 4.311E-2(1.22E-4) 7.653E-2(1.40E-3)† 4.344E-2(2.86E-2)† 9.344E-2(1.98E-4)† 4.435E-2(4.79E-3)† 4.435E-2(1.22E-3)†

5 1.073E-1(3.06E-5) 1.124E-1(2.76E-3)† 1.073E-1(5.84E-5) 1.438E-1(5.19E-4)† 1.074E-1(6.95E-6) 1.077E-1(3.30E-4)

8 1.993E-1(8.34E-3) 2.052E-1(4.98E-3) 2.009E-1(4.97E-3) 2.460E-1(1.11E-4)† 2.031E-1(2.07E-3) 2.011E-1(8.72E-4)

10 2.104E-1(2.27E-4) 2.310E-1(2.52E-2)† 2.151E-1(2.72E-3)† 2.655E-1(7.16E-3)† 2.154E-1(5.21E-3)† 2.163E-1(3.30E-3)†

15 3.463E-1(4.76E-3) 3.686E-1(1.41E-2)† 3.989E-1(8.25E-3)† 3.688E-1(2.49E-2)† 3.680E-1(8.14E-2)† 3.909E-1(5.29E-2)†

C3-DTLZ4

3 4.789E-1(2.00E-6) 4.838E-1(1.03E-4)† 4.841E-1(4.21E-3)† 4.848E-1(2.57E-4)† 4.824E-1(3.57E-4)† 4.813E-1(8.11E-4)†

5 4.170E-1(5.51E-4) 4.358E-1(5.65E-3)† 4.484E-1(4.89E-3)† 4.249E-1(5.17E-3)† 4.430E-1(5.07E-3)† 4.389E-1(1.36E-2)†

8 5.049E-1(4.77E-4) 5.020E-1(5.33E-4) 5.268E-1(7.46E-3)† 6.481E-1(1.35E-4)† 5.234E-1(6.96E-3)† 5.236E-1(3.33E-4)†

10 5.604E-1(3.19E-3) 5.571E-1(5.34E-3) 5.651E-1(1.18E-3) 5.735E-1(4.11E-3)† 5.643E-1(2.22E-2) 5.645E-1(8.09E-2)

15 7.587E-1(5.23E-3) 7.627E-1(3.79E-2)† 7.589E-1(4.40E-2)† 7.587E-1(3.78E-2) 7.590E-1(8.28E-3)† 7.589E-1(2.25E-2)†

† denotes the performance of C-TAEA is significantly better than the other peers according to the Wilcoxon’s rank sum test at a 0.05 significance level;
‡ denotes the corresponding algorithm significantly outperforms C-TAEA.

fluctuate between the CV’s local optima. As for our proposed

C-TAEA, its success can be owed to the use of the DA. In

particular, the selection mechanism of the DA does not take

the CV into account so that it has sufficient selection pressure

to move toward the PF. As shown in Fig. 9 and Fig. 10, only C-

TAEA finally find solutions on the PF. However, from Table II,

we also find that C-TAEA can end up with infeasible solutions

while the other algorithms have a chance to obtain feasible

solutions. This is because the crossover and mutation can

generate some significantly different offspring when working

on the g(x) function of DC2-DTLZ1 and DC2-DTLZ3. And

such offspring solutions have a chance to bring infeasible

solutions to the feasible region.

TABLE II: Number of runs when finding feasible solutions.

m C-TAEA C-NSGA-III C-MOEA/D C-MOEA/DD I-DBEA CMOEA

DC2-DTLZ1

3 46 4 3 2 2 0

5 43 5 1 2 1 2

8 33 1 0 2 0 2

10 39 0 0 1 1 0

15 31 1 1 1 2 0

DC2-DTLZ3

3 51 5 2 1 1 2

5 51 6 3 2 2 1

8 29 2 0 1 2 2

10 37 1 2 0 1 2

15 35 2 1 0 2 2

As for the Type-3 constrained problem, its constraints are a

combination of the previous two. In particular, the feasible

region is restricted to a couple of segmented cone stripes.

In addition, there exists the same fluctuation, as the Type-2

constrained problem, in the CV of an infeasible solution when

it approaches the PF. In this case, the other peer algorithms

are not only struggling on jumping over a particular locally

feasible segment, but also have a significant trouble with the

fluctuation (back and forth) of the population. Again, the
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Fig. 9: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on DC2-DTLZ1 (median IGD value).
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Fig. 10: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on DC2-DTLZ3 (median IGD value).
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success of our proposed C-TAEA is also attributed to the

collaborative and complementary effects of two archives. As

shown in Fig. 11 and Fig. 12, only C-TAEA finds all feasible

PF segments while the other peer algorithms are stuck at some

locally feasible segments away from the PF.
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Fig. 11: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on DC3-DTLZ1 (median IGD value).
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Fig. 12: Scatter plots of the population obtained by C-TAEA

and the peer algorithms on DC3-DTLZ3 (median IGD value).

C. Further Analysis

From the experimental results shown in Section V-A

and Section V-B, we have witnessed the superior performance

of C-TAEA for solving various constrained multi-objective

benchmark problems. To have a better understanding of its

design principles, this subsection will investigate some impor-

tant algorithmic components of C-TAEA by comparing it with

the following two variants.

• Variant-I: As shown in lines 15 to 21 of Algorithm 2,

we iteratively remove the worst solution from the most

crowded region when updating the CA. In particular, the

worst solution is determined in terms of both its local

crowdedness and its fitness value as defined in equa-

tion (11). This operation mainly aims to further improve

the population diversity. To validate its effectiveness, we

develop a variant in which the worst solution is simply

defined as the one having the worst fitness value within

the currently identified most crowded region.

• Variant-II: We claimed that the collaboration between the

CA and the DA is partially implemented by the restricted

mating selection that automatically chooses the appropri-

ate mating parents for offspring reproduction according

to their evolution status. To validate the effectiveness of

this operation, we develop another variant that randomly

chooses mating parents from the CA and the DA with an

equal probability.

In the empirical studies, we use the same parameter settings

as Section V-A and Section V-B and compare the performance

of C-TAEA with these two variants on C-DTLZ and DC-

DTLZ benchmark problems. From the comparison results, i.e.

the IGD and HV values respectively shown in Table VIII

and Table IX of the supplementary document, we can see

that the performance of C-TAEA and its two variants are

comparable when the constraints are not difficult to solve,

e.g. C1-DTLZ1, C3-DTLZ1/DTLZ4; whereas the superiority

of C-TAEA becomes evident otherwise. More specifically,

we find that Variant-I fails to maintain a good diversity

when the feasible region is a small segment, e.g. C2-DTLZ2,

DC1-DTLZ1/DTLZ3, DC3-DTLZ1/DTLZ3. Fig. 13 shows a

comparison of the solutions found by C-TAEA and Variant-I

on C2-DTLZ2 with r = 0.1. From this figure, we can see

that the solutions found by Variant-I are sparsely distributed

within the feasible region. This is because the purely fitness-

based selection strategy tends to drive solutions toward the

corresponding weight vector within the feasible region as

much as possible.

As for Variant-II, its random mating selection mechanism

does not take enough advantage of the complementary effect

of the CA and the DA, thus it fails to help the algorithm

overcome the locally infeasible barrier, e.g., C1-DTLZ3, DC2-

DTLZ1/DTLZ3, DC3-DTLZ1/DTLZ3.
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Fig. 13: Comparative results on the two-objective C2-DTLZ2.

D. Case Study: Water Distribution Network Optimization

Having tested C-TAEA’s ability in solving various kinds

of constrained benchmark problems, this section tends to

investigate the performance of C-TAEA and the other peer

algorithms on a real-world case study about optimal design

of the water distribution network (WDN). In the past decade,

multi-objective optimal design and rehabilitation of a WDN

has attracted an increasing attention [40]. The shift from

the least-cost design to a multi-objective performance-based
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TABLE III: Comparison results on IGD metric (median and IQR) for C-TAEA and the other peer algorithms on DC-DTLZ

benchmark suite

m C-TAEA C-NSGA-III C-MOEA/D C-MOEA/DD I-DBEA CMOEA

DC1-DTLZ1

3 5.638E-2(8.10E-5) 5.990E-2(1.59E-5)† 1.835E-1(1.26E-1)† 1.042E-1(2.03E-3)† 5.843E-2(3.38E-3)† 5.843E-2(3.65E-3)†

5 7.301E-2(3.76E-3) 7.655E-2(1.41E-2)† 7.327E-2(1.71E-4)† 8.705E-2(3.75E-3)† 7.344E-2(3.91E-4)† 7.640E-2(3.38E-3)†

8 1.086E-1(6.44E-4) 1.104E-1(9.78E-4)† 1.414E-1(1.51E-2)† 1.175E-1(7.30E-2)† 1.290E-1(8.13E-2)† 1.291E-1(5.20E-3)†

10 1.189E-1(2.84E-3) 1.206E-1(3.34E-3)† 1.524E-1(5.84E-3)† 1.278E-1(4.24E-2)† 1.545E-1(6.27E-2)† 1.529E-1(8.16E-3)†

15 1.753E-1(1.83E-2) 1.984E-1(4.11E-3)† 2.017E-1(6.17E-2)† 1.772E-1(5.25E-3)† 2.070E-1(7.79E-2)† 1.986E-1(2.06E-2)†

DC1-DTLZ3

3 1.466E-1(7.62E-4) 2.720E-1(1.31E-1)† 1.349E-1(3.77E-1)† 2.908E-1(1.18E-1)† 5.140E-1(3.75E-1)† 5.140E-1(3.77E-1)†

5 2.083E-1(2.54E-3) 2.040E-1(1.01E-2)† 3.947E-1(1.18E-4)† 2.318E-1(7.15E-4)† 3.948E-1(8.69E-4)† 3.947E-1(2.47E-4)†

8 3.405E-1(8.35E-5) 4.062E-1(3.03E-2)† 4.330E-1(1.68E-3)† 3.639E-1(5.28E-2)† 4.344E-1(8.13E-3)† 3.422E-1(4.01E-2)†

10 3.886E-1(3.18E-3) 4.586E-1(4.89E-2)† 4.596E-1(4.06E-3)† 4.154E-1(9.14E-3)† 4.456E-1(2.23E-3)† 4.235E-1(5.23E-3)†

15 8.009E-1(5.10E-3) 8.287E-1(6.23E-3)† 8.456E-1(6.28E-2)† 8.034E-1(5.80E-3)† 8.150E-1(1.26E-2)† 8.144E-1(7.20E-3)†

DC2-DTLZ1

3 2.199E-2(8.44E-3)

5 5.371E-2(3.07E-2)

8 9.937E-2(—)

10 1.048E-1(8.65E-3)

15 2.308E-1(—)

DC2-DTLZ3

3 5.498E-2(6.78E-2)

5 1.667E-1(9.36E-3)

8 5.674E+1(—)

10 3.836E-1(—)

15 7.959E-1(—)

DC3-DTLZ1

3 5.034e-2(1.72E-4) 9.745E+0(5.64E-3)† 9.746E+0(7.80E-3)† 9.789E+0(8.76E-4)† 9.745E+0(2.02E-3)† 9.755E+0(1.29E-2)†

5 8.554E-1(1.29E-3) 7.702E+0(2.60E-2)† 8.165E+0(1.78E-1)† 8.467E+0(1.21E-1)† 1.847E+1(1.03E+1)† 8.408E+0(1.71E-3)†

8 1.250E-1(6.01E-1) 6.450E+0(2.30E+0)† 9.729E+0(2.03E+0)† 6.988E+0(3.74E-3)† 8.409E+0(1.30E-2)† 5.938E+0(2.83E+0)†

10 2.332E-1(5.29E-3) 5.598E+0(8.71E-2)† 2.120E+1(7.29E-3)† 6.004E+0(8.26E-3)† 8.432E+0(5./9E-2)† 7.166E+0(1.93E-3)†

15 1.837E-1(3.43E-5) 5.431E+0(4.38E-1)† 2.567E+1(1.10E+1)† 2.346E-1(7.51E+0)† 7.204E+0(1.76E+1)† 2.584E+1(1.66E+1)†

DC3-DTLZ3

3 1.250E-1(8.04E-4) 3.334E+1(7.20E-2)† 3.335E+1(6.20E-2)† 3.337E+1(2.54E-2)† 7.335E+1(8.46E-2)† 7.335E+1(4.52E-2)†

5 2.219E-1(9.16E-3) 3.349E+1(5.57E-3)† 3.340E+1(3.75E-3)† 3.341E+1(4.86E-4)† 3.340E+1(7.59E-1)† 3.339E+1(2.28E-2)†

8 3.429E-1(8.37E-2) 3.360E+1(3.52E-3)† 3.350E+1(1.88E-2)† 3.343E+1(5.02E-3)† 3.369E+1(3.39E-3)† 3.359E+1(7.59E-3)†

10 3.835E-1(1.16E-3) 3.362E+1(9.10E-2)† 7.377E+1(9.92E-3)† 7.346E+1(8.57E-3)† 7.376E+1(7.36E-2)† 7.377E+1(4.91E-2)†

15 7.872E-1(2.33E-2) 7.411E+1(3.62E-3)† 1.541E+2(8.61E-3)† 7.407E+1(9.35E-2)† 7.416E+1(4.29E-2)† 7.407E+1(5.49E-2)†

† denotes the performance of C-TAEA is significantly better than the other peers according to the Wilcoxon’s rank sum test at a 0.05 significance level; ‡ denotes the corresponding

algorithm significantly outperforms C-TAEA. \ denotes the median metric value is not available, while — denotes the IQR is not available.

design advances decision makers’ understanding of trade-off

relationship between conflicting design objectives [41].
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Fig. 14: Layout of the anytown WDN.

This paper uses the Anytown WDN, one of the most popular

benchmark networks, as the case study. Anytown WDN has

many typical features and challenges that can be found in real-

world networks, e.g., pump scheduling, tank storage provision,

and fire-fighting capacity provision. The network layout is

shown in Fig. 14, where it has 35 pipes, 2 storage tanks, and

3 identical pumps delivering water from the treatment plant

into the system. To meet the city expansion and increasing

demands, 77 decision variables are considered, including 35

variables related to the existing pipes (with options of cleaning

and lining or duplication with a parallel pipe), six new pipe di-

ameters, 12 variables for two potential tanks, and 24 variables

for the number of pumps in operation during 24 hours of a

day. In this paper, the WDN design problem is formulated as

a four-objective optimization problem with two constraints. In

particular, we consider costs, resilience index, statistical flow

entropy and water age as the objective functions. Descriptions

of the problem formulation can be found in Section IV of the

supplementary document.
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Fig. 15: Box plots of HV obtained by different algorithms.

In the experiment, C-TAEA and the other five peer algo-

rithms use the solution encoding scheme as suggested in [42].

The population size is set to N = 100, and the number of func-

tion evaluations used for each algorithm is set to 10, 000×N .
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The reproduction operators and their corresponding parameters

are still set the same as before. Since the true PF is unknown

for this real-world WDN model, we only use the HV as the

performance metric where zr = (1.1, · · · , 1.1)T . In particular,

we normalize the objective functions before calculating the HV

metric. From the box plots (with respect to 51 independent

runs) shown in Fig. 15, we can clearly see that our proposed

C-TAEA shows better performance than the other five peer

algorithms.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have suggested a parameter-free constraint

handling technique, a two-archive evolutionary algorithm (C-

TAEA), for constrained multi-objective optimization. In C-

TAEA, we simultaneously maintain two collaborative archives.

Specifically, one, denoted as CA, mainly focuses on driving

the population toward the PF; while the other one, denoted

as DA, mainly tends to explore the areas under-exploited by

the CA (even those infeasible regions) thus provide more

diversified information. In this case, the CA and the DA have

different behaviors and complementary effects. In particular,

they complement each other via a restricted mating selection

mechanism which selects complementary mating parents for

offspring reproduction. The performance of C-TAEA has

been investigated on a series of benchmark problems with

various types of constraints and up to 15 objectives. The

empirical results fully demonstrate its competitiveness on

CMOPs, in comparison to five state-of-the-art constrained

EMO algorithms. In addition to artificial benchmark problems,

the effectiveness of C-TAEA has also been validated on a real-

world case study of the WDN design optimization.

Constrained multi-objective optimization is ubiquitous in

real-world applications. The CMOPs considered in this paper

do not embrace all types of constraints in the real-world.

We hope our work can inspire more research on constrained

multi-objective optimization, including investigations of other

constrained formulations and applications in real-world op-

timization scenarios. As previously demonstrated in [6]–[8],

we believe that C-TAEA is more than a specific algorithm.

Instead, its basic idea, i.e. simultaneously maintaining multiple

complementary and collaborative archives, can be widely

used in the general EMO algorithm design. In future, it is

worth further investigating its underlying mechanisms from

both algorithm design and theoretical foundation perspectives.

Furthermore, we plan to investigate the effectiveness of this

two-archive collaborative framework on a wider range of

problems, such as unconstrained MOP including those with

complex properties (e.g. problems with complicated PSs [43]

and imbalanced convergence and diversity [44]), dynamic opti-

mization (e.g. problems with a changing number of objectives

or constraints [45]).

ACKNOWLEDGMENT

This work was supported by the Royal Society (Grant No.

IEC/NSFC/170243), the Ministry of Science and Technology

of China (Grant No. 2017YFC0804003), the Science and

Technology Innovation Committee Foundation of Shenzhen

(Grant Nos. ZDSYS201703031748284), Shenzhen Peacock

Plan (Grant No. KQTD2016112514355531), and EPSRC

(Grant Nos EP/J017515/1 and EP/P005578/1). Guangtao Fu is

financially supported by a Royal Society Industry Fellowship

(Ref: IF160108).

REFERENCES

[1] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York, NY, USA: John Wiley & Sons, Inc., 2001.

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary

Computation, vol. 6, no. 2, pp. 182–197, 2002.

[3] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in PPSN’04: Proc. of 8th International Conference on Parallel

Problem Solving from Nature - PPSN VIII, 2004, pp. 832–842.

[4] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition,” IEEE Trans. Evolutionary Computation,
vol. 11, no. 6, pp. 712–731, 2007.

[5] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling
in multiobjective evolutionary optimization,” IEEE Trans. Evolutionary

Computation, vol. 13, no. 3, pp. 514–525, 2009.

[6] K. Praditwong and X. Yao, “A new multi-objective evolutionary opti-
misation algorithm: The two-archive algorithm,” in CIS’06: Proc. of the

2006 International Conference Computational Intelligence and Security,
2006, pp. 95–104.

[7] B. Li, J. Li, K. Tang, and X. Yao, “An improved two archive algorithm
for many-objective optimization,” in CEC’14: Proc. of the 2014 IEEE

Congress on Evolutionary Computation, 2014, pp. 2869–2876.

[8] H. Wang, L. Jiao, and X. Yao, “Two arch2: An improved two-archive
algorithm for many-objective optimization,” IEEE Trans. Evolutionary

Computation, vol. 19, no. 4, pp. 524–541, 2015.

[9] K. Li, S. Kwong, and K. Deb, “A dual-population paradigm for evo-
lutionary multiobjective optimization,” Inf. Sci., vol. 309, pp. 50–72,
2015.

[10] Z. Fan, Y. Fang, W. Li, J. Lu, X. Cai, and C. Wei, “A comparative study
of constrained multi-objective evolutionary algorithms on constrained
multi-objective optimization problems,” in CEC’17: Proc. of 2017 IEEE

Congress on Evolutionary Computation, 2017, pp. 209–216.

[11] R. Tanabe and A. Oyama, “A note on constrained multi-objective
optimization benchmark problems,” in CEC’17: Proc. of the 2017 IEEE

Congress on Evolutionary Computation, 2017, pp. 1127–1134.

[12] F. Snyman and M. Helbig, “Solving constrained multi-objective opti-
mization problems with evolutionary algorithms,” in ICSI’17: Proc. of

the 8th International Conference on Advances in Swarm Intelligence,
2017, pp. 57–66.

[13] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and
multiple constraint handling with evolutionary algorithms. i. A unified
formulation,” IEEE Trans. Systems, Man, and Cybernetics, Part A,
vol. 28, no. 1, pp. 26–37, 1998.

[14] C. A. C. Coello and A. D. Christiansen, “MOSES: A multiobjective
optimization tool for engineering design,” Engineering Optimization,
vol. 31, no. 3, pp. 337–368, 1999.

[15] H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting approach,
part II: handling constraints and extending to an adaptive approach,”
IEEE Trans. Evolutionary Computation, vol. 18, no. 4, pp. 602–622,
2014.

[16] M. A. Jan and Q. Zhang, “MOEA/D for constrained multiobjective
optimization: Some preliminary experimental results,” in UKCI’10:

Proc. of the 2010 UK Workshop on Computational Intelligence, 2010,
pp. 1–6.

[17] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE

Trans. Evolutionary Computation, vol. 20, no. 5, pp. 773–791, 2016.

[18] A. Oyama, K. Shimoyama, and K. Fujii, “New constraint-handling
method for multi-objective and multi-constraint evolutionary optimiza-
tion,” Japan Society of Aeronautical Space Sciences Transactions,
vol. 50, pp. 56–62, 2007.

[19] T. Takahama and S. Sakai, “Efficient constrained optimization by the ǫ

constrained rank-based differential evolution,” in CEC’12: Proc. of the

IEEE Congress on Evolutionary Computation, 2012, pp. 1–8.

[20] S. Z. Martı́nez and C. A. C. Coello, “A multi-objective evolutionary
algorithm based on decomposition for constrained multi-objective opti-
mization,” in CEC’14: Proc. of the 2014 IEEE Congress on Evolutionary

Computation, 2014, pp. 429–436.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

[21] M. Asafuddoula, T. Ray, and R. A. Sarker, “A decomposition-based
evolutionary algorithm for many objective optimization,” IEEE Trans.

Evolutionary Computation, vol. 19, no. 3, pp. 445–460, 2015.
[22] Z. Fan, W. Li, X. Cai, K. Hu, H. Lin, and H. Li, “Angle-based

constrained dominance principle in MOEA/D for constrained multi-
objective optimization problems,” in CEC’16: Proc. of the 2016 IEEE

Congress on Evolutionary Computation, 2016, pp. 460–467.
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