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Two�arm manipulation tasks with friction assisted grasping �

Jaydev P� Desai� Milo�s �Zefran and Vijay Kumar
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���� Walnut Street� Room ���C� Philadelphia� PA �	���
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Abstract

The main objective of this paper is to study human
dual arm manipulation tasks and to develop a com

putational model that predicts the trajectories and
the force distribution for the coordination of two arms
moving an object between two given positions and ori

entations in a horizontal plane� Our ultimate goal is
to understand the dynamics of human dual arm coor

dination in order to develop better robot control algo

rithms�

The �rst important observation is that the trajec

tories show a signi�cant degree of repeatability across
trials and across subjects� Secondly� we observe that
the trajectories in the sagittal and frontal plane are
characterized by asymmetric features that are hard
to model using such integral cost functions� We pro

pose a computational model based on the hypothesis
proposed by Uno et al� ��� that suggests that human
movements minimize the integral of the norm of the
rate of change of actuator torques� We compare the
experimental trajectories and force distributions with
this computational model� We show that the internal
forces play an important role in trajectory generation�
While these are repeatable across trials� they vary sig

ni�cantly from subject to subject�

� Introduction

This paper is primarily concerned with the coor

dination and cooperation between two physically cou

pled arms in a task which requires positioning and ori

enting an object in a horizontal plane using an open

palm� friction
assisted grasp� The two palms must
�squeeze� the object to generate frictional forces that
will equilibrate the weight� In addition� the palms
must exert forces that will move the object from a
given position to another speci�ed position� Because
there are many trajectories that can be followed and
because the force distribution �squeeze force� is not
unique� the problem of generating motions is indeter

minate� The goal of this paper is to study human
manipulation and investigate optimality criteria that

�We gratefully acknowledge the support of NSF grant
CMS��������� and ARO grant DAAH	
������			� � The �rst
author is also supported by a Fellowship 
NSF grant SHR���
�	��	� from the Institute for Research in Cognitive Science at
the University of Pennsylvania�

may describe �model� formation of trajectories and the
distribution of forces� If such an optimality criterion
can be found� it may be used to develop an appropriate
coordination strategy for cooperating robot arms�

The coordination of cooperating robot arms has
been studied extensively in the robotics literature� In
most previous work� it is assumed that the trajectory
of the object is prespeci�ed and the focus has been on
on
line control schemes for load sharing between the
two robots ��� �� �� ��� In these studies� the actuator re

dundancy is resolved by locally minimizing a suitable
cost function which usually involves some measure of
the internal forces� In contrast to these methods which
achieve point
wise optimality� it is possible to pursue
globally optimal solutions� Much of the work on coop

erating arms ignores the dynamics of the grasp� While
Yun ��� and Erdmann ��� consider the control and
planning of manipulation with open
palm grasps� nei

ther paper addresses the planning of trajectories and
forces�

Many previous studies have investigated mecha

nisms that might underlie the generation of single arm
trajectories in humans ��� 
� 	� ��� ���� Flash and
Hogan �	� study single arm reaching tasks and suggest
that the central nervous system �CNS� usesminimum�
jerk solutions� According to studies on coordinated
manipulation with two arms by humans ����� it ap

pears that the minimum
jerk criterion may not ad

equately explain trajectory formation in such tasks�
Garvin et al� present experimental results showing
that the rotational and translational componenets of
motion are independently planned in the workspace
and that they are combined in a hierarchial fashion
to produce the observed behavior� They further hy

pothesize that the CNS reduces the multiple degrees
of freedom motion planning problem into several sim

pler independent problems� In our earlier work �����
we have discussed the optimization of trajectories and
distribution of forces for two cooperating arms in ar

ti�cial and biological systems� The observed trajecto

ries for frontal and sagittal plane motions were roughly
straight lines and the velocity pro�les were bell
shaped
with a good degree of repeatability�

Kawato ����� proposes an alternative cost function
for trajectory generation� This function is the inte

gral of the norm of the vector of derivatives of the
actuator torques along the trajectory� hence the name



minimum torque�change criterion� The main di�er

ence from minimizing the jerk is that the dynamics of
the system must be considered while calculating the
optimal solution� In a previous paper ����� we study
di�erent integral cost functions for dual arm robot ma

nipulation tasks� The solution of the resulting optimal
control problem yields not only the optimal trajectory
but also the optimal internal forces�

In this paper� we study the task of positioning and
orienting an object with two arms at a visually spec

i�ed goal position and orientation in the horizontal
plane� The grasp consists of the two palms contact

ing the object on �at rough surfaces as shown in Fig�
�� Motion planning for this case is more complicated
than for the single arm case since it involves three de

grees of freedom �two translational and one rotational�
and must take into account the constraints imposed
by the physical coupling of the two arms �through the
object�� Motivated by the kinematic analysis of the
experimental data ���� and by the �ndings from �����
we only consider minimum torque
change model� The
trajectories and force distributions obtained by opti

mization are compared to experimental observations
of human two
arm manipulation tasks�

� Experimental system

The experimental system for measuring trajecto

ries and force distribution consists of a target system
and a passive planar manipulandum with a handle as
shown in Fig� �� The sides of the handle are parallel
plates and simulate a box
like object� Metallic tabs
can be added to the handle in order to vary its weight
and inertia� Each plate is instrumented with a six

axis force�torque sensor allowing measurement of the
forces and torques exerted by the subject during the
manipulation task� The handle assembly is attached
to the manipulandum with a low
friction� linear bear

ing� Thus� during the experiment� the weight of the
object is supported by the two palms and not by the
manipulandum�

The manipulandum consists of three links� con

nected by revolute joints� The �rst two links of the
manipulandum form a serial kinematic chain capable
of locating the distal end of the second link �which
coincides with the center of the third link� at any po

sition �x� y� in the horizontal plane �two degrees of
freedom� within the manipulandum workspace� By
revolving about its center point� the third link �the
handlebar� provides a third� rotational degree of free

dom ���� Three optical encoders mounted at the joints
are used to measure the corresponding angles of rota

tion at a sampling rate of ��� Hz� During the experi

ments� the subject sits in front of the manipulandum�
and �rmly grasps the two �at plates of the handle as
shown in Fig� �� A rectangular wooden frame support

ing a transparent Plexiglas sheet is suspended from the
ceiling by nylon cables� such that the Plexiglas sheet
is horizontal at the level of the subject�s chin �Fig� ���

Figure �� Experimental testbed

Four target sets are mounted on the Plexiglas at dif

ferent locations� and each set consists of arrays of light
emitting diodes �LEDs�� The geometry and position
of the diodes is as shown in Fig� ��
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Figure �� The system of targets

The room was darkened� and a random sequence
of target con�gurations was presented� The duration
during which any given target was lit was also ran

domly determined in the range ��� 
 ��� seconds� The
subjects were instructed to position and orient the
handlebar at the con�guration speci�ed by the lit ar

ray of LED�s� while maintaining a �rm grasp on the
side plates with both hands and keeping the elbows
in the horizontal plane passing through the shoulders�
They were told to move naturally� i�e� at what was
in their opinion a comfortable speed� High accuracy
was not required from the subjects� as they were in

structed not to be unduly concerned about small errors
in �nal location� Furthermore� since the experiments
were performed in the dark� no visual feedback of the
arms and the handle was provided to the subjects�
Some of the subjects commented that they were able
to see the handle after they adapted to the darkness�
Each subject was asked to perform �ve groups of �fty
movements� Four healthy subjects participated in the
experiments� ages ranging between �� and ��� The



�rst �fty motions from each subject were discarded al

lowing the subject to adapt to the experimental task
�though they were not informed that the �rst �fty
motions would be discarded�� The recorded encoder
readings were analyzed o�
line� and the correspond

ing joint angles of the manipulandum were derived
after the data was processed with a third order But

terworth low pass �lter using a cuto� frequency of ���
Hertz� The corresponding angular velocities were ob

tained by numerical di�erentiation using a �ve
point
Lagrangian di�erence method ����� The Cartesian tra

jectories and velocity pro�les of both handles �and
both hands� were then derived by employing the for

ward kinematics transformations for the manipulan

dum�

For each measured motion� only those components
for which the prescribed amplitudes were non
zero
were considered �e�g�� the rotational components of
motions for which zero rotation was prescribed were
discarded�� Therefore� only components having high
signal�noise ratio were used� These components are
referred to as the �signi�cant components� of mo

tion� Considering each signi�cant component sepa

rately� the start and end times were taken as the
point in time when the velocity of that component has
reached �� of its peak velocity� For a given motion�
the minimum of the start times of its signi�cant com

ponents was taken as the motion start time� and the
maximum of their end times was taken as the motion�s
end time�

In order to compare motions of di�erent durations�
amplitudes and directions� the durations and ampli

tudes were normalized �
� ���� For each motion� the
normalized duration ��� was�

� � �t� t����tf � t�� � ���

Similarly� for each motion component �e�g�� x�� the
normalized amplitude ��x� was taken as

�x � �x�t� � x�t��� � �x�tf �� x�t��� � ���

In order to normalize the velocity pro�les� Eq� ��� was
di�erentiated with respect to normalized time� Since

d�x�d� � �d�x�dt� �dt�d�� ���

and
dt�d� � tf � t� � ���

it follows that

d�x�d� � �x �tf � t�� � �x�tf �� x�t��� � ���

� A computational model for motion
generation

We model the two arms holding an object in the
horizontal plane by two planar �
link manipulators as
shown in Fig� �� Each arm has � degrees of freedom�
If the arms rigidly hold the object� the system of the
two arms and the object has mobility �� The object

can therefore be placed at an arbitrary position and
orientation in the plane� The closed loop is modeled
by equality constraints on the position variables and
the friction
assisted grasp by inequality constraints on
the contact forces� The dynamics of the two manipu
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Figure �� Two robots holding an object�

lators can be described by two sets of three ordinary
di�erential equations�

I����� �� ! C����� ���� � �� � "T
�
F�

I����� �� ! C����� ���� � �� � "T
�
F� ���

where �i is the � � � vector of the joint coordinates
of the ith �i � �� �� manipulator� Ii��� is the � � �

inertia matrix� Ci��i� ��i� is the ��� vector of nonlinear
terms �Coriolis and centrifugal forces�� �i is the �� �
vector of the joint torques� "i is the � � � Jacobian
matrix relating the velocity of the center of mass of
the object to the joint velocities and Fi is the � � �
generalized force vector� representing the force exerted
by the manipulator on the object and the moment
about the center of mass� The dynamics of the object
is given by�

M  p � F� ! F� ���

where� M is the �� � inertia matrix of the object and

p � �x� y� ��
T
� is the � � � vector representing the

position�orientation of the object with �x� y�� being
the coordinates of the position of the center of the
object� As shown in Fig� �� the components of the
contact force acting on the object along the inward
pointing normals are denoted by F�n and F�n while
those tangential to the contact plane with F�t and F�t�

The two manipulators completely restrain the mo

tion of the object� Therefore� the position of the cen

ter of mass of the object can be expressed as either a
function of �� or a function of �� and the two functions
must give the same value�

p��t� � p��t� �
�

where the vector p� denotes the position and orienta

tion of the object expressed as function of �� and p�
is the same vector expressed as function of ���



The constraints on the normal component of the
contact force are�

F�n � �� F�n � �� �	�

The tangential forces are subject to constraints due to
Coulomb�s law of friction�

jF�tj � �F�n� jF�tj � �F�n ����

where � is the coe#cient of friction�
The system of the object and the two manipulators

contains � actuators but the object only has � degrees
of freedom� Consequently� the task is overconstrained�
There are in�nitely many possible force and motion
trajectories that achieve the desired motion of the ob

ject from the initial con�guration to the desired �nal
con�guration�

To �nd a unique solution� we adopt the optimal con

trol strategy �rst proposed by Uno and Kawato ��� ����
In a previous paper ����� we showed that this com

putational model adequately explains some features
of two
arm motions with form
closed grasps� For the
task proposed here� this optimality criterion reduces to
the minimization of the rate of change of the actuator
torques over the trajectory�

min
�

�

Z tf

t�

� ���
�
! ���

�
� dt ����

subject to the constraints in Equations ��
����
We de�ne the input vector to be

u � �� � ����

In order to write the dynamic equations of motion in
standard state space notation� we de�ne a state vector

x �

�
x�
x�
x�

�
�

�
p
�p
�

�
� ����

where p is a ��� vector consisting of the Cartesian co

ordinates of the center �P � of the object �handle� and
its orientation� and �p is the corresponding Cartesian
velocity vector� The system dynamics in ������ can be
rewritten as �� �rst order di�erential equations��

�x�
�x�
�x�

�
�

�
x�

A�x�� x�� !B�x��x�
�

�
!

�
�
�
I

�
u ����

where A�x�� x�� is a ��� matrix consisting of position
and velocity dependent inertial terms and B�x�� is
a � � � Jacobian matrix� This standard approach is
described in greater detail in ��� ����

Boundary conditions must be speci�ed to solve the
optimal control problem de�ned by �������� For each
movement� we know the start and end positions� Fur

ther� the motion starts and ends with zero velocity and
acceleration� Thus we have a total of 	 boundary con

ditions at each point� Since we have a ��
dimensional

state space� we can specify � additional boundary con

ditions at each end ����� For example� it may be mean

ingful to specify the internal forces at the beginning
and the end of the maneuver�

The theoretical development for solving optimal
control problems with state constraints is detailed in
��
��

� Results

In this paper� we study motions in which the initial
and goal orientations are the same� In other words�
it is possible for the subject to go from the initial to
the �nal position via a pure translation� although the
experimental apparatus allows the subject to perform
rotations as well� The trajectories and force histories
for four subjects are presented and analyzed�

Repeatability

During the experiments� the time taken to com

plete the motion varied from ��
 seconds to ��� sec

onds� and there is considerable variation across sub

jects� Further� the subjects made a systematic error
when reaching the targets� This was expected given
that no visual feedback of the arms with the handle
was provided and because of the parallax in the per

ception of the target� However� the duration of the
motion and the accuracy in reaching the target are of
secondary importance to this study since we are pri

marily interested in the kinematic and dynamic fea

tures of the measured trajectories�

We tested the repeatability of the trajectories by
comparing the motions performed by the same subject
and by di�erent subjects on di�erent trials� Numeri

cal calculations of repeatability measures for di�erent
trajectories �within subject and across subjects� are
presented in ����� The velocity histories were found to
be repeatable across trials for the same subject and
across subjects� The results presented later in this pa

per will also demonstrate this point� Note that in all
the experiments studied here� the angular variations
��� and the torques recorded by the force�torque sen

sors are close to zero and will not shown in the plots�

Frontal and sagittal plane motions

The trajectories for a representative subject for the
� � � and the � � � motions �the numbers refer to
the target numbers in Fig� �� are shown in Figures
� and �� The spread in the sagittal plane trajectories
��� �� can be seen to be less than ���� meters while
the spread in the frontal plane trajectories ��� �� is
less than ���� meters� At �rst sight� it appears that
the trajectories are straight lines� but it is clear from
Figures ��b� and ��b�� that the average trajectory is
curved� This is also the case for motions in the oppo

site direction� � � � and � � �� as shown in Fig� ��
In fact� if we compare the trajectories for � � � and
� � �� and similarly for � � � and � � �� we �nd



that the curvatures have opposite signs� The average
curvature for these trajectories is shown in Table � for
subjects S�
S�� While the signs of the curvature for
the trajectories was observed to be the same across
subjects� there was a signi�cant variability in the ac

tual values� However� the variability for one subject
across trials was found to be very low� For example�
for subject S�� the standard deviation in the curva

ture for the � � � motion and the � � � motion was
observed to be ������ meters and ����	
 meters�
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Figure �� a� Observed trajectories and b� Average tra

jectory for the �� � motion�
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Table �� Radius of curvature for motions in the frontal
and sagittal planes�

Motion S� S� S� S�
�� � �����m ����
m �����m �����m
�� � !����m !����m !����m !���	m
�� � !���	m !����m !����m !���	m
�� � �����m �����m �����m �����m

The bias in curvature was not statistically signi�

cant in oblique translatory motions� The average tra

jectories for the � � � and � � � motions are shown
in Fig� �� From the individual plots �not all are shown
in this paper�� we found the � � � trajectories to be
less curved than all other trajectories�
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Force history

As the total �resultant� force acting on the object
is uniquely determined by the trajectories� we will be
mainly interested in the internal forces� There are
three components to the internal force vector� a mo

ment perpendicular to the plane and two force com

ponents� We will denote the internal force in the di

rection normal to the two palms by Fn� where

Fn � F�n � F�n�

We will call this component the interaction force� using
the terminology of ���� The tangential component and
the moment normal to the plane are observed to be
negligible in this study and are not discussed further�

The internal forces varied signi�cantly across sub

jects� While the instructions for the task �moving from
one target to another� specify the initial and �nal po

sitions and velocities� there is no mechanism for speci

fying the initial and �nal internal forces� Each subject
used a di�erent initial and �nal internal �grip� force
and therefore� there is considerable variability in the
magnitudes across subjects� For this reason we did
not average the internal force data across subjects�

The internal force history for the motion ��� �� is
shown in Fig� 
a for two representative subjects� The
solid line denotes the subject� S�� and the dashed line
denotes the subject� S�� The internal force increased
as the velocity increased to a peak and then decreased
toward the end of the motion� While the magnitude of
the internal force varied across subjects� this general
trend was observed in all subjects�

The normal component of the forces exerted on the
object are shown in Fig� 
b� In the � � � motion�



there was an initial dominance by the left arm fol

lowed by a right arm dominance in the second half
of motion� In other words� the palm that pushed the
object in the direction of acceleration or deceleration
dominated� This is consistent with the observations of
Reinkensmeyer et al� ��	� in their study of bimanual�
single
degree
of
freedom� wrist movements� However�
the forces exerted by the left arm were larger than the
right arm� This can be easily explained if we look at
the data of ���� ��� ��� that shows that the velocity
pro�les �not shown here� are always asymmetric� The
time taken to go from zero velocity to the maximum
velocity is always less than the time taken to decel

erate from the peak velocity to rest� In other words�
the magnitude of the peak acceleration �to the right��
is always lower than the magnitude of the peak de

celeration �to the left�� Since� in the � � � motion�
the hand that dominates initially �the pushing hand�
is the left hand� we expect to �nd the left arm force
to be larger than the right arm force�
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Figure 
� a� Internal forces and �b� left and right palm
forces for the �� � motion for subjects S� �solid� and
S� �dashed��

The internal force for the sagittal plane motions
are shown in Fig� 	� During the � � � motion� once
again there was an increase in the internal force Fn�
as the object was moved from the initial to �nal posi

tion� However� the increase was more signi�cant and
occured through a larger part of the motion than ob

served for frontal plane motions �Fig� 
�� This initial
increase was also seen when the object was moved from
� � � as shown in Fig� ��� However� in this case the
increase was followed by a signi�cant decrease in the
internal force�

Thus� there are two general trends observed in
Figs� 
a and ��� As mentioned earlier� the internal
force appeared to increase as the velocity of the object
increased� In addition� the internal force increased as
the object was moved closer to the subject and de

creased as the object was moved away�

��� General translatory motions

The trajectories in the frontal plane and those in
the sagittal plane showed a tendency to curve� and
this tendency was consistent across trials with the
same subject and across subjects� In general trans

latory motions� the curvature in the observed trajec
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Figure 	� a� Internal forces and �b� left and right palm
forces for the �� � motion for subjects S� �solid� and
S� �dashed��
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Figure ��� Internal forces for �a� the �� � motion and
�b� the �� � motion for S� �solid� and S� �dashed��

tories was not consistent across subjects� However�
the exception is the trajectory for the motion � � �
which was found to be straight for all subjects� The
average trajectory and the average velocity pro�les for
this motion are shown in Fig� ��� Because the trajec

tory was very close to a straight line� the velocities
in the x and y direction were the same except for a
scaling factor� Neither of these two observations could
be made for any other oblique motion� Further the
� � � trajectory and the force distribution appeared
to be more repeatable than for other oblique motions�
The average internal force pro�le and the palm force
pro�les for the �� � motion are shown for two di�er

ent subjects in Fig� ��� Once again� the internal forces
and the left and right arm forces show the same trends
observed earlier� The internal force increased as the
velocity increased and then decreased toward the end
of the motion� Also� the dominance of the left arm
force in the beginning and the right arm toward the
end was clearly seen for both the subjects in Fig� ��b�

��� Computational results and experi�
mental observations

In this subsection� we compare the experimental
observations with the predictions from the computa

tional model for the �� � oblique motion� Instead of
using the averaged results� we randomly chose an ex

perimental trial� for comparison� The boundary con


�Since we need boundary conditions to generate the solution
to 
������ we use experimentally observed end conditions rather
than averaged boundary conditions�
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Figure ��� a� Average trajectory� and b� average ve

locity pro�les for the �� � motion�
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Figure ��� a� Internal forces and �b� left and right
palm forces for the �� � motion for S� �solid� and S�
�dashed��

ditions �initial and �nal position� velocity� acceleration
and interaction force� for the computational model are
calculated from the experimental data�

The predicted and observed trajectory is shown in
Fig� ��a� and the velocities are shown in Fig� ���
The discrepancy between the theoretical predictions
and the experimental data is small compared to the
variance of the data �not shown in the plots�� How

ever� this is not true of the interaction force shown in
Fig� ��b� The predicted variation of the interaction
force is very small� However� the experimental data
shows that the interaction force �rst increases and
then tails o�� In particular� the computational model
does not capture the increase in interaction force with
an increase in object velocity�
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Figure ��� Theoretical and experimental a� Trajectory
and b� Interaction force for motion �� �
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�x and b� �y for motion �� �

��� E�ect of increasing the weight of the
grasped object

If the object is made heavier� one would expect the
internal force to increase so that the ratio of the tan

gential to the normal force at each palm is less than
the coe#cient of friction� Fig� �� shows the e�ect of in

creasing the mass of the object from ��
� to ��	� Kgs
for two representative motions for one subject aver

aged across all trials� Increasing the payload resulted
in an increase in the internal force but there was no
signi�cance change in the trajectory�
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� Discussion

There are many trajectory generation and motion
planning schemes that have been proposed for coop

erating robot arms in the literature� However� there
is no clear rationale for selecting one method over an

other� In this paper� we study human manipulation
tasks with the goal of improving our understanding of
human coordination and control� The motivation is
to see if such an understanding can help in the devel

opment of a superior coordination algorithm for robot
arms�

The �rst thing that is worth noting is that human
trajectories and force distributions are surprisingly re

peatable� This suggests that there is a de�nite strat

egy used by humans in manipulation tasks� The near

straightness of the trajectories and the smoothness of
the velocity pro�les suggest optimality by some mea

sure� The increase in internal forces with an increased



external load �weight� suggests that the optimality cri

terion must incorporate the force distribution�

However� there are several observations that are dif

�cult to explain with a simple optimality criterion�
First� trajectories in the sagittal and frontal plane
show a curvature that is consistent across subjects�
This is particularly signi�cant for manipulation in the
sagittal plane� If the two arms are identical� there is
no physical explanation for the asymmetry induced by
this curvature� Clearly� the two arms are not identi

cal� However there is no simple cost function that can
model this asymmetry� Another signi�cant observa

tion that is di#cult to explain using physical princi

ples is the increase in internal force with an increase in
velocity� One would expect internal forces to be larger
for increased accelerations� However� this is not the
case�

It is tempting to compare this work to the work on
human grasping ��	� ��� ��� ���� It is worth noting that
the internal forces in the experiments of ��	� ��� ��� ���
are very high compared to the resultant force required
to accelerate it� While the ratio of the grip force �equal
to half the internal force in this paper� to the load force
�equal to half the resultant force in this paper� in these
papers varies from � to �� this ratio in the bimanual
task reported here is only around �� For example�
the peak internal force �Fn� for the �� � motion for
subjects S� and S� was observed to be between 
N and
��N� The peak resultant force �FR� was around ��N
of which the weight of the grasped object accounted
for 
���N� It is also worth noting that weight accounts
for a much larger fraction of the resultant force in our
experiments�

Another di�erence between the experimental
paradigm of this work and that used in previous stud

ies has to do with the coupling between the grasping
and the manipulation functions� In ���� ��� ���� the
control of the grasp forces can be completely decou

pled from the manipultion task because the joints and
muscle groups used in manipulation are completely
decoupled from those used in grasping� This is not
true in our work and in ��	�� where the same e�ectors
�palms� are responsible for holding the object and ma

nipulating it�

We presented a computational model derived from
the minimum
torque
change model for single
arm
reaching tasks� The model predictions and the ex

perimental �ndings were roughly consistent as far the
trajectories and the velocities are concerned� However�
the interaction forces were consistently di�erent� Nev

ertheless if the asymmetry in the human neuromuscu

lar system can be re�ected in this model� it may serve
as a model for predicting trajectories and force distri

bution in manipulation tasks� It can also be used for
generating trajectories for synthetic human models in
computer graphics and for motion planning in robotic
systems� Finally� it is superior to previous trajectory
planning models in that it explicitly incorporates the
distribution of forces between the two arms and fric


tional constraints in friction
assisted grasps�
In this paper� we have provided a detailed analysis

of planar manipulation tasks involving friction assisted
grasps� The long term goal of this study is to see �a�
if human trajectory formation and the distribution of
forces between the arms can be explained by some
optimality criterion� and �b� if such criteria can be
used in the control and coordination of robotic arms�
This study may also help improve our understanding
of how humans use their arms in bimanual tasks� This
is potentially useful for the design of haptic interfaces
�and human
machine interfaces in general� in which
two arms are required�
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