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Abstract—String similarity search is a fundamental operation
in data cleaning and integration. It has two variants, threshold-
based string similarity search and top-k string similarity search.
Existing algorithms are efficient either for the former or the
latter; most of them can’t support both two variants. To ad-
dress this limitation, we propose a unified framework. We first
recursively partition strings into disjoint segments and build a
hierarchical segment tree index (HS-Tree) on top of the segments.
Then we utilize the HS-Tree to support similarity search. For
threshold-based search, we identify appropriate tree nodes based
on the threshold to answer the query and devise an efficient
algorithm (HS-Search). For top-k search, we identify promising
strings with large possibility to be similar to the query, utilize
these strings to estimate an upper bound which is used to prune
dissimilar strings, and propose an algorithm (HS-Topk). We
also develop effective pruning techniques to further improve the
performance. Experimental results on real-world datasets show
our method achieves high performance on the two problems and
significantly outperforms state-of-the-art algorithms.

I. INTRODUCTION

As an important operation in data cleaning and integration,
string similarity search has attracted significant attention from
the database community. It has a widespread real applications
such as web search, spell checking, and DNA sequence dis-
covery in bio-informatics [1], [11]. Given a set of strings and
a query, string similarity search aims to find all the strings
from the string set that are similar to the query. There are
many metrics to quantify the similarity between strings, such
as Jaccard, Cosine and edit distance. Among them edit distance
is one of the most widely-used metrics to tolerate typographical
errors [5], [16], [10], [14]. In this paper we focus on using edit
distance to quantify string similarity.

There are two variants of the string similarity search
problem. The first is threshold-based string similarity search,
which requires users to input a threshold and identifies all the
strings from the string set whose edit distances to the query is
within the given threshold. The second is top-k string similarity
search, which finds k strings from the string set that have the
smallest edit distances to the query.

Existing studies on the threshold-based similarity search
problem [12], [11], [20], [16] employ a filter-verification
framework. In the filter step, they utilize the threshold to
devise effective filters in order to prune large numbers of
dissimilar strings and generate a set of candidates. In the
verification step, they verify the candidates by computing
their real edit distances to the query. These threshold-based
algorithms are rather expensive for top-k search, because to
support top-k search, they have to enumerate the threshold
incrementally, execute the search operation for each threshold,
and thus involve plenty of unnecessary computations. On the

other hand, existing studies on top-k similarity search [26],
[27], [5] are inefficient for threshold-based search because they
cannot make full use of the given threshold to do pruning. To
summarize, existing methods are efficient either for threshold-
based search or for top-k search and most of them can’t
efficiently support both of the two problems. Thus it calls for
a unified framework to efficiently support the two variants of
string similarity search.

To address this problem, we propose a unified frame-
work which can efficiently support these two variants. We
first recursively partition data strings in the string set into
disjoint segments and build a hierarchical segment tree index
(HS-Tree) on top of the segments. Then we utilize the
HS-Tree to answer a threshold-based query or top-k query.
For threshold-based similarity search, based on the pigeonhole
principle, if a data string is similar to the query, the data
string must have enough segments matching some substrings
of the query. We can utilize the HS-Tree to identify such
strings and devise an efficient algorithm for threshold-based
similarity search. For top-k similarity search, we first access
the promising data strings that have large possibility to be
similar to the query (e.g., the strings sharing largest number
of common segments with the query). Based on the promising
strings, we can accurately estimate an upper bound of the
edit distances of top-k answers to the query and utilize the
bound to prune dissimilar strings. We utilize the HS-Tree
to identify the promising data strings and devise an efficient
algorithm for top-k similarity search. Experimental results on
real datasets show our method achieves high performance on
both of the two problems and significantly outperforms state-
of-the-art algorithms.

In this paper, we make the following contributions.

• We propose a hierarchical segment index HS-Tree
which can be utilized to support both threshold-based
similarity search and top-k similarity search.

• We devise the HS-Search algorithm based on the
HS-Tree index to facilitate threshold-based similarity
search. We propose the HS-Topk algorithm based on
HS-Tree index to support top-k similarity search.

• We develop batch-based and greedy-match-based
pruning strategies to prune dissimilar strings.

• We have conducted an extensive set of experiments.
Experimental results show our method achieves high
performance on both threshold-based similarity search
and top-k similarity search and significantly outper-
forms state-of-the-art algorithms.

The rest of the paper is organized as follows. We formulate
our problem and review related works in Section II. We intro-

978-1-4799-7964-6/15/$31.00  2015 IEEE ICDE Conference 2015519



duce our hierarchical index in Section III. The HS-Search
algorithm is proposed to support threshold-based similarity
search in Section IV and the HS-Topk algorithm is presented
to support top-k similarity search in Section V.Experimental
results are reported in Section VI. We conclude in Section VII.

II. PRELIMINARIES

In this section, we first formulate the problem in Sec-
tion II-A and then review related works in Section II-B.

A. Problem Definition

Given two strings r and s, the edit distance between
r and s, denoted as ED(r, s), is the minimum number of
edit operations (including substitution, insertion, and deletion)
needed to transform r to s. There are two variants in string
similarity search. The first identifies the strings from a string
set whose edit distances to the query are not larger than a given
threshold. The second finds top-k strings with the smallest edit
distances to the query. Next we formulate the two problems.

Definition 1 (Threshold-based Similarity Search): Given a
string set S , a query q, and a threshold τ , threshold-based
similarity search finds all strings s ∈ S such that ED(s, q) ≤ τ .

Definition 2 (Top-k Similarity Search): Given a string set
S , a query q, and an integer k, top-k similarity search finds
a subset R ⊆ S , such that |R| = k and for any r ∈ R and
s ∈ S −R, ED(r, q) ≤ ED(s, q).

Example 1: Consider the string set in Table I. Suppose
the query q=“brothor”, τ = 1 and k = 2. The threshold-
based similarity search returns {“brother”} since the edit
distance between “brother” and q=“brothor” is 1 and
the edit distances between other strings and q are larger
than 1. The top-2 similarity search returns R={“brother”,
“brothel”}, because the edit distances between the two
strings and q are respectively 1 and 2, and the edit distances
for other strings to the query are not smaller than 2.

TABLE I. A STRING COLLECTION

ID String Length

s1 brother 7

s2 brothel 7

s3 broathe 7

s4 breathes 8

s5 swingable 9

s6 deduction 9

s7 abna levina 11

s8 christopher swenson 19

B. Related Works

1) Threshold-based Similarity Search: There are many
similarity search algorithms [12], [20], [16], [27], [4]. Most
of existing studies employ a filter-verification framework to
address the string similarity search problem, and many ef-
fective filters have been devised to prune dissimilar strings.
Sarawagi et al. [17] proposed count filter based on n-grams.
Li et al. [11] extended the count filter and developed several
list-merge algorithms to improve the performance. Wang et
al. [20] proposed an adaptive prefix filtering framework to
improve the performance. Zhang et al. [27] proposed B

ed-
tree which utilized B+-tree structure to index strings. Li et
al. [12] used variable length grams as signatures to support
string similarity search. Qin et al. [16] devised an asymmetry
signature. Hadjieleftheriou et al. [7] proposed a hash-based
method to estimate the number of results.

These methods have two limitations. First, the n-gram-
based signature has lower pruning than our segment-based
signature, because to avoid missing results, n cannot be large
and a small n has limited pruning power. Second, although we
can extend such methods to support top-k similarity search by
enumerating different thresholds, they are rather expensive as
they require to perform the search algorithms many times.

2) Top-k Similarity Search: There have already been some
studies on top-k similarity search. Yang et al. [26] proposed
an n-gram based method to support top-k similarity search. It
dynamically tuned the length of grams according to different
thresholds. However, it needed to build duplicate indexes for
each n and led to low efficiency. Deng et al. [5] proposed
a range-based algorithm by grouping specific entries to avoid
duplicated computations in the dynamic-programming matrix
when the edit distance is computed. This algorithm used a trie
index to share the common prefixes of strings. However for
long strings, there are fewer common prefix and the pruning
power will be limited. Bed-tree [27] can also be used to support
top-k similarity search. However this method utilized n-grams
to group “similar” strings together, which needed to enumerate
many different thresholds and thus led to low efficiency. Wang
et al. [22] designed a novel filter-and-refine pipeline approach
that utilized approximate n-gram matchings to compute top-k
results.

Compared with these algorithms, our method has two
advantages. First, we can utilize the HS-Tree to identify
promising strings so as to estimate a tighter upper bound and
use the bound to eliminate dissimilar strings. Thus our method
achieves higher performance on top-k similarity search. Sec-
ond, our method can also efficiently support the threshold-
based search, because our method can select appropriate nodes
in the HS-Tree based on the given threshold and utilize these
nodes to efficiently identify the answer.

3) Similarity Join: There are many studies on string simi-
larity join. Given two string sets, similarity join finds all similar
string pairs [1], [14], [19], [24], [25], [2], [6]. An experimental
survey is made in [9]. Bayardo et al. [1] proposed the prefix
filter based method for similarity join. Xiao et al. proposed
the position filter [25] and mismatch filter [24] to improve the
prefix filter. Wang et al. [19] proposed a trie-based method
to support similarity join. Li et al. [14] proposed the segment
filter with efficient substring selection and verification methods
to perform similarity join. Although Adapt [20] and QChunk
[16] extended join techniques to support search, they perform
much worse than our method (see Section VI).

In this paper, we extend the segment-based filter in [14]
to support similarity search. Different from PassJoin which
requires to first specify a threshold and then build the index
based on the threshold, we can build an HS-Tree index in an
offline step and utilize the index to answer similarity search
queries with arbitrary thresholds. For top-k similarity search,
since it is rather hard to predefine an appropriate threshold,
PassJoin has to enumerate the threshold and thus achieves
low performance. Our HS-Tree addresses the limitations of
PassJoin and can efficiently support top-k and threshold-
based similarity search.

4) Other Related Works: Some previous studies focus on
approximate entity extraction, which gives a dictionary of
entities and a document, finds all substrings in the document
that are similar to some entities. Wang et al. [21] proposed
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Fig. 1. The HS-Tree Index.

1,2,3 1 32

bro ther thel athe

b

1,2,3

ro

1,2,3

th

1,2

at

3

er el he

1 2 3

Fig. 2. An HS-Tree example for S7.

a neighborhood deletion based method to solve this problem.
Li et al. [13] proposed a unified framework to support ap-
proximate entity extraction under various similarity functions.
Recently Kim et al. [10] proposed efficient algorithms to solve
the problem of substring top-k similarity search, which finds
the top-k approximate substrings matching with a given query,
which is different from our top-k similarity search problem.
Another related topic is query autocompletion. Ji et al. [8]
proposed a trie-based structure to support fuzzy prefix search
and Li et al. [15] improved it by removing unnecessary nodes.
Chaudhuri et al. [3] proposed a similar solution. Xiao et al. [23]
extended the neighborhood deletion method to improve the
performance of query autocompletion.

III. THE HIERARCHICAL SEGMENT INDEX

In this section, we introduce a hierarchical segment tree
(HS-Tree) to index the data strings. We first group the strings
by length and let Sl denote the group of strings with length l.
For each group Sl, we build a complete binary tree, where the
root is a dummy node. We partition each string s ∈ Sl into
two disjoint segments where the first segment is the prefix of

s with length ⌊ |s|
2 ⌋ and the second segment is the suffix of s

with length ⌈ |s|
2 ⌉, where |s| is the length of s. Let S1,1

l and

S1,2
l respectively denote the set of the first segments and that

of the second segments for the strings in Sl. Based on these
two sets, we generate two children of the root, i.e., two nodes

in the first level, ni=1,j=1
l and ni=1,j=2

l , where i denotes the
level and j denotes the sibling. (The level of the root is 0.) For

each tree node ni,j
l , we build an inverted index, where entries

are segments in Si,j
l and each segment with segment id j is

associated with an inverted list Li,j
l which is a list of strings

that contain the segment.

Algorithm 1: HS-Tree Construction (S)

Input: S: The string set
Output: The HS-Tree index
begin1

Group strings in S by length;2

for l = lmin to lmax do3

Calculate the maximum level L = ⌊log2 l⌋;4

Generate sets S1,1
l , S1,2

l , nodes n1,1
l , n1,2

l ,5

indexes L1,1
l , L1,2

l ;
for i = 2 to n do6

for j = 1 to 2i do7

Generate sets Si,2j−1
l , Si,2j

l , nodes8

ni,2j−1
l , ni,2j

l , indexes Li,2j−1
l , Li,2j

l ;

end9

Next we recursively construct the tree. For each node

ni,j
l , we partition each segment in Si,j

l into two segments

(using the same partition method above) and let Si+1,2j−1
l and

Si+1,2j
l respectively denote the set of the first segments and

that of the second segments. Then node ni,j
l has two children

ni+1,2j−1
l and ni+1,2j

l with respect to Si+1,2j−1
l and Si+1,2j

l .

We also build the inverted indexes Li+1,2j−1
l and Li+1,2j

l . The
procedure is terminated if there exists a segment in the level
with length of 1. In other words, the maximum level is ⌊log2 l⌋.
Figure 1 illustrates the index structure.

Algorithm 1 shows the algorithm to build the HS-Tree
index. It first groups strings by length (line 2). For each group
Sl, it builds a hierarchical index with L levels, where L =
⌊log2 l⌋ (line 4). In level i, it iteratively partitions the segments

in level i−1 into 2 segments and constructs invert indexes Li,j
l

for the jth segment in level i (lines 6-8).

Example 2: Consider the string set in Table I. We first
group them by length and then iteratively build HS-Tree for
each length l. Take group S7 in Figure 2 as an example. The
group length is 7. The maximal level is L = ⌊log2 7⌋ = 2.
Consider string s1 =“brother”. In level 1, s1 is parti-
tioned into two segments {“bro”,“ther”}. Then in level 2,
these two segments are iteratively partitioned into 2 segments
{“b”,“ro”}, and {“th”,“er”}. Similarly, we can iteratively
partition strings s2 and s3 to build the index.

Space Complexity: We analyze the space complexity of the
HS-Tree. Suppose lmin is the minimum string length and
lmax is the maximum string length. For each group Sl, the
HS-Tree index includes segments and the inverted index. Sl

contains ⌊log l⌋ levels. In the ith level, there are 2i segments.

Thus each string is partitioned into at most
∑log l

j=1 2
j = O(l)

segments. Obviously each string is contained in at most O(l)
inverted lists, and thus the space complexity of the HS-Tree

is O(
∑l=lmax

l=lmin
l ∗ |Sl|), which means the total number of

characters in all input strings.

Discussion: For ease of presentation, in the HS-Tree, we
assume each node has two children and our method can be
easily extended to support the case that each node has more
than two children, like B-tree. In addition, we focus on in-
memory setting and our method can be extended to support
disk-based setting (like B-tree). Due to space constraints, we
leave it as a future work.
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IV. THRESHOLD-BASED SIMILARITY SEARCH

In this section, we devise an efficient algorithm HS-
Search to efficiently answer threshold-based similarity search
queries using the HS-Tree index (see Section IV-A). We
first introduce a filter-verification framework and then develop
novel techniques to improve both the filter step (see Sec-
tion IV-B) and the verification step (see Section IV-C).

A. The HS-Search Algorithm

Consider a query q with a threshold τ . Based on the length
filter: two strings cannot be similar if their length difference
is larger than τ , we only need to access the HS-Tree with
lengths between |q| − τ and |q| + τ . Consider the HS-Tree
with length l ∈ [|q| − τ, |q| + τ ]. In the ith level, the strings
are partitioned into 2i segments. For 2i ≥ τ + 1, any string s
in Sl cannot be similar to q if q has no substring matching a
segment of s based on the pigeonhole principle. Moreover, if
s is similar to q, q must contain at least 2i − τ segments of
s, as formalized in Lemma 1. On the contrary, if 2i < τ + 1,
any string in Sl may be similar to q even if q has no substring
matching a segment of the string.

Lemma 1: Given a string s with 2i segments, a query q
and a threshold τ , if s is similar to q, q must contain at least
2i − τ segments of s.

Example 3: Consider a query q={“swaingbe”}, the data
string s5 = {swingable}, s6 = {deduction}, and τ = 2.
In level 2, the 4 segments of s5 are {“sw”,“in”,“ga”,“ble”},
and q has 22 − 2 = 2 common substrings “sw” and “in”
with s5, thus s5 is a candidate for query q and τ = 2.
On the contrary, the 4 segments of s6 = {deduction} are
{“de”,“du”,“ct”,“ion” }. And s6 has no matched segments
with q. So we can safely prune s6.

Generally, consider the level i ≥ log2(τ+1). If a string has
less than 2i − τ segments that match substrings of the query,
we can prune it. In other words, we only need to check the
candidate strings which share at least 2i−τ common segments
with q. To facilitate the checking, we can utilize the inverted
index on each node to identify the candidates, which will be
discussed in detail later. As there are many level i such that
i ≥ log2(τ + 1), we can use any of such levels to identify
candidates. Obviously the deeper the level is, the shorter the
segment is, and thus the lower pruning power is. Thus we use
the minimal level ⌈log2(τ + 1)⌉ with longest segments.

Formally, consider a query q and group Sl. We first

locate the i = ⌈log2(τ + 1)⌉th level. For each node ni,j
l

(1 ≤ j ≤ 2i), we compute the length of segments in this node

Len
i,j
l . (It is worth noting that the segments in each node have

the same length.) To check whether q has a substring matching

a segment in node ni,j
l , we only need to enumerate the set

of substrings of q with length Len
i,j
l , denote as W(q,Li,j

l ).
We will discuss how to reduce the size of W(q,Li,j

l ) in
Section IV-B. Next we find the strings which have at least
2i − τ segments matching the query. To this end, for each

substring in W(q,Li,j
l ), we identify the substring from the

inverted index of the node and retrieve the inverted list of the
substring. Next we compute the strings that appear more than
2i − τ times on the invited lists. Such strings will be regarded
as candidates and then we will verify them and get the results.

Algorithm 2: HS-Search (S, q, τ)

Input: S: The string set
q: The query string
τ : The given edit-distance threshold

Output: R = {(s ∈ S) | ED(s, q) ≤ τ}
begin1

Calculate the maximum level i = ⌈log2 (τ + 1)⌉;2

for l = |q| − τ to |q|+ τ do3

for j = 1 to 2i do4

Generate substrings set W(q,Li,j
l ) ;5

for w ∈ W(q,Li,j
l ) do6

for s ∈ Li,j
l [w] do7

Ni(s, q) = Ni(s, q) + 1;8

if Ni(s, q) ≥ 2i − τ then9

if ED(s, q) ≤ τ then10

R = R∪ {s};11

end12

Based on Lemma 1, we devise the HS-Search algorithm
to support threshold-based string similarity search and the
pseudo-code is shown in Algorithm 2. HS-Search first cal-
culates the level i = ⌈log2(τ + 1)⌉. Then HS-Search utilizes
length filter to reduce the number of visited HS-Tree: for a
query string q and threshold τ , only groups Sl(|q| − τ ≤ l ≤
|q| + τ) are visited. Next HS-Search generates the set of

substrings of q, W(q,Li,j
l ), for j = 1 to 2i (line 5). According

to Lemma 1, if a string s is similar to q, s should appear at

least 2i − τ times in the inverted lists Li,j
l [w] for 1 ≤ j ≤ 2i

and w ∈ W(q,Li,j
l ). To this end, HS-Search checks whether

w ∈ W(q,Li,j
l ) is in Li,j

l . If so, for any string s in the inverted

list Li,j
l [w], s and q shares a common segment w and we

increase Ni(s, q) by 1, where Ni(s, q) denotes the number
of matched segments between s and q in level i(line 8). If
Ni(s, q) exceeds 2i − τ , s is a candidate and HS-Search
verifies candidate s (line 11). To improve the performance
of HS-Search, we design efficient techniques to reduce the

substring-set size W(q,Li,j
l ) in Section IV-B and improve the

verification cost in Section IV-C.

Example 4: Consider the string set in Table I. Suppose we
have built the HS-Tree index as shown in Figure 2. Assume
the query string is q =“brethor” and the threshold is τ = 2.
First, i = ⌈log2(τ + 1)⌉ = 2. In level 2 there are 4 segments.
If ED(s, q) ≤ 2, s and q must have at least 22 − 2 = 2
common segments. As |q| = 7 and lmin = 7, we only need
to visit the strings with length between 7 and 9 for τ = 2.

First we check L2,1
7 , which contains segments {“b”}. String

q has a matched substring “b” in L2,1
7 . As strings s1, s2 and

s3 in the inverted list of “b” share a common segment with
q, we increase N2(s1, q), N2(s2, q), N2(s3, q) by 1. Then we

check L2,2
7 , which contains segments {“ro”}, string q has no

matched substring. Similarly we check L2,3
7 and L2,4

7 . As q has

a matched substring “th” in L2,3
7 with invited list of {s1, s2},

we increase N2(s1, q) and N2(s2, q) by 1. Now strings s1 and
s2 have two matched segments with q, so we verify them and
get ED(q, s1) = 2 and ED(q, s1) = 3. We put s1 into the
result set. As N2(s3, q) = 1 < 2, we can safely prune s3.

Then we perform similar procedure on Li,j
8 and Li,j

9 , no more
answers are found and the algorithm terminates.
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Complexity: We analyze the time complexity of Algorithm 2.
It consists of two parts: the filtering time and the verification
time. Before performing Algorithm 2, we need to group strings

by length, which is O(
∑lmax

l=lmin
|Sl|). This can be regarded as

offline time and not included in the search time. The time to
generate set W(q,Li,j

l ) is O(τ) as discussed in Section IV-B.
The total time of selecting substrings for l ∈ [|q| − τ, |q| + τ
and j ∈ [1, 2i] is O(lτ2). The filtering cost is to visit the

inverted lists which is
∑

l∈[|q|−τ,|q|+τ ] |L
i,j
l [w ∈ W(q,Li,j

l )]|.
The verification cost of q and s for threshold τ is O(τ ∗
min(|q|, |s|)) [14], and we will further improve the verification
cost in Section IV-C.

B. Improving The Filtering Step

To find the candidate of a given query q, we need to first

generate the set of substrings W(q,Li,j
l ) and then count how

many common segments between strings in Sl and q. To reach
such goal efficiently, we reduce the filtering cost through two

directions: (1) reduce the size of W(q,Li,j
l ) for 1 ≤ j ≤ 2i;

and (2) remove invalid segment matchings.

Reduce W(q,Li,j
l ). It is obvious smaller W(q,Ln,j

l ) will lead
to higher performance. Based on the position filter, a segment
in s cannot be matched with the substrings of q with large po-
sition difference. For example, for s5=“swingable”, query
q=“blending” and threshold τ = 2. The segments of s in
the second level is correspondingly {“sw”,“in”,“ga”,“ble”}.
The substring “ble” cannot be matched with the fourth
segment because their position difference is larger than τ .
The position filter could be strengthened by considering the
length difference of s and q, denoted as ∆. Thus suppose the

start position of segment w ∈ Li,j
l is Pos

i,j
l and its length is

Len
i,j
l . We can easily get the lower bound of start positions of

substrings in q, denoted as LB = max(1,Posi,j
l − ⌊τ −∆⌋),

and the upper bound, denoted as UB = min(|q| − Len
i,j
l +

1,Posi,j
l + ⌊τ + ∆⌋). We only need to check the substrings

starting within the range [LB,UB]. Moreover, by looking both
from the left-side and right-side perspective [14], we can fur-

ther reduce the value of LB and UB to LB = max(1,Posi,j
l −

(j − 1),Posi,j
l + ∆ − (τ + 1 − j)) and UB = min(|s| −

Len
i,j
l +1,Posi,j

l +(j− 1),Posi,j
l +∆+(τ +1− j)). Thus

W(q,Li,j
l ) = {q[Posi,j

l ,Leni,j
l ]} where q[Posi,j

l ,Leni,j
l ] is

the substring of q with start position Pos
i,j
l ∈ [LB,UB] and

length Len
i,j
l . The correctness is stated in Lemma 2.

Lemma 2: Given a query string q and a threshold τ , using

the set W(q,Li,j
l ) = {q[Posi,j

l ∈ [LB,UB],Leni,j
l ]} to find

matching candidates, our method will not miss any result.

To identify string s with Ni(s, q) ≥ 2i − τ , we use the
list-merge algorithm [11] to improve the performance which
utilizes a heap to efficiently identify the candidates without
accessing every strings on the inverted lists.

Remove Invalid Matchings. The above method identifies the
candidates by simply counting the number of matched common
segments. However it is worth noting that the substrings of
q matching with different segments may conflict with each
other, where conflict means that the two matched substrings
overlap. This is because the segments of the data strings
are disjoint and the matched substrings of q should also be

Algorithm 3: SEGCOUNT()

Input: Mi(s, q): Matched segments of s, q in level i.
Output: Number of matched segments without conflict.
begin1

D[1] = 1;2

for j = 2 to Ni(s, q) do3

D[j] = max1<t≤j−1{γ(j, t) ·D[t]}+ 1;4

return D[Ni(s, q)];5

end6

disjoint. For example, if q=“acompany”, s=“accomplish”
and threshold τ = 2. If the substring “ac” of q matches
the first segment “ac”, the substring “com” cannot match the
second segment, because “ac” and “com” are overlapped in q
but they are disjoint in s. If we do not eliminate such conflict
matching, it will involve false positives. For example, we get
N2(s, q) = 2 in the segment count step, but string s has only
one common segment with string q. This false positive will
result in larger candidate size and extra verification cost.

To solve this problem, we design a dynamic-programming
algorithm to calculate the maximum number of matched
segments while eliminating the conflict between matched
segments (removing overlapped matching). Let D[j] denote
the maximum number of matched segments without conflict
among the first j segments. To calculate D[j], we need to find
the last matched segment t without conflict for t < j, and
compute the number of matched segments without conflict
using this segment. Then we consider whether the current
matched segment conflicts with the last matched segment. We
use a function γ(j, t) to judge whether two matches j and
t conflict: γ(j, t) = 1 if there is no conflict; γ(j, t) = 0
otherwise. Then we can get the following recursion formula:

D[j] =

{

1, j = 1
max1<t≤j−1{γ(j, t) ·D[t]}+ 1, otherwise

(1)

Then we devise a dynamic-programming algorithm based
on the above formula as shown in Algorithm 3. The algorithm
takes as input the set of matched segments between s and q
in level i, denoted as Mi(s, q), which can be easily gotten
when computing Ni(s, q). The algorithm outputs the number
of matched segments without conflict based on Equation 1.
The time complexity of this algorithm is O(x2), where x =
Ni(s, q). The maximum value of x is 2i in level i, but
in practical cases the number of matched segments is far
smaller than 2i with the help of efficient substring selection
methods. Thus the cost of this algorithm is negligible. We can
integrate this observation into Algorithm 2 (replace line 8 of
Algorithm 2 with Algorithm 3) to enhance the pruning power.

Example 5: Suppose string s =“are accommodate

to”, q =“were acomofortable” and τ = 5. In the seg-
ment matching step, we search in level 3 and get M3(s, q) =
{ “ac”,“com”,“mo” } and N3(s, q) = 3 ≥ 23 − 5. However,
when we perform Algorithm 3 on M3(s, q), we get D[1] = 1,
D[2] = 1 and D[3] = 2. So there are 2 rather than 3 matched
segments. As 2 < 23 − 5 = 3, we can safely prune s.

C. Improving The Verification Step

In our HS-Search algorithm, after generating the candi-
date strings, we verify whether their real edit distances to the
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Fig. 3. The MultiExtension Verification (y = 4)

query are within the threshold τ . In this section we devise
novel techniques to improve the verification step.

To compute the edit distance between two strings q and s,
a naive method is to use the dynamic-programming algorithm.
Given two strings q and s, it utilizes a matrix C with |q|+ 1
rows and |s| + 1 columns where C[i][j] is the edit distance
between the substring q[1, i] and s[1, j] [18]. Actually, if we
only want to check whether the edit distance between two
strings is within a given threshold τ , we can further reduce the
complexity by only computing the C[i][j] values for |i− j| ≤
τ , with the cost of (2τ + 1) · min(|q|, |s|). A length-aware
method has been proposed to improve the time complexity
to τ · min(|q|, |s|) [14]. These algorithms can also do early
termination when the values in a row are all larger than τ to
further improve the time complexity.

For our HS-Search algorithm, we can utilize the set of
matched segments in Mi(s, q) to avoid unnecessary com-
putations. As we can see from Section IV-A, given a can-
didate string s, y = Ni(s, q). We align q and s based on
these matched segments and partition them into 2 · y + 1
parts including y matched segments and y + 1 unmatched
segments. We only need to verify whether ED(q, s) ≤ τ
in this alignment. Suppose the set of matched segments is
Mi(s, q) = {m1,m2, · · · ,my}, and the set of unmatched
segments of query q (string s) is Q = {q1, q2, · · · , qy+1}
(S = {s1, s2, · · · , sy+1}), where qj(sj) is the substring
between mi and mi + 1 for j ∈ [1, y] and qy+1(sy+1) is
the substring after py (sy). If two matched segments mj and
mj+1 are consecutive, sj(qj) =“”. We denote the total edit

distance as TED =
∑y+1

i=1
ED(si, qi). If TED is larger than τ ,

s is not similar to q in this alignment and we can discard s;
otherwise we add s into the result set. We call this method as
SingleThreshold.

We can further improve the performance of SingleThresh-
old by assigning each ED(qj , sj) with a tighter threshold
bound. As we can see, the part sj is between the segments
mj and mj+1. Let pj denote the order of mj among the
2i segments in s. For string s, sj consists of pj+1 − pj − 1
segments (for j = 1, the value is p1 − 1 and for j = y + 1,
the value is 2i − py). For a given threshold τ , if y is exactly
2i−τ , the τ edit operations must be distributed in each segment
according to the pigeon hole principle. In this case, if we find

Algorithm 4: MultiExtension (s, q, τ,Mi(s, q))

Input: s, q: the strings to be verified
τ : the given threshold
Mi(s, q): matched segments of s, q in level i.

Output: The verification result
begin1

Generate sets S and Q based on Mi(s, q);2

Generate thresholds based on Mi(s, q);3

for j = 1 to Ni(s, q) + 1 do4

Calculate ED(qj , sj) with length-aware method;5

if ED(qj , sj) > τj then return;6

Add s into the result set;7

end8

two consecutive errors in one segment (or in other words, more
than τj errors appear in part j), we can safely terminate the
verification step. The threshold τj of each part j is calculated
as follows:

τj =

⎧

⎨

⎩

p1 − 1, j = 1
2i − py, j = y + 1
pj+1 − pj − 1, otherwise

(2)

We propose an early termination technique (Lemma 3).

Lemma 3: Consider two strings s and q with exactly y =
2i − τ common segments. If ED(qj , sj) > τj , ED(q, s) > τ .

Based on Lemma 3, we can devise the verification al-
gorithm MultiExtension as shown in Algorithm 4. In this
algorithm, we can use the length-aware method to efficiently
verify ED(qj , sj). Next we walk through the two verification
algorithms SingleThreshold and MultiExtension using the
following example as shown in Figure 3.

Example 6: Consider two strings s7=“abna levina” in
Table II and q=“ovner loevi”, and the threshold is 5.
We perform HS-Search on level 3 with 8 segments. The
segments of s on level 3 are respectively {“a”,“b”,“n”,“a
”,“l”, “ev”,“i”,“na”}. As we can see from Figure 3, s
and q have matched segments m1 = “n”,m2 = “l”,m3 =
“ev”. p1 = 3, p2 = 5, p3 = 6. Then we can gen-
erate the set of S={s1=“ab”,s2=“a”,s3=“”,s4=“ina”} and
Q={q1=“ov”,q2=“er”,q3=“o”,q4=“i”}. For MultiExtension,
the thresholds of each part are respectively 2,1,0,2. Then we
calculate ED(s1, q1) = 2 ≤ 2, ED(s2, q2) = 2 > 1, then Mul-
tiExtension terminates and discards s. But SingleThreshold
will continue to calculate ED(s3, q3) = 1, ED(s4, q4) = 2
and TED = 2+2+1+2 = 7 > 6, then it discards s. Thus
MultiExtension outperforms SingleThreshold.

V. TOP-K SIMILARITY SEARCH

In this section, we study the top-k similarity search prob-
lem. Different from the threshold-based similarity search, the
top-k similarity search has no fixed threshold. Although we
can extend the threshold-based method to find top-k answers
by enumerating thresholds incrementally until k results found,
this algorithm is rather expensive because it executes mul-
tiple (unnecessary) search operations for each threshold and
involves many duplicated computations. To address this issue,
we devise an efficient algorithm HS-Topk to support top-k
similarity search using our HS-Tree index. The basic idea
is to first access the promising strings with large possibility
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to be similar to the query so as to prune large numbers of
dissimilar strings effectively. To this end, we first propose a
batch-pruning-based method in Section V-A and then present
an effective pruning strategy in Section V-B. Finally we devise
our HS-Topk algorithm in Section V-C.

A. The Batch-Pruning-Based Method

We maintain a priority queue Q to keep the current k
promising results. Let UBQ denote the largest edit distance be-
tween the strings in Q to the query, i.e., UBQ = max{ED(s ∈
Q, q)}. Obviously UBQ is an upper bound of the edit distances
of top-k results to the query. In other words, we can prune a
string if its edit distance to the query is larger than UBQ. Next
we discuss how to utilize the queue to find top-k answers.

Given a query q, we still access the HS-Tree in a top-down
manner. Consider the ith level of the HS-Tree with length

l. For each node ni,j
l , we generate the substrings W(q,Li,j

l )
for 1 ≤ j ≤ 2i and identify the corresponding inverted lists

Li,j
l . We group the strings in the inverted lists based on the

number of substrings they contain in W(q,Li,j
l ). Let Bx denote

the group of strings containing x substrings. As each string
contains at most 2i segments, there are at most 2i groups.
For strings in Bx, they share x common segments with the
query. If 2i − 1 < UBQ, for x ∈ [1, 2i − 1] all strings in
Bx can be regarded as candidates. Otherwise, there are 2i − x
mismatch segments for strings in Bx. As a mismatch segment
leads to at least 1 edit error, and thus the lower bound of the
edit distances of strings in Bx to query q is LBBx

= 2i − x.
Obviously if LBBx

≥ UBQ, we can prune the strings in Bx

based on Lemma 4. In other words, we only need to visit
the groups such that x ≥ 2i − UBQ. On the other hand, the
larger x is, the strings in Bx have larger possibility in the top-k
answers. Thus, we want to first access the strings in groups
with larger x. These two observations motivate us devise a
batch-pruning-based method.

Lemma 4: If LBBx
≥ UBQ, strings in Bx can be pruned.

For level i, if 2i−1 ≥ UBQ + 1, we can terminate because
we have found all top-k answers within threshold UBQ using
the nodes in the first i − 1 levels; otherwise, we retrieve the
inverted lists of substrings in W(q,Li,j

l ) from the ith level and
identify the substrings with Ni(s, q) ≥ 2i − UBQ from these
lists. Next we group the strings into Bx (x ∈ [2i − UBQ, 2

i])
based on the number of matched segments. Then, we visit the
groups based on the number x in descending order. For each
string s ∈ Bx, we compute the real edit distance between s
and q. If ED(s, q) < UBQ, we update the priority queue Q
and UBQ using s. Iteratively, we can correctly find the top-k
answers.

Obviously this batch-pruning-based method not only re-
duces the filtering cost, because we only need to do segment
counting once for a level i while we need to perform 2i − 1
times for each threshold using the threshold-based method, but
also the verification time, because we can use a tighter bound
UBQ to do verification.

Example 7: Consider a top-2 query q = “breahers” on
the dataset in Table I. Suppose string s4 = “breathes”
is already in Q as it has a common segment “brea” in
level 1 with q. ED(q, s4) = 2. UBQ = ∞. Then, consider

Groups
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.
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HS-Tree

ed(s,q) <

Q

larger than 2 - UB
Q

i
# matched segments

B2i
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Sorted UB

s
UBQ

update

Fig. 4. The Batch-Pruning-Based Method

the HS-Tree for strings with length 7 (S7) in Figure 2.
We start from level 1. As there is no matched segment, we
move to level 2. There are two matched segments “br, er”.
Their inverted lists are {s1} and {s1, s2, s3} where s1 =
“brother”, s2 = “brothel”, s3 = “breathe”. we have
N2(s1, q) = 2,N2(s2, q) = 1 and N2(s3, q) = 1. We put s1
into B2 and verify B2. As ED(q, s1)=3 < UBQ, we add s1
into Q and update UBQ = 3. As 22 ≥ UBQ+1, the algorithm
is terminated and strings in B1 = {s2, s3} are pruned.

B. The Greedy-Match Strategy

The batch-pruning-based method can effectively prune
strings without enough common segments. If each mismatch
segment only contains one edit error, this method is very
effective as it can effectively estimate the lower bound.
However, if one mismatch segment involves more than one
consecutive errors, the estimation is not accurate, and this
method fails to filter such candidates. For example, consider
query q =“broader” on the dataset in Table I. For UBQ = 1,
string s1 =“brother” and s2 =“brothel” can pass the
segment filter as they share a common segment “bro”, but
it is obvious that their edit distances to q are larger than
1 as the second segment contains 3 errors. To address this
issue, we devise a greedy-match strategy to prune strings with
consecutive errors by utilizing our hierarchical index structure.

Consider a string s in level i with Ni(s, q) ≥ 2i−UBQ. In
this case, we cannot prune s. Instead of directly verifying string
s, we go to the next level i + 1 and estimate a tighter bound
by counting the number of matched segments in level i + 1
(i.e., Ni+1(s, q)). If the number is smaller than 2i+1 − UBQ,
we can prune string s based on Lemma 4. If the string is not
pruned in level i+1. We check the level i+2. Iteratively, if the
string is still not pruned in the leaf level, we will compute the
real edit distance based on the method in Section IV-C. It is
worth noting that the larger the level is, the shorter a segment
is, and the higher probability that those dissimilar strings with
consecutive errors can be pruned.

Next we discuss how to efficiently compute the number
of matched segments between s and q. A naive method enu-
merates each segment of s and checks whether it appears as a
substring of q. This method should enumerate many segments.
Alternatively, we propose an effective method. Based on the
characteristics of the HS-Tree, if the jth segment in level i
matches a substring of q, the 2 ∗ j − 1th and 2 ∗ jth segments
must match two substrings of q in level i+1. Thus we do not
need to check them again. Thus, we only need to check the
mismatch segments in level i.
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Algorithm 5: GREEDYMATCH (s, q, i, τ )

Input: s, q: the strings to be verified
i: level; τ : the current threshold
Mi(s, q): matched segments of s, q in level i.

Output: True or False
begin1

for r = i+ 1 to n do2

for segments w ∈ Mr−1(s, q) do3

put w’s two subsegments into Mr(s, q);4

for j = 1 to 2r do5

if segment j /∈ Mr(s, q) then6

check the segment j;7

if find a matched substring then8

put segment j into Mr(s, q);9

if Nr(s, q) < 2r − τ then10

return False;11

return True;12

end13

The pseudo-code of the greedy-match strategy is shown in
Algorithm 5. It gets the set of matched segments Mi(s, q) in
current level i and then use Mi(s, q) to generate Mi+1(s, q).
This iteratively-matching procedure for different levels will
not involve heavy filtering cost, because segment j in level i
corresponds to segments 2∗j−1 and 2∗j in level i+1 and such
matched segments can be passed down to lower levels. Besides,

as we have generated the substrings W(q,Lr,j

|s| ) for each level

r (1 ≤ r ≤ n), when we look for a matched substring for

segment j, we just check W(q,Lr,j

|s| ) and do not need to scan

inverted lists any more.

Example 8: Consider s8=“christopher swenson”
and query q=“atrmstophbwcmrense”. The length of s8
is 19, so there are 4 levels. Suppose the current threshold
UBQ is 3. It requires 22 − 3 = 1 matched segments in
level 2, 23 − 3 = 5 segments in level 3 and 24 − 3 = 13
segments in level 4. We find a matched segments “stoph”
in level 2. Instead of verification, here we continue to look
for another 5 − 1 ∗ 2 = 3 matched segment in level 3. We
find a matched segment “en” in level 3. As there are totally
3 matched segments in level 3, which is smaller than the
required number of matched segment 5, s8 will be pruned
and we do not need to compute its real edit distance to q.

C. The HS-Topk Algorithm

We combine the batch-pruning-based method and greedy-
match strategy together and devise a top-k similarity search
algorithm HS-Topk. The pseudo-code is shown in Algo-
rithm 6. It first initializes the queue Q and sets the threshold
UBQ = ∞ (line 2). Then it searches the HS-Tree from the
root (line 3). If the value of UBQ is no larger than the minimum
threshold supported by current level (2i−1 ≥ UBQ + 1), the
algorithm terminates and we can safely prune remainder strings
(line 4). For each level, we only visit HS-Tree with lengths
between |q| − UBQ and |q| + UBQ based on length filtering
(line 5). For each HS-Tree, it identifies the matched segments,
groups strings with different numbers of matched segments
into different groups, and visits the group sorted by the number

Algorithm 6: HS-Topk (S, q, k)

Input: q: the query string; k: the size of result set
S: The string set

Output: R: the top-k answer
begin1

Initialize queue Q and UBQ;2

for i = 1 to L do3

if 2i−1 ≥ UBQ + 1 then return;4

for l ∈ [|q| − UBQ, |q|+ UBQ] do5

Identify strings with occurrence number6

larger than 2i −UBQ and group them to Bx;
for x = 2i to 2i − UBQ do7

for each string s ∈ Bx do8

if GREEDYMATCH(s, q, i, 2i −UBQ)9

then
Verify ED (s,q);10

if ED(s, q) < UBQ then11

Update Q and UBQ;12

end13

christoph er swenson LV 1

chri stoph er sw enson LV 2

ch ri st oph er sw en son LV 3

Match Greedy q=atrmstophbwcmrense

q=atrmstophbwcmrense

Fig. 5. An Example for Greedy-Match Strategy

in ascending order (line 6). For each string in the current
group Bx, we perform the greedy-match strategy (line 9). If the
string passes the filter, we verify the candidate using threshold
UBQ based on the techniques in Section IV-C (line 10). If
ED(s, q) < UBQ, we use s to update Q and UBQ (line 12).

VI. EXPERIMENTAL STUDY

In this section, we conduct an extensive set of experiments
and our experimental goal is to evaluate the efficiency of our
algorithms and compare with state-of-the-art methods.

A. Experiment Setup

We used three publicly available real datasets in our
experiments: DBLP Author, DBLP publication records1 and
Query Log2, which are widely used in previous studies [9].
The details of data sets are shown in Table II. Author contains
short strings, Query Log contains medium-length strings, and
DBLP contains long strings.

We compared our algorithms with state-of-the-art methods.
For threshold-based similarity search, we compared our HS-

1http://www.informatik.uni-trier.de/ ley/db/
2http://www.gregsadetsky.com/aol-data/
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TABLE II. DATASETS

Datasets # Avg Len Max Len Min Len

Author 612,781 15 46 6

Query Log 464,189 45 522 30

DBLP 1,385,925 105 1626 1

Search algorithm with Adapt [20], QChunk[16] and B
ed-

tree[27]. Although there are some other similarity search
algorithms, e.g., Flamingo[11] and VChunk [12], it has been
shown in the previous studies that both Adapt and QChunk
outperformed them [20], [16]. So we only compared HS-
Search with Adapt and QChunk. For top-k similarity search,
we compared our HS-Topk algorithm with Range [5], Bed-
tree and AQ[26]. We obtained the source code of Adapt,
Range, Bed-tree from the authors and implemented QChunk
and AQ by ourselves [9]. All the algorithms were implemented
in C++ and compiled using GCC 4.8.2 with -O3 flag. All the
experiments were run on a Ubuntu server machine with two
Intel Xeon E5420 CPUs (8 cores, 2.5GHz) and 32GB memory.

B. Evaluation on Threshold-based Search

1) Evaluating Different Verification Algorithms: We first
evaluated the verification methods. We implemented three
methods Length-aware, SingleThreshold and MultiExten-
sion. Length-aware is the length-aware method [14]; Sin-
gleThreshold is the method that has only one threshold τ ;
MultiExtension is our method that has separate thresholds for
each matched part based on Lemma 3. All the three methods
were implemented with early-termination techniques. Figure 6
shows the results by varying edit-distance thresholds on the
three datasets. We can observe that SingleThreshold involves
less verification time than Length-aware because it can avoid
duplicated computations on already matched segments and
divided the two strings into different parts. For each part,
MultiExtension has a different threshold and will terminate
as soon as the edit distance of one part is larger than the given
threshold of that part. Thus comparing with SingleThreshold,
MultiExtension will terminate earlier.For example, on the
Query Log dataset, for τ = 15, Length-aware took 55
milliseconds on average, and SingleThreshold decreased the
time to 39 milliseconds,while MultiExtension further reduced
it to 24 milliseconds.

2) Filter Time vs Verification Time: Next we evaluated the
cost of the filter step and the verification step and the result
is show in Figure 7. We can see that our segment filter has
great filtering power for small thresholds, and a large number
of dissimilar strings can be pruned in the filter step, so the
verification time is further reduced. For large thresholds e.g.,
τ = 15 and τ = 20 in Figure 7(c), the verification time
is dominant in the overall time. This is because when the
threshold becomes large, we need to do segment matching
in lower levels and the segments would be much shorter. It is
obvious shorter segments have more chance to be matched, so
the number of candidates is larger than that of small thresholds.

3) Comparison with state-of-the-art methods: We com-
pared our HS-Search algorithm with state-of-the-art algo-
rithms Adapt,QChunk and B

ed-tree by varying different edit-
distance thresholds on the three datasets Author, Query Log
and DBLP. Figure 8 shows the results. We can see that HS-
Search achieved the best performance on all the datasets
and outperformed existing algorithms by 3 to 20 times. For
example, on the Query Log dataset for τ = 10, HS-Search
took 6 milliseconds. And the average search time for Adapt,

TABLE III. THRESHOLD-BASED SIMILARITY SEARCH: INDEX

Dataset Method Index Size(MB) Index Construction Time(s)

Author

HS-Search 43.5 1.38

Adapt 56 8.59

QChunk 62 1.36

B
ed-tree 32 5.0

Query

Log

HS-Search 157 5.3

Adapt 983 22.8

QChunk 172 10.7

B
ed-tree 129 86.0

DBLP

HS-Search 904 45.5

Adapt 4194 121.9

QChunk 425 70.5

B
ed-tree 347 86.0

QChunk and B
ed-tree were 32, 151 and 104 milliseconds

respectively. Among all the baselines, the overall performance
of Bed-tree was the worst because it had poor filtering power
to prune dissimilar strings. Adapt had better performance than
QChunk because Adapt took advantage of the adaptive prefix
length to reduce a large number of candidates.

Our method achieved the best performance for the fol-
lowing reasons. First, existing algorithms are based on n-
grams, and our method is based on segments which have
much stronger filtering power than gram-based methods (as
segments are longer than n-grams). Moreover, the segments are
selected across the string and not restricted to the prefix. Thus,
our method always generates the least number of candidates.
Second, comparing with other similarity search algorithms
we also design efficient verification mechanism. In this way,
we can take advantage of the results of filter step and avoid
redundant computations. Third, since previous algorithms are
based on n-grams, they need to tune the parameter n for
different datasets even for different thresholds on the same
dataset to achieve the best performance. Our HS-Search
algorithm does not need any parameter tuning. So the utility
of HS-Search is much better than the existing algorithms.

In addition, we compared the index construction time and
index size and the result is shown in Table III. We have
the following observations. First, HS-Search had the least
index time because it can iteratively divide the segments in
different levels and do not need to build a large inverted
index like n-gram based methods. Second, the index size
of HS-Tree is nearly the same with state-of-the-art n-gram-
based methods, because HS-Tree partitions each string with
length l into disjoint segments in each level with totally
1+2+...+2log l = O(l) segments; and n-gram based methods
generate ln+ 1 grams. Thus they generate similar number of
n-grams/segments and thus the index sizes are also similar. In
addition, in the inverted lists, for a segment, HS-Tree only
needs to maintain the string containing it but n-gram-based
methods also need to store the position of n-gram, so our
index size can be smaller than state-of-the-art methods. Third,
B
ed-tree organizes ”similar” strings into a B-tree node based

on specific orders and does not need to maintain inverted lists,
thus its index size is smaller.

4) Scalability: We evaluated the scalability of HS-Search.
We varied the number of strings in each dataset and tested the
average search time. Figure 9 shows the result on the three
datasets. We can see that as the size of a dataset increased, our
method scaled very well for different edit-distance thresholds
and achieved near linear scalability. For example, on the DBLP
data set, when the threshold was 20, the average search time
for 400,000 strings, 500,000 strings and 600,000 strings were
respectively 20, 27, and 33 milliseconds.
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Fig. 6. Threshold-based Similarity Search: Evaluation on Different Verfication Algorithms.
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Fig. 7. Threshold-based Similarity Search: Filter Cost vs. Verification Cost.
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Fig. 8. Threshold-based Similarity Search: Comparison with State-of-the-art Methods.
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Fig. 9. Threshold-based Similarity Search: Scalability.

C. Evaluation on Top-k Similarity Search

1) Evaluating Filtering Techniques: We first evaluated
the efficiency of our filter techniques. We implemented four
methods: HS-Search, Batch, Greedy and B+G. HS-Search
extends the threshold-based algorithm by increasing the thresh-
old by 1 each time and executing the algorithm multi-
ple times; Batch only implements the batch-pruning-based
method; Greedy only implements the greedy-match strategy;
and B+G implements both batch-pruning-based method and
greedy-match strategy. We evaluated the candidate number of
each method to judge the filtering power. The result is shown
in Figure 10. It is clear Batch can prune dissimilar strings in

batch and thus reduce the number of candidates. As Greedy
can find consecutive errors within a long segment, the number
of candidates can also be reduced. We had significant filtering
power by combining these two filters together. For example, on
Author dataset with k = 10, HS-Search involved about 9.8
million candidates, Batch involved about 5 million candidates
while Greedy involved 4.5 million candidates. Finally, B+G
reduced the number to 2.7 million. This result shows the
effectiveness of pruning techniques.

Then we evaluated the average search time. As shown in
Figure 11, the average search time of Batch is much better than
that of HS-Search because Batch can dynamically update the
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Fig. 10. Top-k Similarity Search: Candidate Number of Different Filters.

0

40

80

120

160

2 5 10 20

A
v
e

ra
g

e
 T

im
e

(m
s
)

Number of k

HSsearch
Batch

Greedy
B+G

(a) Author(Avg Len = 15)

0

1000

2000

3000

4000

5000

2 5 10 20

A
v
e

ra
g

e
 T

im
e

(m
s
)

Number of k

HSsearch
Batch

Greedy
B+G

(b) Query Log(Avg Len = 45)

0

10

20

30

40

50

2 5 10 20

A
v
e

ra
g

e
 T

im
e

(s
)

Number of k

HSsearch
Batch

Greedy
B+G

(c) DBLP (Avg Len = 105)
Fig. 11. Top-k Similarity Search: Average Time of Different Filters.
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Fig. 12. Top-k Similarity Search: Comparison with State-of-the-art Methods.
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Fig. 13. Top-k Similarity Search: Scalability.

threshold and prune strings in batch. Greedy was also better
than HS-Search because it can reduce the candidate number
by going to lower tree levels. However Greedy also involved
relatively heavy filtering cost, so Greedy did not perform so
well. By combining the two techniques, B+G can strengthen
the filter power as well as reduce the filter cost and thus
achieved the best performance.

2) Comparison with state-of-the-art methods: We com-
pared our HS-Topk algorithm with state-of-the-art methods
AQ, Bed-tree and Range. We evaluated the performance on
the same three datasets. For each experiment, we randomly
selected 100 queries from the dataset and reported the average

search time. All the algorithms were in-memory, including B
ed-

tree. The results are shown in Figure 12.

We have the following observations. First, our HS-Topk
algorithm outperformed all the existing methods. Second,
on the Author dataset, Range outperformed B

ed-tree and
AQ. This is because Range took advantage of the trie-
based index [5]. If a large number of strings shared prefixes,
Range had strong filtering power. Our method outperformed
Range by nearly an order of magnitude because we can
identify promising strings to estimate an upper bound and
utilize the upper bound to prune large numbers of candidates
for each threshold. Moreover, our batch-based-pruning and
greedy-match techniques can also improve the performance.
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TABLE IV. TOP-k SEARCH: INDEX

Dataset Method Index Size(MB) Index Construction Time(s)

Author

HS-Tree 43.5 1.38

Range 146 12.5

AQ 316 6.4

Query

Log

HS-Tree 157 5.3

Range 1600 17

AQ 224 78.3

DBLP

HS-Tree 904 45.5

Range 4480 102.3

AQ 1824 167.2

For instance, for k = 10, Range took 340 milliseconds
on average, but our HS-Topk only took 41 milliseconds.
Third, on the DBLP dataset with long strings, our method
significantly outperformed other methods. We can see from
Figure 12(c) that AQ and Range cannot finish within 10 hours.
For instance, Range took more than 40,000 seconds to run
the 100 queries when k = 10. This is because in datasets with
long strings, the length of common prefixes is relatively short
and there would be a large number of long, single branches
in the trie index, which brings both space and computational
overhead. Fourth,Bed-tree had relatively well performance on
each dataset because it can group strings within a threshold
together in one node and dynamically updated the threshold
for pruning. But for small values of k, Bed-tree performed the
worst because it involved many dissimilar strings in one node.

Table IV shows the index size and index time of each
algorithm. We can see that HS-Tree involves both less space
and time overhead than Range and AQ. Moreover, our method
also outperformed them in query efficiency.

3) Scalability: We evaluated the scalability of HS-Topk.
We varied the size of each datasets and tested the average
query time for our HS-Topk algorithm. As shown in Figure 13,
our method scaled very well with different k values and
can support large-scale data. For example, on the Query Log
dataset for k = 20, our method took 436 ms for 100,000 strings,
and time increased to 672 ms for 200,000 strings and 1279 ms
for 400,000 strings.

VII. CONCLUSION

In this paper, we have studied the problem of string
similarity search. We proposed a hierarchical segment index
to support both threshold-based similarity search and top-
k similarity search. We devised an efficient algorithm HS-
Search which utilized the segments to support threshold-based
search queries. We extended this technique to support top-k
similarity search and developed the HS-Topk algorithm with
efficient filters which can further improve the performance.
Experimental results show that our method significantly out-
performs state-of-the-art algorithms on both threshold-based
and top-k similarity search problems.
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