
 Open access Journal Article DOI:10.1109/TC.2018.2890651

Two Bit Overlap: A Class of Double Error Correction One Step Majority Logic
Decodable Codes — Source link

Pedro Reviriego, Shanshan Liu, Ori Rottenstreich, Fabrizio Lombardi

Institutions: Charles III University of Madrid, Northeastern University

Published on: 01 May 2019 - IEEE Transactions on Computers (IEEE)

Topics: Error detection and correction, Parity bit, BCH code, Code rate and Parity-check matrix

Related papers:

Hardened design based on advanced orthogonal Latin code against two adjacent multiple bit upsets (MBUs) in
memories

 Power Analysis of Concurrent Error Detection in Orthogonal Latin Squares Codec

 Extend orthogonal Latin square codes for 32-bit data protection in memory applications

 Reducing the Cost of Triple Adjacent Error Correction in Double Error Correction Orthogonal Latin Square Codes

 A (64,45) Triple Error Correction Code for Memory Applications

Share this paper:

View more about this paper here: https://typeset.io/papers/two-bit-overlap-a-class-of-double-error-correction-one-step-
69u3cfprlp

https://typeset.io/
https://www.doi.org/10.1109/TC.2018.2890651
https://typeset.io/papers/two-bit-overlap-a-class-of-double-error-correction-one-step-69u3cfprlp
https://typeset.io/authors/pedro-reviriego-1na6j0s664
https://typeset.io/authors/shanshan-liu-45bxtb0jqt
https://typeset.io/authors/ori-rottenstreich-3rlsfgnua5
https://typeset.io/authors/fabrizio-lombardi-1qzpv6ktgm
https://typeset.io/institutions/charles-iii-university-of-madrid-3k17u778
https://typeset.io/institutions/northeastern-university-2tfxs25d
https://typeset.io/journals/ieee-transactions-on-computers-1pdvkvya
https://typeset.io/topics/error-detection-and-correction-gbvyc495
https://typeset.io/topics/parity-bit-37qy6dmu
https://typeset.io/topics/bch-code-1fxbq1eu
https://typeset.io/topics/code-rate-1slgenyq
https://typeset.io/topics/parity-check-matrix-1tviv13p
https://typeset.io/papers/hardened-design-based-on-advanced-orthogonal-latin-code-4bw46wza6o
https://typeset.io/papers/power-analysis-of-concurrent-error-detection-in-orthogonal-4mz1x7ohxd
https://typeset.io/papers/extend-orthogonal-latin-square-codes-for-32-bit-data-130sr8jm3a
https://typeset.io/papers/reducing-the-cost-of-triple-adjacent-error-correction-in-10fwxhk59j
https://typeset.io/papers/a-64-45-triple-error-correction-code-for-memory-applications-fzl45gekp0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/two-bit-overlap-a-class-of-double-error-correction-one-step-69u3cfprlp
https://twitter.com/intent/tweet?text=Two%20Bit%20Overlap:%20A%20Class%20of%20Double%20Error%20Correction%20One%20Step%20Majority%20Logic%20Decodable%20Codes&url=https://typeset.io/papers/two-bit-overlap-a-class-of-double-error-correction-one-step-69u3cfprlp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/two-bit-overlap-a-class-of-double-error-correction-one-step-69u3cfprlp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/two-bit-overlap-a-class-of-double-error-correction-one-step-69u3cfprlp
https://typeset.io/papers/two-bit-overlap-a-class-of-double-error-correction-one-step-69u3cfprlp

This is a postprint version of the following published document:

Reviriego, Pedro; Liu, Shanshan; Rottenstreich, Ori;
Lombardi, Fabrizio. (2019). Two bit overlap: a class of
double error correction one step majority logic
decodable codes. IEEE Transactions on Computers,
68(5), pp. 798-803.

DOI: https://doi.org/10.1109/TC.2018.2890651

©2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

https://doi.org/10.1109/TC.2018.2890651
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON COMPUTERS 1

Two Bit Overlap: A Class of Double Error
Correction One Step Majority Logic

Decodable Codes
Pedro Reviriego, Shanshan Liu, Ori Rottenstreich and Fabrizio Lombardi

Abstract—Error Correction Codes (ECCs) are commonly used to protect memories against soft errors with an impact on
memory area and delay. For large memories, the area overhead is mostly due to the additional cells needed to store the parity
check bits. In terms of delay, the overhead is mostly needed to detect and correct errors when the data is read from the
memory. Most ECCs that can correct more than one error have a complex decoding process and so are limited in high speed
memory applications. One exception is One Step Majority Logic Decodable (OS-MLD) codes for which decoding can be done in
parallel at high speed. Unfortunately, there are only a few OS-MLD codes that provide a limited choice in terms of block sizes,
error correction capabilities and code rate. Therefore, there is considerable interest in a novel construction of OS-MLD codes to
provide additional choices for protecting memories. In this paper, a new method to construct Double Error Correction (DEC) OS-
MLD codes is presented. This method is based on the use of parity check matrices in which two bits have at most two parity
check equations in common; the proposed method provides codes that require a smaller number of parity check bits than
existing codes like Orthogonal Latin Square (OLS) codes. The drawback of the proposed Two Bit Overlap (TBO) codes is that
they require slightly more complex decoding than OLS codes. Therefore, they provide an intermediate solution between OLS
and non OS-MLD codes in terms of decoding delay and number of parity check bits. The proposed TBO codes have been
implemented for some block sizes and compared to both OLS and BCH codes to illustrate the trade off in delay and memory
overhead. Finally, this paper discusses the generalization of the proposed scheme to codes with larger error correction
capabilities.

Index Terms—Memory, Error Correction Codes, Orthogonal Latin Square codes, One Step Majority Logic Decoding

—————————— ◆ ——————————

1 INTRODUCTION
n the nanoscales, electronic circuits are prone to suffer
failures due to a number of phenomena, such as manu-

facturing defects, aging or radiation induced soft errors
[1],[2]. For example, in the case of memories, a soft error
can modify the contents of a word causing data corrup-
tion, so possibly leading to a system failure. Therefore, in
applications that need to operate reliably, memories are
commonly protected with Error Correction Codes (ECCs)
[3],[4] . These codes add a number of parity check bits to
each word to detect and correct errors. The parity checks
are computed as part of the write operation and checked
when reading from memory. This requires additional
logic circuitry for encoding and decoding. The number of
additional parity check bits per word and the complexity
of the encoding and decoding logic circuitry depend on
the number of bit errors that the code can correct [5],[6].
In some scenarios, the error rates can be significant and
affect memory cells randomly. For example, in near-
threshold caches [7] or in Spin-transfer Torque Magneto-
resistive RAMs (STT-MRAMs) [8], there is a need to sup-

port multiple bit error correction.
The number of parity bits scales nearly in a linear fash-

ion with the number of bits that can be corrected; this
relationship is found for some commonly used codes such
as the Bose Chaudhuri Hocquenghem (BCH) codes [9].
However, the decoding complexity for BCH codes in-
creases exponentially when more than one bit per word
must be corrected [10]; this occurs for most ECCs and
poses a problem for the protection of high speed memo-
ries because decoding can become a limiting design fac-
tor.

The use of codes that can correct several bits per word
with fast parallel decoding to protect memories has been
extensively investigated over the last decade; Euclidean
Geometry (EG) codes [11], Difference Set (DS) codes [12]
and Orthogonal Latin Square (OLS) codes [13],[14] have
been optimized for memory protection. In all these cases,
fast decoding is achieved by using One Step Majority
Logic Decoding (OS-MLD) [9]. OS-MLD performs the
decoding of each bit by taking the majority of a small
number of parity check equations. This scheme is signifi-
cantly simpler than for example syndrome decoding in
which each bit is compared with the relevant error pat-
terns and when multiple bits must be corrected, a large
number of syndrome patterns must be considered. One of
the most significant issues with OS-MLD is that only a
few codes support it and for each of them, only a few
word sizes and error correction capabilities are available.

xxxx-xxxx/0x/$xx.00 © 2018 IEEE Published by the IEEE Computer Society

————————————————

• P. Reviriego was with Universidad Antonio de Nebrija at the time of writ-
ing this paper, he is currently with Universidad Carlos III de Madrid,
Spain (email: revirieg@it.uc3m.es).

• S. Liu and F. Lombardi are with the Dept. of ECE, Northeastern University,
Boston, USA (email: ssliu@coe.neu.edu; lombardi@coe.neu.edu).

• O. Rottenstreich is with the Department of Computer Science and the
Department of Electrical Engineering, Technion, Israel (email:
or@cs.technion.ac.il).

I

2 IEEE TRANSACTIONS ON COMPUTERS

For example, for two bit error correction codes (i.e. Dou-
ble Error Correction (DEC)) and word sizes larger than 10
bits, the only viable design options are given by OLS
codes. These codes require a large number of parity check
bits and thus, they introduce a significant overhead in
terms of memory size.

Therefore, there is a significant interest in finding new
code constructions that support OS-MLD as efficient and
novel design options [15]. In this paper, a new method to
construct DEC codes that support OS-MLD is presented.
This new construction relies on the use of parity check
matrices whose columns overlap by at most two positions
with ones and have a constant weight. This permits to
design a modified OS-MLD that is slightly more complex
than OLS codes but still having significantly simpler de-
coding than non OS-MLD codes (such as BCH codes).

The rest of the paper is organized as follows. Section 2
provides an overview of OS-MLD codes focusing on OLS
codes that are commonly used to implement DEC for
large word sizes. The proposed Two Bit Overlap (TBO)
codes are presented in Section 3. Then, two of the pro-
posed codes are evaluated in Section 4 and compared to
existing OLS and BCH codes. In Section 5, a brief discus-
sion of the potential extension of the TBO scheme to con-
struct codes that can correct a larger number of errors is
presented. Finally, the paper ends with Section 6 that
summarizes the conclusion of this work and outlines
some topics for future work.

2 ONE STEP MAJORITY LOGIC DECODABLE
CODES

The use of Error Correction Codes (ECCs) for memory
protection has some key differences with their use in
communications. The most significant difference is that a
memory word is read in parallel and the correct data is
expected at the end of the clock cycle. In communication,
data is typically received serially and can be decoded on a
bit by bit basis. The need to complete the decoding pro-
cess in one cycle for an entire word makes decoding very
challenging. Traditionally, Single Error Correction (SEC)
codes have been used to protect memories [3]. In such
case, decoding can be done for each bit by just checking if
the syndrome matches the corresponding column in the
parity check matrix. However, when more than one bit
needs to be corrected, such approach, known as syn-
drome decoding, needs to compare the syndromes of
multiple bit errors that include that bit. This leads to a
large increase in decoding complexity, specially for large
word sizes [10].

To overcome the limitations of syndrome based decod-
ing, One Step Majority Logic Decodable (OS-MLD) codes
have been proposed [11] to protect memories. Some OS-
MLD codes, such as the Orthogonal Latin Square (OLS)
codes were proposed decades ago for memory protection.
However, in most cases, they require a large number of
parity check bits [13] . Recently, Euclidean Geometry (EG)
or Difference Set (DS) codes have been proposed
[11],[12],[16]. These codes reduce the number of parity

check bits. The significant concern with EG and DS codes
is that they support only a few block sizes and error cor-
rection capabilities [9]. For example, for Double Error
Correction (DEC), EG codes only support (15, 7) and DS
only (21, 11), where (n, k) refers to the codeword size n
and the data block size k (thus the size of parity check
block is n-k). Orthogonal Latin Square (OLS) codes pro-
vide a wider range of choices; the parameters of the DEC
OLS codes that have k equal to a power of two are shown
in Table 1 for k up to 1024.

Double error correction Orthogonal Latin Square codes

are built such that their parity check matrices H have the

following properties [13]:

1. Each column has a size of 4 k .
2. Each column that corresponds to a data bit has ex-

actly four ones.

3. Each pair of columns only has at most a single po-

sition with a one in common (one bit overlap).

Based on these properties, a simple decoding scheme

can be designed. In this scheme, for each data bit a major-

ity vote of the four parity check equations that are in-

volved is performed. If the result is one, then the bit is in

error and therefore, is thus corrected. This procedure is

usually referred to as one step majority logic decoding. It

will correct all errors that affect data bits in the presence

of single and double errors. If a data bit is in error, an-

other error can only affect one of its parity checks and

thus a majority will always occur and the bit will be cor-

rected. Conversely, if the bit is not in error, errors on the

other two bits can only affect at most two of its parity

checks, so that there will be no majority to start a correc-

tion.

As an example, the parity check matrix H for the (32, 16)

DEC OLS code is shown in Figure 1, in which the left 16

columns refer to the data bits and the other 16 columns to

the parity bits. The OS-MLD decoding of the first data bit

is shown in Figure 2, where each parity equation corre-

sponds to one row of the parity check matrix in Figure 1.

The required logic circuit is simpler than checking all

possible two bit error patterns for a bit. This feature is

more advantageous when the codeword size is large,

because that number of double bit error patterns is pro-

portional to n.

TABLE 1
PARAMETERS OF SOME DOUBLE ERROR CORRECTION ORTHOGONAL

LATIN SQUARE CODES

Data block size k Parity check block size n-k

16 16

64 32

256 64

1024 128

 3

As discussed in the introduction, the main drawback of

OLS codes is that they require a large number of parity

check bits. For example, for k = 256, a DEC OLS code

requires 64 parity check bits compared to the 18 bits re-

quired by a DEC BCH code. Therefore, code constructions

that support OS-MLD while requiring a smaller number

of parity check bits are of significant interest. In the next

section, a new construction for such codes is presented.

3 TWO BIT OVERLAP CODES
This section presents the proposed Two Bit Overlap
(TBO) codes; the parameters of these codes are also ana-
lyzed and established. The first subsection describes the
features of the matrices that are used to construct the
codes and shows how DEC OS-MLD codes can be ob-
tained from them. The second subsection presents the
method to construct the matrices, while the third subsec-
tion summarizes the parameters of the proposed codes.

3.1 Matrix Features
As discussed in the previous section, a method for con-
structing Double Error Correction (DEC) One Step Major-
ity Logic Decodable (OS-MLD) codes requires to design
matrices with columns such that:

1. Each column has exactly four ones.

2. Each pair of columns only has at most a position

with a one in common.

Orthogonal Latin Squares with double error correction
are a particular case of the above construction. Then this
matrix can be used to form the parity checks such that
each data bit corresponds to a column and each row to a
parity check bit and each data bit participates in the pari-
ty checks for which it has a one in the column.

As explained previously, the OS-MLD property is
simple, because each data bit participates in four parity
checks and the other bits share at most one parity check
with it. Therefore, a majority of the four is obtained when
the bit is in error and another bit is also in error. Con-
versely, when the bit is not in error, two errors on other
bits can affect at most two of the parity checks of the ini-
tial bit and thus no miscorrection will occur.

Consider a construction in which the matrices are giv-
en such that:

1. Each column has exactly seven ones.
2. Each pair of columns only has at most two posi-

tions with a one in common.
Then, the code will be OS-MLD for DEC by taking a

majority of at least five on the seven equations for the
participating bit. The possible cases are as follows:

1. An error free bit and two other bits in error give a
worst case of four parity check errors on the error
free bit so there is no majority and no miscorrec-
tion.

2. A bit in error and another bit in error cause at least
five parity check errors on the erroneous bit, so it
will be corrected.

A disadvantage of this construction is that the encod-

ing and decoding are more complex than for a DEC OLS

code. This is due to two features:

1. The matrix has a larger number of ones (seven per
column instead of four) and thus, more logic is
needed to compute the parity checks.

2. The majority voting is done over seven parity
checks and not over four which is again more
complex.

However, the decoding is still significantly simpler
than for a non OS-MLD code as detailed in the evaluation
section of this paper. To have advantage over existing
DEC OLS codes, the proposed codes need to have a lower
number of parity check bits. This will be the case for the
proposed scheme as shown next.

3.2 Polynomial based Matrix Construction
Matrices with the properties specified in the previous
subsection can be formed as follows. We associate each
bit with index b with a polynomial Pb of degree two, such
that each of its three coefficients belong to

 − k30, 1 , where k is the number of data bits in the

codeword. The coefficients are selected such that

() =
= i

b ii
P x a x

2

0
satisfies () ()23 3

0

i

b ii
P k a k b

=
= = .

Note that there is a single option for the selection of a0, a1,

a2. For instance, a0 equals b mod 3 k , ()()3
1 0 /a b a k= −

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 1. Parity check matrix H of the (32, 16) DEC OLS code.

Majority
Vote

Parity check
equation 0

Parity check
equation 4

Data bit 0

Correction

Decoded data bit 0

Parity check
equation 8

Parity check
equation 12

Figure 2. Majority logic decoding of data bit 0 in the (32, 16) DEC OLS
code.

4 IEEE TRANSACTIONS ON COMPUTERS

mod √𝑘3
 and 𝑎2 = ((𝑏 − 𝑎0 − 𝑎1 ∙ √𝑘3)/(√𝑘3)2) mod √𝑘3

.

This is illustrated with the following example. Let consid-
er 𝑘 = 73 = 343 and 𝑏 = 51. Then the coefficients of the
polynomial are 𝑎𝑜 = 51 𝑚𝑜𝑑 7 = 2; 𝑎1 = (51 − 2)/7 𝑚𝑜𝑑 7 = 0 𝑎𝑛𝑑 𝑎2 = (51 − 2 − 0 ∙ 7) /72 𝑚𝑜𝑑 7 = 1 so

that 𝑃51(𝑥) = 2 + 𝑥2 which satisfies 𝑃51(√𝑘3) = 𝑃51(7) = 2 + 72 = 51.

We then characterize each bit b by the seven values for

 0,6x of the polynomial Pb(x), such that calculations

are performed over modulo k3 .

In our example, for 𝑏 = 51 those values would be

{2,3,6,4,4,6,3}. We describe each such value in 3 k bits

such that a single bit that corresponds to the value, is

equal to one while all others are zero. Similarly, we de-

scribe the ordered list of values in a binary vector of

length 37 k . In our example, this list would be

{0010000,0001000,0000001,0000100,0000100,

0000001,0001000}. This vector will be the column of the

data bit b in the parity check matrix and has exactly seven

ones (satisfying the first condition).

Next, it will be shown that when 3 k is a prime num-

ber greater or equal than seven, then the second condition

stated in the previous subsection is also met. This condi-

tion states that two columns of the matrix can have at

most two ones in common. The proof is based on La-

grange´s theorem in number theory that states that a pol-

ynomial of degree n≥1 modulo, a prime number p with

integer coefficients not divisible by p has at most n dis-

tinct roots [17]. This is the case for the polynomials used

in the code construction as the coefficients are modulo
3 k that is a prime and not divisible by 3 k and they are

evaluated over 0,6x which are also smaller than 3 k .

Now, suppose that two bits b and c have more than two

ones in common in the parity check matrix. This means

that the two polynomials Pb(x), Pc(x), each of degree two

collide in at least three distinct values. This means that

Pb(x)-Pc(x) which is also a polynomial of degree two, has

three roots which according to Lagrange´s theorem is not

possible. Therefore, this implies that Pb is exactly equal to

Pc. Accordingly, b = c and the two bits are the same which

contradicts the assumption that these bits were different.

Therefore, the construction just described will generate

matrices with columns that have exactly seven ones and

that share at most two ones. Let us summarize the con-

struction procedure:

1. Select a block size k such that 3 k is a prime larger

than six.

2. For each of the k bits assign an index b = 0,1,2,….,k-

1.

3. Compute the polynomial 𝑃𝑏(𝑥) = ∑ 𝑎𝑖 ⋅ 𝑥𝑖2𝑖=0 that

satisfies 𝑃𝑏(√𝑘3) = 𝑏 with coefficients that belong

to[0,  √𝑘3 − 1].
4. Compute the values of the polynomial Pb(x) modu-

lo 3 k for 𝑥 ∈ [0,6].
5. Assign a 3 k bit array to each of the values ob-

tained in 4 such that the bit that corresponds to the

value is ‘1’ and all the other bits are ‘0’.
6. The column of the parity check matrix for that bit

is formed by the concatenation of the seven arrays

obtained in step 5.

The codes obtained for a given prime number p, have
the following parameters: 3k p= and 7n k p− = . This
compares favorably to OLS codes that have 2k p= and

4n k p− = , when p is large.

3.3 TBO Codes
The parameters of the TBO codes obtained with the poly-
nomial construction are summarized on Table 2; this table
also shows the parameters of the DEC OLS codes of simi-
lar word lengths; only few word sizes are supported start-
ing at k = 343. This could be used to protect 256 bit words
by shortening its H matrix. After removing 87 columns
that share most positions for "1" on each row from the H
matrix, one parity bit can be saved, thus the proposed
code requires 48 parity check bits compared to 64 for a
DEC OLS code. The next block size, k = 1331 can be used
to protect words of 1024 bits (as applicable to some con-
figurations for cache memory). In this case, the proposed
code can be shortened by saving 2 parity bits and it re-
quires 75 parity bits compared to 128 for a DEC OLS code.

4 EVALUATION
The proposed TBO codes shortened to 256/1024 data bits
have been implemented in HDL and mapped to a 65nm
library from TSMC using Design Compiler. Then, pro-
tected memories of varying sizes have been implemented
as examples to evaluate the overheads of the schemes.
Existing DEC OLS codes and DEC BCH codes have also
been implemented to show the benefits of the proposed
codes.

The settings of synthesis were selected to put “maxi-
mum” effort on optimizing area overhead, power, and
delay to show the benefit in area/power that can be
achieved by the fault tolerant memories, and the “mini-
mum” latency that can be achieved by the encoders and
decoders.

Overheads in terms of area and power consumption
introduced by the ECCs to the unprotected memory in-
clude two components: the redundant memory overhead,
and the encoder/decoder overhead. For a small memory

TABLE 2
PARAMETERS OF THE PROPOSED DEC CODES AND OLS CODES

Type
Prime number

p

Data block

size k

Parity check

block size n-k

OLS - 256 64

TBO 7 343 49

Shortened TBO 7 256 48

OLS - 1024 128

TBO 11 1331 77

Shortened TBO 11 1024 75

TBO 13 2197 91

 5

size, the overhead introduced by the different ECCs is
mostly due to the encoder/decoder overhead. However,
for larger memory sizes, the encoder/decoder overhead is
smaller relative to the increase in memory size; hence, the
redundant memory overhead (that is related to the num-
ber of parity bits) tends to dominate. By combining these
two components of the overhead, different classes of
ECCs may have lower area/power overhead when pro-
tecting different memory sizes. To compare the overhead
introduced by different ECCs, the area and power con-
sumption for unprotected memories and memories em-
ploying different coding options are given in Table 3 and
Table 4. These tables include also the area and power
dissipation of the encoder and decoder with no memory
array so that the complexity of the encoding and decod-
ing circuitry can be compared directly. It can be observed
that the BCH codes need significantly larger area and
power for encoding and decoding than both OLS and
TBO codes. Instead, the proposed codes require less than
2x the area of the OLS codes and less than 1.3x the power.
To illustrate the results for the entire system for different
memory sizes, the relative overheads over the unprotect-
ed memory in terms of percentage are shown in Figure 3
to Figure 6.

Figure 3 shows the optimized synthesis results for the
area overhead introduced by each ECC over memory size;
the proposed TBO codes have the smallest area overhead
in the range from 1K to 4K memory words, and then they

are better than OLS codes, but worse than BCH codes. As
discussed previously, OLS and TBO codes (which are
both OS-MLD codes) have a lower decoding complexity
than BCH codes (non OS-MLD codes). BCH codes have
the smallest number of parity bits that can reduce the
redundant memory bits. Therefore, in this case, the sav-
ings for the encoder/decoder make OS-MLD codes better
than BCH codes when the size of the memory is smaller
than or equal to 4K words. Savings in the redundant
memory overhead for the BCH codes offset the disad-
vantage of a complex decoder and begin to have a com-
pelling role when the memory size increases to 8K words.

Compared to OLS codes, the advantage of a smaller
number of parity bits required by the proposed TBO
codes also offsets its larger decoder circuit. Results for k =
1024 bit are shown in Figure 4, and in this case, the TBO
codes have the lowest area overhead for memories with
1K to 8K words.

In terms of power consumption, results are shown in
Figure 5 for k = 256 and in Figure 6 for k = 1024; they have
the same trends as for the area overhead, i.e., the pro-
posed codes are best for 1K to 4K words with 256 bits and
1K to 8K words with 1024 bits, respectively.

Additionally, these coding schemes have been com-
pared for smaller memory sizes to determine the largest
size for which OLS codes have a lower area/power over-

TABLE 3
AREA SYNTHESIS RESULTS (μm2) COMPARISON FOR UNPROTECTED MEMO-

RIES AND PROTECTED BY DIFFERENT OPTIONS

 SRAM size Unprotected OLS TBO BCH

k=256

Enc/Dec N.A. 1.4E4 2.6E4 3.2E5

1K words 5.3E5 6.8E5 6.6E5 8.9E5

2K words 10.8E5 13.6E5 13.1E5 14.8E5

4K words 21.6E5 27.1E5 25.9E5 26.3E5

8K words 43.2E5 54.1E5 51.6E5 49.5E5

k=1024

Enc/Dec N.A. 5.6E4 1.0E5 4.0E5

1K words 2.1E6 24.6E5 23.9E5 63.8E5

2K words 3.9E6 44.6E5 43.0E5 81.9E5

4K words 7.8E6 88.7E5 85.1E5 12.2E6

8K words 15.7E6 17.7E6 16.9E6 20.2E6

TABLE 4
POWER SYNTHESIS RESULTS (mW) COMPARISON FOR UNPROTECTED MEM-

ORIES AND PROTECTED BY DIFFERENT OPTIONS

 SRAM size Unprotected OLS TBO BCH

k=256

Enc/Dec N.A. 8.7 11.0 35.1

1K words 22.2 39.5 37.4 58.8

2K words 31.3 49.9 47.9 68.2

4K words 56.0 83.7 82.2 83.5

8K words 102.5 133.5 125.8 123.0

k=1024

Enc/Dec N.A. 26.1 32.0 112.0

1K words 73.1 110.5 108.3 186.7

2K words 115.4 155.9 152.9 229.9

4K words 206.1 258.0 253.3 322.5

8K words 353.6 423.9 411.5 473.2

Figure 4 Area comparison for different size (in words) of SRAMs with
k=1024 employing different ECCs

Figure 3 Area comparison for different size (in words) of SRAMs with
k=256 employing different ECCs.

6 IEEE TRANSACTIONS ON COMPUTERS

head than the TBO codes. This size is 128 words in both
cases of 256 and 1024 bits. This shows that the proposed
TBO scheme reduces the memory overhead compared to
OLS codes for practical memory sizes.

Results for the delay required by the encoders and de-
coders for a delay optimized synthesis are presented in
Table 5. The OLS codes have the fastest encoding speed,
while the BCH codes have the slowest encoding speed.
This occurs because the largest number of “1” on the rows
of the H matrix for OLS codes is smaller than the numbers
for the other codes. In the case of decoding latency, OLS
codes also show better results than the other codes, be-
cause they have the lowest complexity for the decoding
algorithm. However, when the proposed TBO codes are
slower than the OLS codes (for example 20.2% slower for
k = 256), then they are still significantly faster than the

BCH codes (for example by a 46.6% saving when k = 256).
Overall, the results show that for memories up to a few

thousand words, the proposed TBO codes can provide a
fast decoding latency with a reduced memory overhead.
For larger memories, the proposed codes can still reduce
the delay, but they will incur in a larger area overhead
compared to BCH codes, but still lower than for OLS
codes. These features can be useful for applications in
which OLS codes have some delay margin over require-
ments that non OS-MLD codes (such as BCH) cannot
meet. When selecting an ECC for a specific application,
designers can check the delay first. If non OS-MLD codes
cannot meet the delay restrictions, the proposed codes
can be used to reduce the memory overhead introduced
by having a lower number of parity check bits than OLS
codes.

5 GENERALIZATION TO LARGER NUMBER OF
ERRORS

The proposed TBO construction can be generalized to
obtain codes that correct up to t bit errors. Consider a
construction in which the matrices are such that：

1. Each column has exactly w ones.
2. Each pair of columns only has at most two posi-

tions with a one in common.
Then, for such a code to be able to correct t errors using

OS-MLD with a threshold for correction of m the follow-
ing conditions are needed:

1. To avoid erroneous corrections on data bits
2 m t .

2. To ensure correction of bits in error
()2 1− − w t m .

From which ()2 1 + −w m t . Therefore, setting
2 1= +m t and 4 1= −w t , an OS-MLD code that can

correct t errors is obtained.
The parameters for such codes in terms of the number

of elements in the vote w and the majority threshold m are
given in Table 6. The table also shows the corresponding
values for OLS codes; as t increases, the majority voting
for TBO codes becomes significantly more complex. The
proposed polynomial based construction presented for
DEC TBO codes could potentially be extended to the
general case of t bit correcting codes; however, the word
sizes would be even larger than those obtained in the
DEC case, so making them of interest only for the protec-

TABLE 6

MAJORITY LOGIC DECODING PARAMETERS OF TBO CODES

Type
Error correction

capability t

Number of elements

in the vote w

Majority

threshold m

TBO 2 7 5

OLS 2 4 3
TBO 3 11 7
OLS 3 6 4
TBO 4 15 9
OLS 4 8 5
TBO 5 19 11
OLS 5 10 6

TABLE 5
DELAY SYNTHESIS RESULTS (ns) COMPARISON FOR ENCODERS AND

DECODERS

Type OLS TBO BCH

k =256
Encoder 0.54 0.66 0.76

Decoder 0.99 1.19 2.23

k=1024
Encoder 0.65 0.77 1.00

Decoder 1.11 1.38 2.63

Figure 5 Power comparison for different size (in words) of SRAMs with
k=256 employing different ECCs.

Figure 6 Power comparison for different size (in words) of SRAMs with
k=1024 employing different ECCs.

 7

tion of very wide memories. The construction and evalua-
tion of TBO codes with larger error correction capabilities
is beyond the scope of this paper and left for future work.

6 CONCLUSION AND FUTURE WORK
This paper has presented a new construction for Double
Error Correction (DEC) One Step Majority Logic De-
codable (OS-MLD) codes based on Two Bit Overlap
(TBO). The codes obtained provide a trade-off between
the number of parity check bits and the decoding com-
plexity. They are significantly simpler and faster to de-
code than non OS-MLD codes such as BCH codes but
slightly more complex than existing DEC OS-MLD codes
(such as Orthogonal Latin Square (OLS) codes). Also, they
require a smaller number of parity check bits than OLS
codes but more than BCH codes. Therefore, they provide
additional choices to memory designers in terms of de-
coding speed and memory overheads.

As applicable to also most OS-MLD codes, the pro-
posed TBO codes have limited choices in terms of word
sizes, two practical configurations for memory protection
of 256 and 1024 bit words are used by shortening the
codes. These two options have been implemented and
compared to DEC OLS and BCH codes. The results show
that the proposed TBO codes achieve the smallest area
overhead and power consumption for memories with 1K
to 4K words in the case of 256 bits and for memories with
1K to 8K words in the case of 1024 bits. For larger memo-
ries, the overhead of the proposed codes are higher than
BCH codes but still lower than OLS codes. In terms of
delay, the proposed codes are slower than OLS codes but
significantly faster than BCH codes. Therefore, the pro-
posed codes incur in a reduced area overhead and power
consumption for memories with tight requirements in
speed that cannot currently be met by BCH codes.

The work presented in this paper is being investigated
and extended for future research for designing TBO codes
that can correct more than two bit errors. Another area for
future work is to find alternative matrix constructions
that provide additional choices in term of block sizes and
number of parity check bits for DEC codes.

REFERENCES
[1] N. Kanekawa, E. H. Ibe, T. Suga and Y. Uematsu, “Dependability in

electronic systems: mitigation of hardware failures, soft errors, and elec-
tro-magnetic disturbances,'' (Springer Verlag, New York, USA, 2010)

[2] S. Dolev, Y.A. Haviv, “Self-stabilizing microprocessor: analyzing and
overcoming soft errors,” IEEE Transactions on Computers, vol.55, no.2,
pp.385-399, Apr. 2006.

[3] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: a state-of-the-art review,'' IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124-134, Mar. 1984.

[4] S.C. Krishnan, R. Panigrahy, S. Parthasarathy, “Error-correcting codes
for ternary content addressable memories,” IEEE Transactions on
Computers, vol.58, no.2, pp.275-279, Feb. 2009.

[5] E. Fujiwara, “Code design for dependable systems: theory and practical
application,'' John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

[6] J. Li, P. Reviriego, L. Xiao and C. Argyrides, "Extending 3-bit Burst Error

Correction Codes with Quadruple Adjacent Error Correction", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,

no. 2, pp. 221-229, Feb. 2018.

[7] T. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodorescu, “Pari-
chute: Generalized Turbocode-Based Error Correction for Near Thresh-

old Caches”, in MICRO, pp. 351–362, 2010.

[8] B. Del Bel, J. Kim, C. H. Kim, and S. S. Sapatnekar, “Improving STT-

MRAM density through multibit error correction”, in Proceedings of
the conference on Design, Automation & Test in Europe (DATE '14),

2014.

[9] S. Lin and D. J. Costello, “Error Control Coding, 2nd ed. Englewood

Cliffs,'' NJ, USA: Prentice Hall, 2004.

[10] R. Naseer and J. Draper, “DEC ECC design to improve memory relia-

bility in sub 100 nm technologies,'' In Proc. IEEE ICECS, pp. 586-589,

2008.
[11] S. Ghosh and P. D. Lincoln, “Dynamic low-density parity check codes

for fault-tolerant nano-scale memory'' in Proc. Foundations of Nanosci-
ence (FNANO07), Snowbird, UT, 2007.

[12] P. Reviriego, M. Flanagan, S. Liu, J.A. Maestro, “Multiple Cell Upset
Correction in Memories Using Difference Set Codes,'' IEEE Transac-
tions on Circuits and Systems I, vol. 59, no. 11, November 2012, pp.
2592-2599.

[13] M. Y. Hsiao, D. C. Bossen, and R. T. Chien, “Orthogonal Latin square
codes,'' IBM J. Res. Develop., vol. 14, no. 4, pp. 390–394, Jul. 1970.

[14] K. Namba and F. Lombardi, “Concurrent Error Detection of Binary and
Nonbinary OLS Parallel Decoders'' IEEE Trans, on Device and Materi-
als Reliability, vol. 14, no. 1, pp. 112-120, March 2014.

[15] S. Liu, J. Li, P. Reviriego, M. Ottavi, "A Double Error Correction Code

for 32-bit Data Words with Efficient Decoding", IEEE Transactions on

Device and Materials Reliability, vol. 18, no. 1, pp. 125-127, March 2018.
[16] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for

nanomemory applications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 17, no. 4, pp. 473–486, Apr. 2009.

[17] R. Friedberg, “An Adventurer's Guide to Number Theory”, New York,
Mc Graw-Hill, 1968.

