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Two Bit Overlap: A Class of Double Error 
Correction One Step Majority Logic 

Decodable Codes 
Pedro Reviriego, Shanshan Liu, Ori Rottenstreich and Fabrizio Lombardi 

Abstract—Error Correction Codes (ECCs) are commonly used to protect memories against soft errors with an impact on 
memory area and delay. For large memories, the area overhead is mostly due to the additional cells needed to store the parity 
check bits. In terms of delay, the overhead is mostly needed to detect and correct errors when the data is read from the 
memory. Most ECCs that can correct more than one error have a complex decoding process and so are limited in high speed 
memory applications. One exception is One Step Majority Logic Decodable (OS-MLD) codes for which decoding can be done in 
parallel at high speed. Unfortunately, there are only a few OS-MLD codes that provide a limited choice in terms of block sizes, 
error correction capabilities and code rate. Therefore, there is considerable interest in a novel construction of OS-MLD codes to 
provide additional choices for protecting memories. In this paper, a new method to construct Double Error Correction (DEC) OS-
MLD codes is presented. This method is based on the use of parity check matrices in which two bits have at most two parity 
check equations in common; the proposed method provides codes that require a smaller number of parity check bits than 
existing codes like Orthogonal Latin Square (OLS) codes. The drawback of the proposed Two Bit Overlap (TBO) codes is that 
they require slightly more complex decoding than OLS codes. Therefore, they provide an intermediate solution between OLS 
and non OS-MLD codes in terms of decoding delay and number of parity check bits. The proposed TBO codes have been 
implemented for some block sizes and compared to both OLS and BCH codes to illustrate the trade off in delay and memory 
overhead. Finally, this paper discusses the generalization of the proposed scheme to codes with larger error correction 
capabilities. 

Index Terms—Memory, Error Correction Codes, Orthogonal Latin Square codes, One Step Majority Logic Decoding 

——————————   ◆   —————————— 

1 INTRODUCTION
n the nanoscales, electronic circuits are prone to suffer 
failures due to a number of phenomena, such as manu-

facturing defects, aging or radiation induced soft errors 
[1],[2]. For example, in the case of memories, a soft error 
can modify the contents of a word causing data corrup-
tion, so possibly leading to a system failure. Therefore, in 
applications that need to operate reliably, memories are 
commonly protected with Error Correction Codes (ECCs) 
[3],[4] . These codes add a number of parity check bits to 
each word to detect and correct errors. The parity checks 
are computed as part of the write operation and checked 
when reading from memory. This requires additional 
logic circuitry for encoding and decoding. The number of 
additional parity check bits per word and the complexity 
of the encoding and decoding logic circuitry depend on 
the number of bit errors that the code can correct [5],[6]. 
In some scenarios, the error rates can be significant and 
affect memory cells randomly. For example, in near-
threshold caches [7] or in Spin-transfer Torque Magneto-
resistive RAMs (STT-MRAMs) [8], there is a need to sup-

port multiple bit error correction.  
The number of parity bits scales nearly in a linear fash-

ion with the number of bits that can be corrected; this 
relationship is found for some commonly used codes such 
as the Bose Chaudhuri Hocquenghem (BCH) codes [9]. 
However, the decoding complexity for BCH codes in-
creases exponentially when more than one bit per word 
must be corrected [10]; this occurs for most ECCs and 
poses a problem for the protection of high speed memo-
ries because decoding can become a limiting design fac-
tor.  

The use of codes that can correct several bits per word 
with fast parallel decoding to protect memories has been 
extensively investigated over the last decade; Euclidean 
Geometry (EG) codes [11], Difference Set (DS) codes [12]  
and Orthogonal Latin Square (OLS) codes [13],[14]  have 
been optimized for memory protection. In all these cases, 
fast decoding is achieved by using One Step Majority 
Logic Decoding (OS-MLD) [9]. OS-MLD performs the 
decoding of each bit by taking the majority of a small 
number of parity check equations. This scheme is signifi-
cantly simpler than for example syndrome decoding in 
which each bit is compared with the relevant error pat-
terns and when multiple bits must be corrected, a large 
number of syndrome patterns must be considered. One of 
the most significant issues with OS-MLD is that only a 
few codes support it and for each of them, only a few 
word sizes and error correction capabilities are available. 
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For example, for two bit error correction codes (i.e. Dou-
ble Error Correction (DEC)) and word sizes larger than 10 
bits, the only viable design options are given by OLS 
codes. These codes require a large number of parity check 
bits and thus, they introduce a significant overhead in 
terms of memory size.  

Therefore, there is a significant interest in finding new 
code constructions that support OS-MLD as efficient and 
novel design options [15]. In this paper, a new method to 
construct DEC codes that support OS-MLD is presented. 
This new construction relies on the use of parity check 
matrices whose columns overlap by at most two positions 
with ones and have a constant weight. This permits to 
design a modified OS-MLD that is slightly more complex 
than OLS codes but still having significantly simpler de-
coding than non OS-MLD codes (such as BCH codes). 

The rest of the paper is organized as follows. Section 2 
provides an overview of OS-MLD codes focusing on OLS 
codes that are commonly used to implement DEC for 
large word sizes. The proposed Two Bit Overlap (TBO) 
codes are presented in Section 3. Then, two of the pro-
posed codes are evaluated in Section 4 and compared to 
existing OLS and BCH codes. In Section 5, a brief discus-
sion of the potential extension of the TBO scheme to con-
struct codes that can correct a larger number of errors is 
presented. Finally, the paper ends with Section 6 that 
summarizes the conclusion of this work and outlines 
some topics for future work. 

2 ONE STEP MAJORITY LOGIC DECODABLE 
CODES  

The use of Error Correction Codes (ECCs) for memory 
protection has some key differences with their use in 
communications. The most significant difference is that a 
memory word is read in parallel and the correct data is 
expected at the end of the clock cycle. In communication, 
data is typically received serially and can be decoded on a 
bit by bit basis. The need to complete the decoding pro-
cess in one cycle for an entire word makes decoding very 
challenging. Traditionally, Single Error Correction (SEC) 
codes have been used to protect memories [3]. In such 
case, decoding can be done for each bit by just checking if 
the syndrome matches the corresponding column in the 
parity check matrix. However, when more than one bit 
needs to be corrected, such approach, known as syn-
drome decoding, needs to compare the syndromes of 
multiple bit errors that include that bit. This leads to a 
large increase in decoding complexity, specially for large 
word sizes [10].  

To overcome the limitations of syndrome based decod-
ing, One Step Majority Logic Decodable (OS-MLD) codes 
have been proposed [11] to protect memories. Some OS-
MLD codes, such as the Orthogonal Latin Square (OLS) 
codes were proposed decades ago for memory protection. 
However, in most cases, they require a large number of 
parity check bits [13] . Recently, Euclidean Geometry (EG) 
or Difference Set (DS) codes have been proposed 
[11],[12],[16]. These codes reduce the number of parity 

check bits. The significant concern with EG and DS codes 
is that they support only a few block sizes and error cor-
rection capabilities [9]. For example, for Double Error 
Correction (DEC), EG codes only support (15, 7) and DS 
only (21, 11), where (n, k) refers to the codeword size n 
and the data block size k (thus the size of parity check 
block is n-k). Orthogonal Latin Square (OLS) codes pro-
vide a wider range of choices; the parameters of the DEC 
OLS codes that have k equal to a power of two are shown 
in Table 1 for k up to 1024. 

Double error correction Orthogonal Latin Square codes 

are built such that their parity check matrices H have the 

following properties [13]: 

1. Each column has a size of 4  k . 
2. Each column that corresponds to a data bit has ex-

actly four ones. 

3. Each pair of columns only has at most a single po-

sition with a one in common (one bit overlap). 

Based on these properties, a simple decoding scheme 

can be designed. In this scheme, for each data bit a major-

ity vote of the four parity check equations that are in-

volved is performed. If the result is one, then the bit is in 

error and therefore, is thus corrected. This procedure is 

usually referred to as one step majority logic decoding. It 

will correct all errors that affect data bits in the presence 

of single and double errors.  If a data bit is in error, an-

other error can only affect one of its parity checks and 

thus a majority will always occur and the bit will be cor-

rected. Conversely, if the bit is not in error, errors on the 

other two bits can only affect at most two of its parity 

checks, so that there will be no majority to start a correc-

tion. 

As an example, the parity check matrix H for the (32, 16) 

DEC OLS code is shown in Figure 1, in which the left 16 

columns refer to the data bits and the other 16 columns to 

the parity bits. The OS-MLD decoding of the first data bit 

is shown in Figure 2, where each parity equation corre-

sponds to one row of the parity check matrix in Figure 1. 

The required logic circuit is simpler than checking all 

possible two bit error patterns for a bit. This feature is 

more advantageous when the codeword size is large, 

because that number of double bit error patterns is pro-

portional to n. 

 

TABLE 1 
PARAMETERS OF SOME DOUBLE ERROR CORRECTION ORTHOGONAL 

LATIN SQUARE CODES 

Data block size k Parity check block size n-k 

16 16 

64 32 

256 64 

1024 128 
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As discussed in the introduction, the main drawback of 

OLS codes is that they require a large number of parity 

check bits. For example, for k = 256, a DEC OLS code 

requires 64 parity check bits compared to the 18 bits re-

quired by a DEC BCH code. Therefore, code constructions 

that support OS-MLD while requiring a smaller number 

of parity check bits are of significant interest. In the next 

section, a new construction for such codes is presented. 

3 TWO BIT OVERLAP CODES 
This section presents the proposed Two Bit Overlap 
(TBO) codes; the parameters of these codes are also ana-
lyzed and established. The first subsection describes the 
features of the matrices that are used to construct the 
codes and shows how DEC OS-MLD codes can be ob-
tained from them. The second subsection presents the 
method to construct the matrices, while the third subsec-
tion summarizes the parameters of the proposed codes. 

3.1 Matrix Features 
As discussed in the previous section, a method for con-
structing Double Error Correction (DEC) One Step Major-
ity Logic Decodable (OS-MLD) codes requires to design 
matrices with columns such that: 

1. Each column has exactly four ones. 

2. Each pair of columns only has at most a position 

with a one in common. 

Orthogonal Latin Squares with double error correction 
are a particular case of the above construction. Then this 
matrix can be used to form the parity checks such that 
each data bit corresponds to a column and each row to a 
parity check bit and each data bit participates in the pari-
ty checks for which it has a one in the column. 

As explained previously, the OS-MLD property is 
simple, because each data bit participates in four parity 
checks and the other bits share at most one parity check 
with it. Therefore, a majority of the four is obtained when 
the bit is in error and another bit is also in error.  Con-
versely, when the bit is not in error, two errors on other 
bits can affect at most two of the parity checks of the ini-
tial bit and thus no miscorrection will occur. 

Consider a construction in which the matrices are giv-
en such that: 

1. Each column has exactly seven ones. 
2. Each pair of columns only has at most two posi-

tions with a one in common. 
Then, the code will be OS-MLD for DEC by taking a 

majority of at least five on the seven equations for the 
participating bit. The possible cases are as follows: 

1. An error free bit and two other bits in error give a 
worst case of four parity check errors on the error 
free bit so there is no majority and no miscorrec-
tion. 

2. A bit in error and another bit in error cause at least 
five parity check errors on the erroneous bit, so it 
will be corrected. 

A disadvantage of this construction is that the encod-

ing and decoding are more complex than for a DEC OLS 

code. This is due to two features: 

1. The matrix has a larger number of ones (seven per 
column instead of four) and thus, more logic is 
needed to compute the parity checks.  

2. The majority voting is done over seven parity 
checks and not over four which is again more 
complex. 

However, the decoding is still significantly simpler 
than for a non OS-MLD code as detailed in the evaluation 
section of this paper. To have advantage over existing 
DEC OLS codes, the proposed codes need to have a lower 
number of parity check bits. This will be the case for the 
proposed scheme as shown next. 

3.2 Polynomial based Matrix Construction 
Matrices with the properties specified in the previous 
subsection can be formed as follows. We associate each 
bit with index b with a polynomial Pb of degree two, such 
that each of its three coefficients belong to 

 − k30, 1 , where k is the number of data bits in the 

codeword. The coefficients are selected such that

( ) =
=  i

b ii
P x a x

2

0
satisfies ( ) ( )23 3

0

i

b ii
P k a k b

=
=  = . 

Note that there is a single option for the selection of a0, a1, 

a2. For instance, a0 equals b mod 3 k , ( )( )3
1 0 /a b a k= −  

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0    1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0    0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0    0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1    0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0    0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0    0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0    0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1    0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1    0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0    0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0    0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0    0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0    0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0    0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1    0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

Figure 1. Parity check matrix H of the (32, 16) DEC OLS code.  

Majority
Vote

Parity check 
equation 0

Parity check
equation 4

Data bit 0

Correction

Decoded data bit 0

Parity check 
equation 8

Parity check
equation 12

 

Figure 2. Majority logic decoding of data bit 0 in the (32, 16) DEC OLS 
code.  
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mod √𝑘3
 and 𝑎2 = ((𝑏 − 𝑎0 − 𝑎1 ∙ √𝑘3 )/(√𝑘3 )2)  mod √𝑘3

. 

This is illustrated with the following example. Let consid-
er 𝑘 = 73 = 343 and 𝑏 = 51. Then the coefficients of the 
polynomial are 𝑎𝑜 = 51 𝑚𝑜𝑑 7 = 2;  𝑎1 = (51 − 2)/7 𝑚𝑜𝑑 7 = 0 𝑎𝑛𝑑 𝑎2 = (51 − 2 − 0 ∙ 7) /72 𝑚𝑜𝑑 7 = 1 so 

that  𝑃51(𝑥) = 2 + 𝑥2  which satisfies 𝑃51(√𝑘3 ) = 𝑃51(7) = 2 + 72 = 51. 

We then characterize each bit b by the seven values for 

 0,6x  of the polynomial Pb(x), such that calculations 

are performed over modulo k3 .  

In our example, for 𝑏 = 51 those values would be 

{2,3,6,4,4,6,3}. We describe each such value in 3 k  bits 

such that a single bit that corresponds to the value, is 

equal to one while all others are zero. Similarly, we de-

scribe the ordered list of values in a binary vector of 

length 37 k . In our example, this list would be 

{0010000,0001000,0000001,0000100,0000100, 

0000001,0001000}. This vector will be the column of the 

data bit b in the parity check matrix and has exactly seven 

ones (satisfying the first condition). 

Next, it will be shown that when 3 k  is a prime num-

ber greater or equal than seven, then the second condition 

stated in the previous subsection is also met. This condi-

tion states that two columns of the matrix can have at 

most two ones in common. The proof is based on La-

grange´s theorem in number theory that states that a pol-

ynomial of degree n≥1 modulo, a prime number p with 

integer coefficients not divisible by p has at most n dis-

tinct roots [17]. This is the case for the polynomials used 

in the code construction as the coefficients are modulo 
3 k that is a prime and not divisible by 3 k and they are 

evaluated over   0,6x  which are also smaller than 3 k . 

Now, suppose that two bits b and c have more than two 

ones in common in the parity check matrix. This means 

that the two polynomials Pb(x), Pc(x), each of degree two 

collide in at least three distinct values. This means that 

Pb(x)-Pc(x) which is also a polynomial of degree two, has 

three roots which according to Lagrange´s theorem is not 

possible. Therefore, this implies that Pb is exactly equal to 

Pc. Accordingly, b = c and the two bits are the same which 

contradicts the assumption that these bits were different. 

Therefore, the construction just described will generate 

matrices with columns that have exactly seven ones and 

that share at most two ones.  Let us summarize the con-

struction procedure: 

1. Select a block size k such that 3 k  is a prime larger 

than six. 

2. For each of the k bits assign an index b = 0,1,2,….,k-

1. 

3. Compute the polynomial 𝑃𝑏(𝑥) = ∑ 𝑎𝑖 ⋅ 𝑥𝑖2𝑖=0 that 

satisfies 𝑃𝑏(√𝑘3 ) = 𝑏  with coefficients that belong 

to[0,  √𝑘3 − 1].  
4. Compute the values of the polynomial Pb(x) modu-

lo 3 k  for 𝑥 ∈ [0,6]. 
5. Assign a 3 k  bit array to each of the values ob-

tained in 4 such that the bit that corresponds to the 

value is ‘1’ and all the other bits are ‘0’. 
6. The column of the parity check matrix for that bit 

is formed by the concatenation of the seven arrays 

obtained in step 5. 

The codes obtained for a given prime number p, have 
the following parameters: 3k p=  and 7n k p− =  . This 
compares favorably to OLS codes that have 2k p= and

4n k p− =   , when p is large. 

3.3 TBO Codes 
The parameters of the TBO codes obtained with the poly-
nomial construction are summarized on Table 2; this table 
also shows the parameters of the DEC OLS codes of simi-
lar word lengths; only few word sizes are supported start-
ing at k = 343. This could be used to protect 256 bit words 
by shortening its H matrix. After removing 87 columns 
that share most positions for "1" on each row from the H 
matrix, one parity bit can be saved, thus the proposed 
code requires 48 parity check bits compared to 64 for a 
DEC OLS code. The next block size, k = 1331 can be used 
to protect words of 1024 bits (as applicable to some con-
figurations for cache memory). In this case, the proposed 
code can be shortened by saving 2 parity bits and it re-
quires 75 parity bits compared to 128 for a DEC OLS code. 

4 EVALUATION 
The proposed TBO codes shortened to 256/1024 data bits 
have been implemented in HDL and mapped to a 65nm 
library from TSMC using Design Compiler. Then, pro-
tected memories of varying sizes have been implemented 
as examples to evaluate the overheads of the schemes. 
Existing DEC OLS codes and DEC BCH codes have also 
been implemented to show the benefits of the proposed 
codes.  

The settings of synthesis were selected to put “maxi-
mum” effort on optimizing area overhead, power, and 
delay to show the benefit in area/power that can be 
achieved by the fault tolerant memories, and the “mini-
mum” latency that can be achieved by the encoders and 
decoders. 

Overheads in terms of area and power consumption 
introduced by the ECCs to the unprotected memory in-
clude two components: the redundant memory overhead, 
and the encoder/decoder overhead. For a small memory 

TABLE 2 
PARAMETERS OF THE PROPOSED DEC CODES AND OLS CODES 

Type 
Prime number 

p 

Data block 

size k 

Parity check 

block size  n-k 

OLS - 256 64 

TBO 7 343 49 

Shortened TBO 7 256 48 

OLS - 1024 128 

TBO 11 1331 77 

Shortened TBO 11 1024 75 

TBO 13 2197 91 
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size, the overhead introduced by the different ECCs is 
mostly due to the encoder/decoder overhead. However, 
for larger memory sizes, the encoder/decoder overhead is 
smaller relative to the increase in memory size; hence, the 
redundant memory overhead (that is related to the num-
ber of parity bits) tends to dominate. By combining these 
two components of the overhead, different classes of 
ECCs may have lower area/power overhead when pro-
tecting different memory sizes. To compare the overhead 
introduced by different ECCs, the area and power con-
sumption for unprotected memories and memories em-
ploying different coding options are given in Table 3 and 
Table 4. These tables include also the area and power 
dissipation of the encoder and decoder with no memory 
array so that the complexity of the encoding and decod-
ing circuitry can be compared directly. It can be observed 
that the BCH codes need significantly larger area and 
power for encoding and decoding than both OLS and 
TBO codes. Instead, the proposed codes require less than 
2x the area of the OLS codes and less than 1.3x the power. 
To illustrate the results for the entire system for different 
memory sizes, the relative overheads over the unprotect-
ed memory in terms of percentage are shown in Figure 3 
to Figure 6. 

Figure 3 shows the optimized synthesis results for the 
area overhead introduced by each ECC over memory size; 
the proposed TBO codes have the smallest area overhead 
in the range from 1K to 4K memory words, and then they 

are better than OLS codes, but worse than BCH codes. As 
discussed previously, OLS and TBO codes (which are 
both OS-MLD codes) have a lower decoding complexity 
than BCH codes (non OS-MLD codes). BCH codes have 
the smallest number of parity bits that can reduce the 
redundant memory bits. Therefore, in this case, the sav-
ings for the encoder/decoder make OS-MLD codes better 
than BCH codes when the size of the memory is smaller 
than or equal to 4K words. Savings in the redundant 
memory overhead for the BCH codes offset the disad-
vantage of a complex decoder and begin to have a com-
pelling role when the memory size increases to 8K words.  

Compared to OLS codes, the advantage of a smaller 
number of parity bits required by the proposed TBO 
codes also offsets its larger decoder circuit. Results for k = 
1024 bit are shown in Figure 4, and in this case, the TBO 
codes have the lowest area overhead for memories with 
1K to 8K words. 

In terms of power consumption, results are shown in 
Figure 5 for k = 256 and in Figure 6 for k = 1024; they have 
the same trends as for the area overhead, i.e., the pro-
posed codes are best for 1K to 4K words with 256 bits and 
1K to 8K words with 1024 bits, respectively. 

Additionally, these coding schemes have been com-
pared for smaller memory sizes to determine the largest 
size for which OLS codes have a lower area/power over-

TABLE 3 
AREA SYNTHESIS RESULTS (μm2) COMPARISON FOR UNPROTECTED MEMO-

RIES AND PROTECTED BY DIFFERENT OPTIONS 

                    SRAM size Unprotected OLS TBO BCH 

k=256 

Enc/Dec N.A. 1.4E4 2.6E4 3.2E5 

1K words 5.3E5 6.8E5 6.6E5 8.9E5 

2K words 10.8E5 13.6E5 13.1E5 14.8E5 

4K words 21.6E5 27.1E5 25.9E5 26.3E5 

8K words 43.2E5 54.1E5 51.6E5 49.5E5 

k=1024 

Enc/Dec N.A. 5.6E4 1.0E5 4.0E5 

1K words 2.1E6 24.6E5 23.9E5 63.8E5 

2K words 3.9E6 44.6E5 43.0E5 81.9E5 

4K words 7.8E6 88.7E5 85.1E5 12.2E6 

8K words 15.7E6 17.7E6 16.9E6 20.2E6 
 

TABLE 4 
POWER SYNTHESIS RESULTS (mW) COMPARISON FOR UNPROTECTED MEM-

ORIES AND PROTECTED BY DIFFERENT OPTIONS 

                   SRAM size Unprotected   OLS TBO BCH 

k=256 

Enc/Dec N.A.      8.7 11.0 35.1 

1K words 22.2 39.5 37.4 58.8 

2K words 31.3 49.9 47.9 68.2 

4K words 56.0 83.7 82.2 83.5 

8K words 102.5 133.5 125.8 123.0 

k=1024 

Enc/Dec N.A. 26.1 32.0 112.0 

1K words 73.1 110.5 108.3 186.7 

2K words 115.4 155.9 152.9 229.9 

4K words 206.1 258.0 253.3 322.5 

8K words 353.6 423.9 411.5 473.2 

 

 

Figure 4 Area comparison for different size (in words) of SRAMs with 
k=1024 employing different ECCs 

 

Figure 3 Area comparison for different size (in words) of SRAMs with 
k=256 employing different ECCs. 
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head than the TBO codes. This size is 128 words in both 
cases of 256 and 1024 bits. This shows that the proposed 
TBO scheme reduces the memory overhead compared to 
OLS codes for practical memory sizes. 

Results for the delay required by the encoders and de-
coders for a delay optimized synthesis are presented in 
Table 5. The OLS codes have the fastest encoding speed, 
while the BCH codes have the slowest encoding speed. 
This occurs because the largest number of “1” on the rows 
of the H matrix for OLS codes is smaller than the numbers 
for the other codes. In the case of decoding latency, OLS 
codes also show better results than the other codes, be-
cause they have the lowest complexity for the decoding 
algorithm. However, when the proposed TBO codes are 
slower than the OLS codes (for example 20.2% slower for 
k = 256), then they are still significantly faster than the 

BCH codes (for example by a 46.6% saving when k = 256). 
Overall, the results show that for memories up to a few 

thousand words, the proposed TBO codes can provide a 
fast decoding latency with a reduced memory overhead. 
For larger memories, the proposed codes can still reduce 
the delay, but they will incur in a larger area overhead 
compared to BCH codes, but still lower than for OLS 
codes. These features can be useful for applications in 
which OLS codes have some delay margin over require-
ments that non OS-MLD codes (such as BCH) cannot 
meet. When selecting an ECC for a specific application, 
designers can check the delay first. If non OS-MLD codes 
cannot meet the delay restrictions, the proposed codes 
can be used to reduce the memory overhead introduced 
by having a lower number of parity check bits than OLS 
codes. 

5 GENERALIZATION TO LARGER NUMBER OF 
ERRORS 

The proposed TBO construction can be generalized to 
obtain codes that correct up to t bit errors. Consider a 
construction in which the matrices are such that： 

1. Each column has exactly w ones.  
2. Each pair of columns only has at most two posi-

tions with a one in common. 
Then, for such a code to be able to correct t errors using 

OS-MLD with a threshold for correction of m the follow-
ing conditions are needed: 

1. To avoid erroneous corrections on data bits 
2 m t .  

2. To ensure correction of bits in error 
( )2 1−  − w t m  . 

From which ( )2 1 +  −w m t . Therefore, setting 
2 1=  +m t  and 4 1=  −w t , an OS-MLD code that can 

correct t errors is obtained. 
The parameters for such codes in terms of the number 

of elements in the vote w and the majority threshold m are 
given in Table 6. The table also shows the corresponding 
values for OLS codes; as t increases, the majority voting 
for TBO codes becomes significantly more complex. The 
proposed polynomial based construction presented for 
DEC TBO codes could potentially be extended to the 
general case of t bit correcting codes; however, the word 
sizes would be even larger than those obtained in the 
DEC case, so making them of interest only for the protec-

TABLE 6 

MAJORITY LOGIC DECODING PARAMETERS OF TBO CODES 

Type 
Error correction 

capability t 

Number of elements 

in the vote w 

Majority 

threshold m 

TBO 2 7 5 

OLS 2 4 3 
TBO 3 11 7 
OLS 3 6 4 
TBO 4 15 9 
OLS 4 8 5 
TBO 5 19 11 
OLS 5 10 6 

TABLE 5 
DELAY SYNTHESIS RESULTS (ns) COMPARISON FOR ENCODERS AND 

DECODERS 

Type OLS TBO BCH 

k =256 
Encoder 0.54 0.66 0.76 

Decoder 0.99 1.19 2.23 

k=1024 
Encoder 0.65 0.77 1.00 

Decoder 1.11 1.38 2.63 

 

Figure 5 Power comparison for different size (in words) of SRAMs with 
k=256 employing different ECCs.  

 

Figure 6 Power comparison for different size (in words) of SRAMs with 
k=1024 employing different ECCs.  
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tion of very wide memories. The construction and evalua-
tion of TBO codes with larger error correction capabilities 
is beyond the scope of this paper and left for future work. 

6 CONCLUSION AND FUTURE WORK 
This paper has presented a new construction for Double 
Error Correction (DEC) One Step Majority Logic De-
codable (OS-MLD) codes based on Two Bit Overlap 
(TBO). The codes obtained provide a trade-off between 
the number of parity check bits and the decoding com-
plexity. They are significantly simpler and faster to de-
code than non OS-MLD codes such as BCH codes but 
slightly more complex than existing DEC OS-MLD codes 
(such as Orthogonal Latin Square (OLS) codes). Also, they 
require a smaller number of parity check bits than OLS 
codes but more than BCH codes. Therefore, they provide 
additional choices to memory designers in terms of de-
coding speed and memory overheads. 

As applicable to also most OS-MLD codes, the pro-
posed TBO codes have limited choices in terms of word 
sizes, two practical configurations for memory protection 
of 256 and 1024 bit words are used by shortening the 
codes. These two options have been implemented and 
compared to DEC OLS and BCH codes. The results show 
that the proposed TBO codes achieve the smallest area 
overhead and power consumption for memories with 1K 
to 4K words in the case of 256 bits and for memories with 
1K to 8K words in the case of 1024 bits. For larger memo-
ries, the overhead of the proposed codes are higher than 
BCH codes but still lower than OLS codes. In terms of 
delay, the proposed codes are slower than OLS codes but 
significantly faster than BCH codes. Therefore, the pro-
posed codes incur in a reduced area overhead and power 
consumption for memories with tight requirements in 
speed that cannot currently be met by BCH codes. 

The work presented in this paper is being investigated 
and extended for future research for designing TBO codes 
that can correct more than two bit errors. Another area for 
future work is to find alternative matrix constructions 
that provide additional choices in term of block sizes and 
number of parity check bits for DEC codes. 
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