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Two-body momentum correlations in a weakly interacting one-dimensional Bose gas
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We analyze the two-body momentum correlation function for a uniform, weakly interacting, one-dimensional
Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein
condensate with a true long-range order, almost vanishes in a phase-fluctuating quasicondensate where the
long-range order is destroyed. Using the Luttinger liquid approach, we derive an analytic expression for the
momentum correlation function in the quasicondensate regime, showing (i) the reduction and broadening of
the opposite-momentum correlations (compared to the singular behavior in a true condensate) and (ii) an
emergence of anticorrelations at small momenta. We also numerically investigate the momentum correlations in
the crossover between the quasicondensate and the ideal Bose-gas regimes using a classical field approach and
show how the anticorrelations gradually disappear in the ideal-gas limit.
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I. INTRODUCTION

Many-body correlation functions contain valuable infor-
mation about the physics of quantum many-body systems
and therefore their measurement constitutes an important
probe of the correlated phases of such systems. In recent
years, ultracold-atom experiments have shown that atomic
correlations can be accessed via many experimental tech-
niques, including high-precision absorption [1–3] or fluores-
cence imaging [4–6], detection of atom transits through a
high-finesse optical cavity [7], single-atom detection using
multichannel plate detectors [8–11] or scanning electron
microscopy techniques [12], and the measurement of rates
of two-body (photoassociation) [13] or three-body loss pro-
cesses [14–16]. While the loss-rate measurements depend
only on local correlations, the imaging and atom detection
techniques typically depend on nonlocal correlations which
are embedded in the atom-number fluctuations in small
detection volumes (such as image pixels) or in the coinci-
dence counts of time- and position-resolved atom detection
events.

The development of these techniques have enabled the
study of a wide range of phenomena in ultracold-atomic gases,
including the Hanbury Brown–Twiss effect [7–10,17–19] and
higher-order coherences [20], phase fluctuations in quasi-
condensates [21,22], superfluid-to-Mott-insulator transition
[2,5,6,23], isothermal compressibility and magnetic suscep-
tibility of Bose and Fermi gases [3,24–28], scale invariance
of two-dimensional (2D) systems [29], the phase diagram of
the 1D Bose gas [30,31], entanglement and spin squeezing
in two-component and double-well systems [32–36], sub-
Poissonian relative atom-number statistics [35,37,38], and
violation of the Cauchy-Schwarz inequality with matter
waves [39].

From a broad statistical-mechanics point of view, most
of these measurements have so far given access to either
equilibrium position-space density correlations or nonequilib-
rium momentum-space density correlations. In this paper, we
address the question of equilibrium momentum-space density
correlations [40] by focusing on the two-body correlation

function

G(k,k′) = 〈δn̂kδn̂k′ 〉 = 〈n̂kn̂k′ 〉 − 〈n̂k〉〈n̂k′ 〉, (1)

for a weakly interacting, uniform, 1D Bose gas. Here, δn̂k =
n̂k − 〈n̂k〉 is the fluctuation in the population n̂k of the state of
momentum h̄k [see Eqs. (3), (4), and (6)].

To measure G(k,k′) experimentally, one needs to analyze
atomic density fluctuations in a set of momentum distributions.
Single-shot momentum distributions of a 1D Bose gas,
realizable by confining the atoms to highly anisotropic trapping
potentials, can be acquired as follows. First, by turning off (or
strongly reducing) the transverse confinement, one ensures
that atom-atom interactions no longer play any role in the
system dynamics. The longitudinal momentum distribution
is unaffected by the turning off since, in 1D geometry, the
turning-off time (which is on the order of the period of
the transverse confining potential) is much smaller than the
relevant time scales of the longitudinal (axial) motion of the
atoms. Second, the longitudinal momentum distribution can, in
principle, be measured using an expansion along the long axis,
after switching off the longitudinal confinement, or by using a
recently demonstrated technique of Bose-gas focusing [41–43]
(see also [44,45]).

In the presence of a true long-range order, the Bogoliubov
theory correctly describes the excitations of a Bose condensed
gas, predicting strong positive correlations in G(k,k′) between
opposite momenta, k′ = −k, for small |k|, as shown in
Ref. [46] (see also [47]). However, true long-range order
is destroyed by long-wavelength fluctuations in a 1D Bose
gas [48]; for a large enough system, the gas lies in the so-called
quasicondensate regime [49] where, while the density fluctu-
ations are suppressed as in a true Bose-Einstein condensate
(BEC), the phase still fluctuates along the cloud. In this paper,
we show that when the system size becomes much larger than
the phase correlation length, the positive correlations between
the opposite momenta vanish. In the thermodynamic limit of
an infinite quasicondensate, we find an analytic expression
for G(k,k′) and show that it develops zones of anticorrelation
on the (k,k′) plane. We also analyze the crossover from the
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quasicondensate to the ideal Bose-gas regime, using a classical
field theory, and show how the behavior of G(k,k′) undergoes a
continuous transformation between the two limiting regimes.

The paper is organized as follows. In Sec. II we outline the
generalities applicable to two-body momentum correlations
for the uniform 1D Bose gas with contact interactions.
Section III summarizes the known results in the regime of
a true condensate. In Sec. IV, we show that the correlations
between opposite momenta, which exist in the case of a true
BEC, disappear in the quasicondensate regime. Here we first
use a simple model of a quasicondensate (Sec. IV A), followed
by the Luttinger liquid approach (Sec. IV B) leading to an
exact analytic result for the two-body momentum correlation
function. In Sec. V we describe the momentum correlations
in the crossover from the quasicondensate up to the ideal
Bose-gas limit, using a classical field method. We discuss the
experimentally relevant aspects in Sec. VI, and conclude with
a summary in Sec. VII.

II. GENERALITIES

We consider a uniform gas of bosons interacting via a
pairwise δ-function potential in a 1D box of length L with
periodic boundary conditions. In the second-quantized form,
the Hamiltonian density is

H = − h̄2

2m
ψ̂† ∂2

∂z2
ψ̂ + g

2
ψ̂†ψ̂†ψ̂ψ̂ − μψ̂†ψ̂, (2)

where ψ̂(z) and ψ̂†(z) are the bosonic field operators, m is the
mass of the particles, g is the interaction constant, and μ is
the chemical potential. In the grand-canonical formalism that
we are using, the equilibrium density ρ = 〈ψ†ψ〉 is fixed by
μ and the temperature T , and the total number of particles is
given by N = ρL. Throughout this paper, we restrict ourselves
to the weakly interacting regime, which corresponds to the
dimensionless interaction parameter γ = mg/h̄2ρ � 1.

The momentum distribution 〈n̂k〉 and its correlation func-
tion G(k,k′) are related to the first- and second-order correla-
tion functions of the bosonic fields,

G1(z1,z2) = G1(z1 − z2) = 〈ψ̂†(z1)ψ̂(z2)〉 (3)

and

G2(z1,z2,z3,z4) = 〈ψ̂†(z1)ψ̂(z2)ψ̂†(z3)ψ̂(z4)〉, (4)

via the Fourier transforms

〈n̂k〉 = 1

L

∫ ∫ L

0
dz1dz2e

−ik(z1−z2)G1(z1,z2) (5)

and

G(k,k′) = 1

L2

∫ ∫ ∫ ∫ L

0
d4ze−ik(z1−z2)e−ik′(z3−z4)

×[G2(z1,z2,z3,z4) − G1(z1,z2)G1(z3,z4)], (6)

where d4z ≡ dz1dz2dz3dz4. In Eq. (3), the dependence of
G1(z1,z2) only on the relative coordinate z1 − z2 follows from
the translational invariance of the system.

Several general statements about the momentum correlation
function G(k,k′) can be made, which are valid in any regime
of the gas. First, the correlation function obeys the following

sum rule: ∑
k,k′

G(k,k′) = 〈N̂2〉 − 〈N̂〉2, (7)

where N̂ = ∫ L

0 dxψ̂†(x)ψ̂(x) is the total particle-number
operator. This implies that within the canonical ensemble, one
has

∑
k,k′ G(k,k′) = 0. In the grand-canonical ensemble, the

fluctuation-dissipation theorem, which connects the particle-
number variance with the derivative of 〈N̂〉 with respect to the
chemical potential μ [3], gives∑

k,k′
G(k,k′) = kBT

∂N

∂μ
= kBT L

∂ρ

∂μ
. (8)

Second, G(k,k′) possesses several symmetries. In ther-
mal equilibrium, the position-space correlation functions
are invariant by the simultaneous refection symmetry of
all coordinates zi → −zi . This symmetry and the bosonic
commutation relations between the field operators imply, for
periodic boundary conditions, thatG(k,k′) is symmetric around
the axis k′ = k and around the axis k′ = −k.

Finally, for systems that have correlation lengths much
smaller than the system size L, the two-body momentum
correlation function G(k,k′) can be split into a “singular”
part and a regular function. (We use the term singular in
the sense of the Kronecker δ-function, which turns into the
Dirac δ-function singularity in the thermodynamic limit of
L → ∞.) To show this, let us first note that if we assume
the existence of a finite correlation length lφ for the decay
of the first-order correlation function G1(z1,z2), then the
second-order correlation function G2(z1,z2,z3,z4) must have
the following two asymptotic limits:

G2(z1,z2,z3,z4) 	 G1(z1 − z2)G1(z3 − z4)

for |z1 − z3| 
 lφ and |z1 − z2|,|z3 − z4| � lφ, (9)

and

G2(z1,z2,z3,z4) 	 G1(z1 − z4)G1(z2 − z3)

+G1(z1 − z4)δ(z2 − z3)

for |z1 − z2| 
 lφ and |z1 − z4|,|z2 − z3| � lφ. (10)

In Eq. (10), the δ-function term appears simply as a result of
normal ordering of the operators in Eq. (4). By separating out
the two asymptotic limits, Eqs. (9) and (10), we can write

G2(z1,z2,z3,z4) = G1(z1 − z2)G1(z3 − z4)

+G1(z1 − z4)G1(z2 − z3)

+G1(z1 − z4)δ(z2 − z3)

+ G̃2(z1,z2,z3,z4), (11)

where G̃2(z1,z2,z3,z4) is the remainder term.
By substituting Eq. (11) into Eq. (6), we obtain

G(k,k′) = (〈n̂k〉 + 〈n̂k〉2)δk,k′ + G̃(k,k′), (12)

which shows explicitly that G(k,k′) can be written down as
a sum of a singular and regular contributions. The first term
in Eq. (12) is the shot noise, the second term is the bosonic
“bunching” term, which describes the exchange interaction
due to Bose quantum statistics, and the last, regular term
G̃(k,k′) [the Fourier transform of G̃2(z1,z2,z3,z4)] describes
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the exchange of momenta between the particles during the
binary elastic-scattering processes and is nonzero only for an
interacting gas. For noninteracting bosons, Wick’s theorem
can be applied directly to the G2(z1,z2,z3,z4) function, which
then leads to a vanishing G̃2(z1,z2,z3,z4) and hence only to
the singular terms in Eq. (12).

III. TRUE CONDENSATE

At T = 0, the first-order correlation function decays alge-
braically as G1(z1,z2) 	 (ξ/|z1 − z2|)

√
γ /2π for |z1 − z2| 
 ξ

[50–52], where ξ = h̄/
√

mgρ is the healing length. As γ � 1
in the weakly interacting regime, the algebraic decay is very
slow, leading to an exponentially large phase correlation
length. Indeed, defining l

(0)
φ as the length for which G1(z1,z2)

decreases by a factor of e, we find [49]

l
(0)
φ ∼ ξe2π/

√
γ . (13)

At finite temperatures, the algebraic decay of G1(z1,z2)
remains valid for distances ξ � |z| � lT , where lT =
h̄2/mkBT ξ = (h̄/kBT )

√
gρ/m is the phonon thermal wave-

length [51,52]. For distances |z| 
 lT , on the other hand,
the correlation function decays exponentially [see Eq. (25)
below] with the characteristic temperature-dependent phase
coherence length,

lφ(T ) = h̄2ρ/mkBT . (14)

Considering now a system of size L � min{l(0)
φ ,lφ}, we can

assume true long-range order in the system and use the
Bogoliubov theory to describe the momentum correlations,
as was done in Refs. [46,47]. We briefly recall the relevant
results here.

The momentum correlation function G(k,k′) is different
from zero only for k = k′ and k =−k′. For equal momenta
k = k′, one finds G(k,k) = 〈n̂k〉 + 〈n̂k〉2, which is similar
to the ideal Bose-gas behavior, except that the standard
Bose occupation numbers 〈n̂k〉 = (e(Ek−μ)/kBT − 1)−1 are now
replaced by

〈n̂k〉 = (1 + 2̃nk)
Ek + gρ

2εk

− 1

2
. (15)

Here εk = √
Ek(Ek + 2gρ) is the energy of the Bogoliubov

modes, Ek = h̄2k2/2m is the free particle dispersion, and
ñk = (eεk/kBT − 1)−1 are the mean occupation numbers of
Bogoliubov modes. For opposite momenta k =−k′, one has

G(k, − k) = (1 + 2̃nk)2

(
gρ

2εk

)2

. (16)

A convenient way to characterize the relative strength of
the opposite and equal momentum correlations is via the
normalized pair-correlation function

P(k) = G(k, − k)

G(k,k)
= 1 − 〈(n̂k − n̂−k)2〉

2
〈
δn̂2

k

〉 . (17)

Here, P(k) = 1 corresponds to perfect (maximum) correlation
between the opposite momenta, whereas P(k) = 0 corre-
sponds to the absence of any correlation.

At T = 0, one has ñk = 0 and G(k, − k) = G(k,k), and
therefore the Bogoliubov theory predicts perfect correlation

between the opposite momenta, P(k) = 1. Such perfect corre-
lation stems from the fact that the depletion of the condensate
in the Bogoliubov vacuum simply corresponds to the creation
of pairs of particles with equal but opposite momenta.

At finite temperatures, ñk is different from zero, never-
theless the normalized pair correlation is still close to its
maximum (perfect correlation) value, P(k) 	 1, for phonon
excitations with k � 1/ξ for any value of ñk . This can
be understood from the fact that the phonons are mainly
phase fluctuations, so that they correspond to equal-weighted
sidebands at momenta k and −k of the excitation spectrum.
On the other hand, for particlelike excitations, with k 
 1/ξ ,
the thermal population of particles leads to a decrease of P(k).
More precisely, for 1/ξ < k <

√
mkBT /h̄, which corresponds

to particlelike excitations whose occupation numbers are
large, one obtains P(k) � 1. Finally, at very large momenta,
k 
 √

mkBT /h̄, for which the occupation numbers are neg-
ligibly small, one again recovers the zero-temperature result
P(k) 	 1.

IV. QUASICONDENSATE REGIME

A. Effect of phase fluctuations

The above results obtained using the Bogoliubov theory are
valid when the temperature is small enough so that the phase
correlation length is much larger than the system size, lφ 
 L.
While this condition is easier to satisfy in 3D or quasi-1D
systems, it is generally not fulfilled for purely 1D gases.

In a large enough 1D system or at high enough temperatures,
the long-range order is destroyed by long-wavelength phase
fluctuations, having a characteristic temperature-dependent
correlation length lφ . When lφ � L, such a system is said to
enter into the so-called quasicondensate regime [49], in which
the density fluctuations are suppressed while the phase still
fluctuates. As we show here, the two-body correlation between
opposite momenta is expected to vanish in the quasicondensate
regime.

To give a crude, yet simple estimate of the two-body mo-
mentum correlations, we can divide the system into domains
of length lφ and assume that (i) within each domain, the spatial
variation of the phase is small, and therefore the Bogoliubov
approach for a true condensate can be applied to each domain,
and (ii) the relative phases between two different domains are
uncorrelated. For each domain, indexed by α, the field operator
ψ̂α(z) can be expanded according to the Bogoliubov theory,

ψ̂α(z) = eiφα

⎛
⎝√

ρ + 1√
lφ

∑
k =0

δψ̂α,k e−ikz

⎞
⎠ , (18)

where the first term is the mean-field component, the second
term is the fluctuating component expanded in terms of plane-
wave momentum modes δψ̂α,k , φα is the mean global phase
of the domain assumed to be a random variable distributed
uniformly between 0 and 2π , and the summation is over the
momenta that are quantized in units of 2π/lφ .

Using the fact that the momentum component ψ̂k =
1√
L

∫ L

0 dzψ̂(z)eikz of the full field ψ̂(z) can be decomposed as

ψ̂k = √
lφ/L

∑
α δψ̂α,ke

iφα for k = 0, we obtain the following

033626-3



BOUCHOULE, ARZAMASOVS, KHERUNTSYAN, AND GANGARDT PHYSICAL REVIEW A 86, 033626 (2012)

expression for the momentum correlation function:

〈n̂kn̂k′ 〉 =
(

lφ

L

)2 ∑
αβγ δ

〈δψ̂†
α,kδψ̂β,kδψ̂

†
γ,k′δψ̂δ,k′ 〉

× e−i(φα−φβ+φγ −φδ ) (k,k′ = 0). (19)

Here, the overline above the exponential factor stands for
averaging over the random mean phases of different domains.

Within the Bogoliubov theory, the Hamiltonian is quadratic
in δψ̂α,k and one can use Wick’s theorem to evaluate the
four-operator correlation function in Eq. (19). Only pairs
of operators belonging to the same domain give a nonzero
contribution since different domains are uncorrelated. Among
these pairs, only terms 〈δψ̂†

α,kδψ̂α,k〉, 〈δψ̂α,kδψ̂α,−k〉, and

〈δψ̂†
α,kδψ̂

†
α,−k〉 survive.

To evaluate these terms in the most transparent way, we
make use of the classical field approximation [53] (see also
Sec. V A), treating the operators δψ̂α,k and δψ̂

†
α,k as c-numbers,

δψα,k and δψ∗
α,k , and assuming that the respective mode

occupations 〈n̂k〉 = 〈δψ∗
α,kδψα,k〉 are much larger than one,

〈n̂k〉
1. For k�1/ξ , the excitations in each domain are
almost purely phase fluctuations so that δψα,−k = −δψ∗

α,k and
therefore 〈δψ∗

α,kδψ
∗
α,−k〉 	 −〈n̂k〉 [54]. As a result, for the

regular part of the momentum correlation function, we obtain

G̃(k,k′) 	 δk,−k′

(
lφ

L

)2 ∑
α,β

e−2i(φα−φβ )〈n̂k〉2. (20)

Averaging over the phases gives e−2i(φα−φβ ) = δα,β , which
singles out only the diagonal in α and β terms; there are
L/lφ such terms in the sum in Eq. (20). Accordingly, for
the correlation function with opposite momenta, we find
G(k, − k) 	 (lφ/L)〈nk〉2, whereas the correlation function for
equal momenta is given byG(k,k) = 〈nk〉2 + 〈nk〉 	 〈nk〉2, for
〈nk〉 
 1. Therefore, for the normalized pair correlation P(k),
we obtain the following simple result:

P(k) 	
k�1/ξ

lφ

L
� 1, (21)

which shows that the correlations between the opposite
momenta are inversely proportional to the system size L and
therefore are vanishingly small for L 
 lφ .

The above simple model is not capable of capturing features
of G̃(k,k′) on momentum scales smaller than, or of the order
of, the inverse phase correlation length, k � 1/lφ . For such
momenta, the two-body correlation function is calculated
below using a more rigorous Luttinger liquid approach. The
results obtained within this approach confirm the simple
scaling behavior obtained in Eq. (21). Moreover, the Luttinger
liquid results show that the correlation function between
different momenta is no longer singular on the antidiagonal
k′ = −k and that it develops zones of anticorrelation.

B. Two-body correlations in the Luttinger liquid approach

The condition for the quasicondensate regime [55] is

T � Tco ≡ √
γ

h̄2ρ2

2mkB

. (22)

In this regime, the correlation functions in Eqs. (3) and (4) are
dominated by the long-wavelength (low-energy) excitations
and the Hamiltonian density reduces to that of the Luttinger
liquid [52,56]

HL = g

2
(δρ̂)2 + h̄2ρ

2m
(∂zφ̂)2 . (23)

Here, δρ̂(z) is the operator describing the density fluctuations,
canonically conjugate to the phase operator φ̂(z), with the
commutator [δρ̂(z),φ̂(z′)] = iδ(z − z′).

The density fluctuations are small in the quasicondensate
regime and, as long as the relative distances considered
are much larger than the healing length ξ , they can be
neglected when calculating the correlation functions (3) and
(4) [51,52,57,58]. As the Luttinger liquid Hamiltonian given
by Eq. (23) is quadratic in φ̂, the first-order correlation function
G1(z1,z2) = ρ〈ei(φ̂(z1)−φ̂(z2))〉 can be expressed through the
mean-square fluctuations of the phase using Wick’s theorem,

G1(z1,z2) = ρe− 1
2 〈(φ̂(z1)−φ̂(z2))2〉. (24)

Neglecting the contribution of vacuum fluctuations com-
pared to thermal ones [59], the calculation of the mean-square
phase fluctuations leads to an exponentially decaying first-
order correlation function [51,52,58],

G1(z1,z2) = ρe−|z1−z2|/2lφ (|z1 − z2| 
 ξ ). (25)

This defines the finite-temperature phase coherence length lφ ,
given by Eq. (14), and leads to a Lorentzian distribution for
the momentum mode occupation numbers,

〈n̂k〉 = 4ρlφ

1 + (2lφk)2
, (26)

valid for k � 1/ξ .
Similarly, the two-body correlation function

G2(z1,z2,z3,z4) = ρ2〈ei[φ̂(z1)−φ̂(z2)+φ̂(z3)−φ̂(z4)]〉 can be repre-
sented in terms of the first-order correlation as

G2(z1,z2,z3,z4)

= G1(z1−z2)G1(z3−z4)G1(z1−z4)G1(z2−z3)

G1(z1−z3)G1(z2−z4)
. (27)

By substituting Eqs. (25) and (27) into Eq. (6), we find that
the two-body momentum correlation function indeed has the
form of Eq. (12) [60], in which the regular part G̃(k,k′) can be
written as

G̃(k,k′) = lφ

L
(ρlφ)2 F(2lφk,2lφk′), (28)

where F(q,q ′) is a dimensionless function given by

F(q,q ′) = 256

(q2 + 1)2(q ′2 + 1)2[(q + q ′)2 + 16]

× [(q2 + 3qq ′ + q ′2)qq ′−2(q2 − qq ′+q ′2)−7],

(29)

with q ≡ 2lφk and q ′ ≡ 2lφk′. We note that the restriction
of these results to k � 1/ξ implies q � lφ/ξ = 2Tco/T , and
that the scaling of G̃(k,k′) with the inverse size of the system
L coincides with the one obtained in Eq. (21).
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We now wish to check the constraints on the function
G̃(k,k′) imposed by the sum rule, given by Eq. (8). In evaluating
the different terms on the left- and right-hand sides of Eq. (8),
we note that (i) for the derivative term, we can use the equation
of state for the quasicondensate regime, ρ = μ/g, (ii) the term∑

k〈n̂k〉 [coming from the singular part of G(k,k′)] is given
simply by

∑
k〈n̂k〉 = N = ρL, and (iii) the term

∑
k〈n̂k〉2 can

be evaluated using Plancherel’s theorem and Eq. (25). As a
result, the sum rule is reduced to [61]

1

(2π )2

∫ ∫ ∞

−∞
dqdq ′F(q,q ′) 	 −8 +

(
T

Tco

)2

, (30)

where the contribution of the
∑

k〈n̂k〉 is ignored on the grounds
that it is of the order of T/Td (where Td = h̄2ρ2/2mkB),
which is always much smaller than unity in the entire range of
temperatures T � Tco.

The evaluation of the integral on the left-hand side of
Eq. (30) gives the value of −8, implying that the sum rule
is indeed approximately satisfied as long as T � Tco, i.e.,
deep in the quasicondensate regime. On the other hand, as the
temperature increases and approaches the quasicondensation
crossover Tco, the term (T/Tco)2 on the right-hand side of
Eq. (30) becomes non-negligible, implying that our result for
the pair-correlation function G̃(k,k′), given by Eqs. (28) and
(29), is no longer valid as it fails to satisfy the sum rule [62].
The physical origin of this failure lies in the fact that the density
fluctuations at temperatures near Tco are no longer negligible.

The two-body correlation function G(k,k′), given by
Eq. (12), in the quasicondensate regime, of which the regular
part G̃(k,k′) is described by the universal dimensionless
function F(q,q ′), is one of the key results of this paper. The
function F(q,q ′) is shown in Figs. 1(a)–1(c); as F(q,q ′) is
independent of the system size L, it essentially describes
the (unnormalized) two-body momentum correlations in the
thermodynamic limit. As we see, the correlation function is
nonzero on the entire 2D plane of momentum pairs (k,k′); this
can be contrasted with the singular behavior of correlations
in the true condensate where G(k,k′) was nonzero only for
k′ = ±k. This effective broadening of correlations is the first
consequence of large phase fluctuations in the quasicondensate
regime compared to the behavior in the true condensate.
Next, G̃(k,k′) and P(k) both scale as lφ/L and therefore are
vanishingly small as L 
 lφ . For k = −k′, this means that the
perfect opposite-momentum correlations [P(k) = 1], which
were present in the true condensate, essentially disappear in the
quasicondensate regime. Finally, we find negative correlations
(or anticorrelations) in G̃(k,k′); these are pronounced mostly
in the regions of k′k < 0 [see Fig. 1(b)]. The correlations fall
to zero on a typical scale of k ∼ 1/lφ (q = 2lφk ∼ 1). This
is expected, as lφ is the length scale governing the first-order
spatial correlation function G1(z1,z2) in the quasicondensate
regime, and the momentum correlations depend only on
G1(z1,z2) in this regime.

To gain further insights into the strength of the two-body
correlations, we consider the normalized regular part of the
two-body correlation function,

g̃(2)(k,k′) ≡ G̃(k,k′)
〈n̂k〉〈n̂k′ 〉 . (31)

q

q

(a)

q

q

(b)

q

F
(q

,±
q
)

(c)

(q, −q)
(q, q)

FIG. 1. (Color online) (a) Dimensionless regular part of the
(unnormalized) two-body momentum correlation function, F(q,q ′),
given by Eq. (29), of a uniform 1D Bose gas in the quasicondensate
regime. (b) Same as in (a), but showing the details at small correlation
amplitudes (see the scale on the color bar) and in a larger window of
values of (q,q ′). The small negative and positive amplitudes seen here
get “magnified” when the function F(q,q ′) is normalized to 〈n̂k〉〈n̂′

k〉,
as is done in Fig. 2. (c) Function F(q,q ′) along the diagonal (q = q ′)
and antidiagonal (q = −q ′).

Using Eqs. (28) and (26), this can be rewritten as

g̃(2)(k,k′) = lφ

L
f (2lφk,2lφk′), (32)

where

f (q,q ′) = F(q,q ′)
16

(1 + q2)(1 + q ′2) (33)
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q

q

FIG. 2. (Color online) Normalized regular part of the two-body
correlation function f (q,q ′) as a function of the dimensionless
momenta q = 2lφk and q ′ = 2lφk′.

is a dimensionless universal function describing the two-body
correlations of a 1D quasicondensate in the thermodynamic
limit. The function f (q,q ′) is plotted in Fig. 2. As we see, the
normalization leads, at k 
 1/lφ , to the recovery [cf. Fig. 1(b)]
of positive correlations around the the antidiagonal k′ = −k,
predicted by the simple model of Sec. IV A. These correlations
can be also thought of as the remnants of the nearly perfect
correlations in a true condensate at k � 1/ξ .

Finally, we note that g̃(2)(k,k′) can be related to Glauber’s
normally ordered, second-order correlation function

g(2)(k,k′) = 〈ψ̂†
k ψ̂

†
k′ψ̂k′ψ̂k〉

〈ψ̂†
k ψ̂k〉〈ψ̂†

k′ψ̂k′ 〉
. (34)

Indeed, by reordering the creation and annihilation operators,
we can first express the g(2)(k,k′) function in terms of the
correlation function G(k,k′), given by Eq. (1):

g(2)(k,k′) = 1 − 1

〈n̂k〉δk,k′ + G(k,k′)
〈n̂k〉〈n̂k′ 〉 . (35)

Using now the general structure of G(k,k′) from Eq. (12) (valid
for L 
 lφ), we obtain

g(2)(k,k′) = 1 + δk,k′ + g̃(2)(k,k′). (36)

Here, the first term corresponds to uncorrelated atoms, the
second term is the bosonic bunching term, and the last term is
the normalized regular part corresponding to G̃(k,k′) given by
Eq. (32).

According to our results, the normally ordered normalized
correlation function for equal momenta is given by

g(2)(k,k) = 2 + g̃(2)(k,k) = 2 + O(lφ/L), (37)

while for opposite momenta it is given by

g(2)(k, − k) = 1 + g̃(2)(k, − k) = 1 + O(lφ/L). (38)

The small contributions O(lφ/L) are described by Eq. (32)
and are, in principle, detectable using the precision of
currently available experimental techniques. Apart from the
need for high precision on the signal, resolving the shape
of the g̃(2)(k,k′) function requires experimental momentum
resolution better than the separation k = 2π/L between

the individual momentum states (for resolutions that are
insufficient to resolve separations of ∼1/L, see Sec. VI).

As we see from Eq. (37), the amplitude of equal-momentum
correlations is close to the pure thermal bunching level
of g(2)(k,k) = 2, implying large momentum-space density
fluctuations. The nearly thermal level of correlations here
is due to the large phase fluctuations present in a 1D qua-
sicondensate. This makes the equal-momentum correlations
analogous to those of a “speckle” pattern [18] where many
sources with random phases contribute to the familiar Hanbury
Brown–Twiss interference [8]. We emphasize, however, that
the nearly thermal equal-momentum correlations are obtained
here for a quasicondensate, which should be contrasted to
the uncorrelated level of the two-point correlation function in
position space [55,57], g(2)(z,z) 	 1, due to the suppressed
real-space density fluctuations. Equation (38), on the other
hand, shows that the opposite-momentum correlations are
close to the uncorrelated level of g(2)(k, − k) 	 1, which is in
contrast to the strong respective correlations [g(2)(k, − k) =
2 + 1/〈n̂k〉 at T = 0, and g(2)(k, − k) 	 2 at finite T for
〈n̂k〉 
 1] present in a true condensate. As we mentioned
earlier, the opposite-momentum correlations are essentially
destroyed by the phase fluctuations. Finally, a significant
region of pairs of momenta k′ = k around the origin shows
a small degree of anticorrelation, g(2)(k,k′) < 1, which was
not a priori expected.

V. FROM THE QUASICONDENSATE TO THE IDEAL
BOSE-GAS REGIME

A. Classical field approach

In the quasicondensate regime T � Tco, higher-order
correlation functions can always be expressed in terms of
the first-order correlation function as in Eq. (27). Therefore,
G(k,k′) in Eq. (6) contains the same information as the
momentum distribution 〈n̂k〉, given by Eq. (5). In particular,
the dependence on the temperature comes about only through
the phase correlation length lφ . This is, however, no longer true
when the temperature becomes of the order of the crossover
temperature Tco, in which case the physics depends not only
on the phase fluctuations, but also on the density fluctuations.

To compute the correlation functions at T � Tco, we resort
to the classical field (or c-field) approach of Ref. [53]. In
this approach, the quantum field operators ψ̂ and ψ̂† are
approximated by c-number fields ψ and ψ∗, whose grand-
canonical partition function (in a path-integral formulation) is
given by

Z =
∫
DψDψ∗ exp

(
− 1

kBT

∫ L

0
dz Hc

)
. (39)

Here the function Hc(ψ,ψ∗) is obtained from the Hamiltonian
density (2) by replacing the operators with c-fields. The
classical field approach is expected to be valid for high
occupancy of the low-momentum modes contributing to the
momentum correlation function. This condition is satisfied in a
broad range of temperatures, including in the quasicondensate
regime, gρe−2π/

√
γ < kBT <

√
γh̄2ρ2/m [59,63], and up to

the temperatures corresponding to the degenerate ideal Bose-
gas regime,

√
γh̄2ρ2/m < kBT < h̄2ρ2/m [53].
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It is convenient to introduce a dimensionless field ψ̃ =
ψ/ψ0 and a dimensionless coordinate s = z/z0, with

ψ0 =
(

mk2
BT 2

h̄2g

)1/6

, z0 =
(

h̄4

m2gkBT

)1/3

, (40)

and rewrite the effective “action” in Eq. (39) in the dimension-
less form:

1

kBT

∫ L

0
dzHc =

∫ L/z0

0
ds

(
1

2
|∂sψ̃ |2 + 1

2
|ψ̃ |4 − η|ψ̃ |2

)
.

(41)

This form of the action is controlled by a single dimensionless
parameter

η =
(

h̄2

mg2k2
BT 2

)1/3

μ. (42)

Because of the scaling relations (40), the density ρ =
〈ψ∗ψ〉 can be written as ρ = h(η)(mk2

BT 2/h̄2g)1/3 using a
dimensionless function h(η) ≡ 〈ψ̃∗ψ̃〉. Similarly, the phase
correlation length lφ , given by Eq. (14), can be written as
lφ = z0h(η). Thus, the length scale z0 can be replaced by lφ
and therefore the one- and two-body correlation functions in
Eqs. (3) and (4) scale as

G1(z1,z2) = ρ h1

(
z1

lφ
,
z2

lφ
; η

)
, (43)

G2(z1,z2,z3,z4) = ρ2 h2

(
z1

lφ
,
z2

lφ
,
z3

lφ
,
z4

lφ
; η

)
, (44)

where h1 and h2 are dimensionless functions.
By substituting these scaled correlation functions into

Eq. (6) and using the fact that the integrand is invariant by
a global translation of the coordinates, we find

G̃(k,k′) = lφ

L
(ρlφ)2F(2lφk,2lφk′; η), (45)

where F(q,q ′; η) is a dimensionless function parametrized by
η. This relation generalizes Eq. (28) beyond the quasicon-
densate regime, with the departure being characterized by the
value of η (see below).

To find F(q,q ′; η), we still need to calculate the dimen-
sionless function h and correlations h1 and h2 for the rescaled
fields ψ̃ and ψ̃∗, with the action given by Eq. (41). As
shown in Ref. [53], this c-field problem can be mapped into
the quantum-mechanical problem of a particle moving in an
external potential. More precisely, expressing the action (41)
in terms of the real and imaginary components of ψ̃ = x + iy

and interpreting s as the imaginary time, the problem can
be mapped to the quantum mechanics of a particle in two
dimensions with the Hamiltonian

H = 1
2

(
p2

x + p2
y

) + 1
2 (x2 + y2)2 − η(x2 + y2). (46)

Calculating the eigenvalues and matrix elements of this
Hamiltonian allows one to compute the correlation function
F(q,q ′; η). This is done in Appendix A.

B. Correlations in the crossover region

The power of the c-field approach lies in the ability
to describe the momentum correlations not only in the
quasicondensate regime, but also in the entire crossover
region between the quasicondensate and the degenerate ideal
Bose gas. As shown in Appendix B, in the quasicondensate
regime where η 
 1 (corresponding to a positive chemical
potential μ), we recover the results of Sec. IV B, with Eq. (29)
referring to F(q,q ′; +∞) ≡ F(q,q ′). The opposite limit η �
−1 corresponds to the degenerate ideal Bose-gas regime with
negative μ. In this case, the quartic term in the Hamiltonian
(46) has a negligible effect on the lowest-energy eigenstates
and the problem is reduced to a simple two-dimensional
harmonic oscillator. As shown in Appendix C, in this limit,
we obtain the ideal Bose-gas result of F(q,q ′; −∞) = 0.

In Fig. 3(a), we show how the antidiagonal correlation
function F(q, − q; η) changes from its quasicondensate value
of Eq. (29) to zero as η is continuously changed from +∞
to −∞. To quantify the width of the crossover in terms of
η, we consider the peak value of the correlation function,
F(0,0; η), and plot it as a function of η in Fig. 3(b). As we see,
F(0,0; η) goes from its minimum value of about −112 in the
quasicondensate regime (η 
 1) to zero in the ideal Bose-gas
regime (η � −1).

We can define the crossover region to correspond to η1 <

η < η2, where the bounds η1 and η2 are chosen, respectively, at
20% and 80% of the value of F(0,0; η) in the quasicondensate
regime; our numerical solutions give then η1 	 −1.1 and η2 	
2.0. Recalling that the dimensionless parameter η is defined
via Eq. (42), this can be converted into the crossover bounds

2 1 0 1 2

100

80

60

40

20

0

q

q,
q;

6 4 2 0 2 4

100

80

60

40

20

0

0,
0;

(b)

(a)

FIG. 3. (Color online) (a) The antidiagonal correlation function
F (q, − q; η) for (from top to bottom, dashed lines) η = −1.87,
0, 1.12, and 2.56. The lowest (solid) curve is for the limiting
quasicondensate regime, F(q, − q) ≡ F(q, − q; +∞), described
by Eq. (29) and shown in Fig. 1(c). (b) The minimum value of
F (q, − q; η) as a function of η. The shaded area shows the crossover
region between η1 < η < η2 (see text).
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on the chemical potential, η1 < μ/μco < η2, where μco ≡
kBT (mg2/h̄2kBT )1/3 [64]. Similarly, recalling that the density
ρ was determined by the dimensionless function h(η), via
ρ = h(η)(mk2

BT 2/h̄2g)1/3, we can use the numerically found
values of h(η) to rewrite the crossover bounds in terms of the
density as 0.5 < ρ/ρco < 1.6, where ρco ≡ (mk2

BT 2/h̄2g)1/3

[64].

VI. EXPERIMENTAL CONSIDERATIONS

The results obtained so far are directly applicable to
experimentally measured momentum distributions and corre-
lation functions as long the momentum resolution is sufficient
to resolve the individual momentum states separated by
k = 2π/L. However, typical resolution in ultracold-atom
experiments is insufficient to resolve momentum scales of the
order of 1/L. Because of this, the measured signal corresponds
to integrated atom-number counts Nk in individual detection
“bins” (such as camera pixels in absorption imaging) corre-
sponding to the momentum k.

To address the situation with low momentum-resolution and
relate our calculated correlation functions to the experimen-
tally accessible quantities, we assume that the detection bin
size k in momentum space fulfills k 
 1/L. In addition,
we assume that k � 1/lφ , so that the bulk of the momentum
distribution is still well resolved. With these assumptions, the
average (over many experimental runs) atom number in a
bin 〈Nk〉 is related to the original average mode occupation
number 〈n̂k〉 via 〈Nk〉 = (Lk/2π )〈n̂k〉, i.e., it accounts for
a factor equal to the number of original momentum states
contributing to the bin, k/k = Lk/2π . Next, the average
correlation between the bin population fluctuations is related
to the correlation function G(k,k′), given by Eqs. (12) and (28),
via

〈NkNk′ 〉 − 〈Nk〉〈Nk′ 〉
= 〈Nk〉δk,k′ + 〈Nk〉〈Nk′ 〉

[
2π

Lk

δk,k′ + lφ

L
f (2lφk,2lφk′)

]
,

(47)

where the universal function f (q,q ′) is given by Eq. (33).
In Eq. (47), the first term is the shot noise, the second term
corresponds to the bunching term in Eq. (12), and the third
term is the contribution of the regular part, G̃(k,k′).

The shot-noise term is much smaller than the bunching term
as long as highly populated momentum states are considered,
i.e., 〈n̂k〉 
 1. The latter condition is satisfied for momenta
k � 1/lφ (containing the bulk of the momentum distribution),
and therefore the shot-noise term can be safely neglected for
these momenta.

Comparing now the bunching term and the regular
component (with the comparison being relevant only for
k = k′), we see that they both scale inversely proportionally
to the system size L (and therefore are small), but the regular
component is much smaller than the bunching term as the
dimensionless function f (2lφk,2lφk′) is of the order of one and
we have assumed k � 1/lφ . However, the ratio of these two
terms is independent of L and therefore is finite in the
thermodynamic limit. As this ratio is proportional to klφ �
1, detecting the contribution of the regular component is going

to depend on actual experimental parameters and the precision
(signal-to-noise) with which the atom-number fluctuations can
be measured. High-precision measurements of atom-number
fluctuations, capable of resolving small signals like this or
even below the shot-noise level, have been demonstrated in
many ultracold-atom experiments [22,24–27,30,31,65].

Considering now the cross correlation between atom-
number counts in different bins, k′ = k, we see that the only
contribution to Eq. (47) comes from the regular component.
This scales as 1/L, but again such a magnitude of the
cross correlation should be accessible with state-of-the-art
measurement techniques, as demonstrated, e.g., in Ref. [24].

VII. SUMMARY

To summarize, we have calculated the two-body momentum
correlations for a weakly interacting, uniform, 1D Bose gas.
Our results span the entire quasicondensate regime, where the
correlations are derived analytically in terms of a universal
dimensionless function f (2lφk,2lφk′), as well as the crossover
to the ideal Bose-gas regime, where the correlations are
calculated numerically using the classical field method. A
natural extension of the approaches employed here would be
the calculation of these correlations for harmonically trapped
gases [66], which is more appropriate for quantitative compar-
isons with experiments beyond the widely used local-density
approximation. Calculating and understanding the momentum
correlations in the strongly interacting regimes would require
the development of alternative theoretical approaches and
remains an open problem. The knowledge of such correlations
is important in the studies of nonequilibrium dynamics from
a known initial state and the subsequent thermalization in
isolated quantum systems [67–70].
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APPENDIX A: CLASSICAL FIELD APPROACH:
DIAGONALIZING THE EFFECTIVE HAMILTONIAN

In this appendix, we outline how the classical field cor-
relation functions can be computed using the the equivalent
quantum-mechanical problem of a particle in an external
potential. We recall that the classical-to-quantum mapping is
done by expressing the c-field ψ = x + iy via its real and
imaginary parts which, in turn, are treated as coordinates of
a quantum-mechanical particle in imaginary time with the
Hamiltonian given by Eq. (46). Here we imply the scaling
of Eq. (40) but omit the tilde on top of the coordinates and
c-fields for the sake of notational simplicity.
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Using the notations of effective quantum mechanics, the
first- and second-order correlation functions of the c-fields,

G1(s1,s2) = 〈ψ∗(s1)ψ(s2)〉 (A1)

and

G2(s1,s2,s3,s4) = 〈ψ∗(s1)ψ(s2)ψ∗(s3)ψ(s4)〉, (A2)

are given by

G1 = Tr
[
UL−s ′

1
�1Us ′

1−s ′
2
�2Us ′

2

]
Tr[UL]

(A3)

and

G2 = Tr
[
UL−s ′

1
�1Us ′

1−s ′
2
�2Us ′

2−s ′
3
�3Us ′

3−s ′
4
�4Us ′

4

]
Tr[UL]

, (A4)

where we have omitted the arguments of G1 and G2 for
notational brevity. Here Us = e−sH is the imaginary-time
evolution operator generated by the Hamiltonian (46). In
Eq. (A4), we take into account the automatic time ordering
implied by the path integral by introducing s ′

1 � · · · � s ′
4,

which is the ordered permutation of s1, . . . ,s4. The operator �k

stands for ψ = x + iy if s ′
k equals s2 or s4, or for ψ∗ = x − iy

if s ′
k equals s1 or s3.
In the limit L → ∞, the ground state |0〉 gives the

dominant contribution to both the numerator and denominator
in Eq. (A4), and hence the correlation functions reduce to

G1 = 〈0|�1Us ′
1−s ′

2
�2|0〉 (A5)

and

G2 = 〈0|�1Us ′
1−s ′

2
�2Us ′

2−s ′
3
�3Us ′

3−s ′
4
�4|0〉, (A6)

where we have set the ground-state energy to ε0 = 0.
The expectation values on the right-hand sides of Eqs. (A5)

and (A6) are best evaluated in the eigenbasis of the Hamil-
tonian H . Let |α〉 be the set of eigenstates of H with energy
eigenvalues εα ,

H |α〉 = εα|α〉. (A7)

The eigenstates |α〉 = |n,m〉 are classified by the principal (n)
and angular momentum (m) quantum numbers such that in
polar coordinates, the eigenfunctions

〈r,θ |α〉 = 1√
2π

φm
n (r)eimθ (A8)

obey the following eigenvalue equation:[
− 1

2r

∂

∂r

(
r

∂

∂r

)
+ m2

2r2
+ r4

2
− ηr2

]
φm

n (r) = εm
n φm

n (r) .

(A9)
In terms of the matrix elements

Aαβ = 〈α|ψ |β〉 = 〈α|x + iy|β〉, (A10)

the correlation functions are

G1(s1,s2) =
∑

α

e−|s1−s2|(εα−ε0)|Aα0|2 (A11)

and

G2(s1,s2,s3,s4) =
∑
αβγ

e−KA∗
α0AαβA∗

γβAγ 0, (A12)

for the case s1 > s2 > s3 > s4, where we have defined

K = ε0(s4 − s1) + εγ (s3 − s4)

+εβ(s2 − s3) + εα(s1 − s2). (A13)

For different orderings of s1,s2,s3, and s4, similar expressions
can be obtained. Although there are, in general, 4! = 24
cases to consider, by noticing that the expectation value
for G2(s1,s2,s3,s4) remains invariant under the exchange of
s1 �s3, or s2 �s4, and also under the simultaneous exchange
of s1 �s2 and s3 �s4, we realize that it is sufficient to
compute G2(s1,s2,s3,s4) in just three cases: s1 > s2 > s3 > s4,
s1 > s2 > s4 > s3, and s1 > s3 > s2 > s4. The remaining 21
expressions can be obtained from these using symmetry
considerations.

Solving the Schrödinger equation (A9) numerically and
evaluating the matrix elements given by Eq. (A10) yields the
correlation functions in Eqs. (A5) and (A6). It should be noted
that the sums in Eqs. (A11) and (A12) contain only a finite
number of terms because of the selection rule, Aαβ ∝ δmα,mβ+1,
and the fact that the bra-ket states with a very large difference
in the respective values of n give negligible matrix elements
due to very different nodal structure.

APPENDIX B: QUASICONDENSATE LIMIT

In this appendix, we show that the classical field approxi-
mation correctly predicts the correlation functions in Eqs. (25)
and (27), in the limit η 
 1. In this limit, the wave functions
of the lowest-lying states differ from zero significantly only
for r 	 r0 = √

η, so that the Hamiltonian becomes separable
into the azimuthal and radial degrees of freedom. This has two
consequences on the classical field calculations.

First, the wave functions φm
n (r) are approximately indepen-

dent of m, while the azimuthal kinetic energy is reduced to

H 	 − 1

2r2
0

∂2

∂θ2
= m2

2r2
0

. (B1)

Accordingly, for the matrix elements (A10), we obtain

Aαα′ = δm,m′+1
〈
φm

n

∣∣r∣∣φm′
n′

〉 ≈ r0δm,m′+1
〈
φm

n

∣∣φm′
n′

〉
= r0δm,m′+1δn,n′ . (B2)

This allows one to restrict summations in Eqs. (A11) and (A12)
to just the leading term with nα = nβ = nγ = 0.

Second, the fact that the energy eigenvalues εm
n separate

into m-independent and angular parts,

εm
n = εn + m2

2r2
0

, (B3)

allows one to calculate the exponentially decaying terms for
G1(s1,s2) in Eq. (A11). More precisely, the only relevant
energy differences are

ε1
0 − ε0

0 = 1

2r2
0

= 1

2η
(B4)

and

ε2
0 − ε1

0 = 3

2r2
0

= 3

2η
= 3

(
ε1

0 − ε0
0

)
. (B5)
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Using Eqs. (B2)–(B5), we then find that Eq. (A11) reduces to
G1(s1,s2) = ηe−|s1−s2|/2η. Going back to natural units, using
Eqs. (40) and (42), this gives the quasicondensate equation of
state ρ 	 μ/g, and we recover Eq. (25) of the main text.

Considering now Eq. (A12), together with the other
required cases for time ordering, a similar albeit more lengthy
calculation shows that Eq. (A12) reduces to Eq. (27) of the
main text.

APPENDIX C: IDEAL BOSE-GAS LIMIT

The limit η � −1 corresponds to the highly degenerate,
ideal Bose-gas regime. In this case, the classical field problem
can be mapped onto a two-dimensional quantum harmonic
oscillator. Here we show how the classical field approximation
recovers the correlation functions expected for the ideal Bose
gas.

For η � −1, the Hamiltonian (46) becomes quadratic,

H 	 1
2

(
p2

x + p2
y

) + |η|(x2 + y2), (C1)

and its matrix elements can be obtained from the standard
results for the quantum harmonic oscillator with frequency
ω = √

2|η|. We thus have

〈α|x|0〉 = 〈α|y|0〉 = (2ω)−1/2, (C2)

where nα = 0 and mα = 1 corresponds to the first excited state
with energy εα − ε0 = ω = √

2η. Then, Eq. (A11) becomes

G1(s1,s2) = e−|s1−s2|(εα−ε0)|〈α|x + iy|0〉|2

= 1√
2|η|e

−√
2|η||s1−s2|. (C3)

Going back to natural units, using Eqs. (40) and (42), we

have ρ = ψ2
0 /

√
2|η| =

√
mk2

BT 2/2h̄2|μ|, and therefore

G1(z1,z2) = ρe−|z1−z2|mkBT/h̄2ρ = ρe−|z1−z2|/lφ , (C4)

which is the result for a highly degenerate, ideal Bose gas.
The calculation of the G2 function is more elaborate as

there are different terms on the right-hand side of Eq. (A12) to
compute, for different orderings of s1,s2,s3, and s4. However,
the analogy with a simple harmonic oscillator makes the
calculation possible, leading to the recovery of the Wick’s
theorem (valid for quadratic Hamiltonians), and therefore

G2(s1,s2,s3,s4) = G1(s1 − s2)G1(s3 − s4)

+G1(s1 − s4)G1(s2 − s3). (C5)

This immediately leads to the first two terms on the right-
hand side of Eq. (11). The last (regular) term in Eq. (11)
is identically zero in a noninteracting gas, whereas the
third (δ-function) term, which comes from the commutator
[ψ(s2),ψ∗(s3)] = δ(s2 − s3), has a negligible contribution in
the highly degenerate, ideal Bose-gas regime considered here.
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P. Treutlein, Nature (London) 464, 1170 (2010).
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