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Abstract 

Objective. This study tested whether the two-body wear of monolithic zirconia and their 

corresponding enamel antagonists was higher compared to monolithic alloy and veneered 

zirconia. Material and methods. Cylindrical specimens (N=36, n=6) were prepared out of A) 

veneered zirconia (VZ), B) glazed zirconia using a glaze ceramic (GZC), C) glazed zirconia 

using a glaze spray (GZS), D) manually polished monolithic zirconia (MAZ), E) 

mechanically polished monolithic zirconia (MEZ) and F) monolithic base alloy (control 

group, MA). Wear tests were performed in a chewing simulator (49N, 1.7 Hz, 5°C/50°C) with 

enamel antagonists. The wear analysis was performed using a 3D profilometer before and 

after 120.000, 240.000, 640.000, and 1.200.000 masticatory cycles. SEM images were used 

for evaluating wear qualitatively. The longitudinal results were analysed using linear mixed 

models (α=0.05). Results. Materials (p<0.001) and number of masticatory cycles (p<0.001) 

had a significant effect on the wear level. The least enamel antagonist wear was observed for 

MAZ and MEZ (27.3±15.2, 28±11.1 µm, respectively). GZC (118±30.9 µm) showed the 

highest wear of enamel antagonists. The highest wear rate in the material was observed in 

GZS (91.3±38.6 µm). While in the groups of MA, VZ, GZC and GZS 50% of the specimens 
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developed cracks in enamel, it was 100% in MAZ and MEZ groups. Conclusion. Polished 

monolithic zirconia showed lower wear rate on enamel antagonist as well as within the 

material itself but developed higher rates of enamel cracks. 

 

Key Words: monolithic zirconia, ceramic, abrasion, enamel, two-body wear  
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Introduction 

Physical, mechanical and chemical properties make zirconia a material of interest for dental 

reconstructions [1-4]. Zirconia exhibits polymorphic properties meaning that same chemical 

composition exists in its different atomic arrangements [5,6]. Among the crystallographic 

structures, the monoclinic phase is stable up to 1170°C which then transforms into the 

tetragonal phase [5,6]. The tetragonal form for metastable zirconia in biomedical applications 

could be achieved at room temperature by alloying zirconia with other oxides (stabilizers) [7-

10]. Y2O3 (3% mol) is the most widely used stabilizer for dental zirconia [6].  

Limited number of clinical studies reported seldom zirconia framework fractures but 

more often chipping of the veneering ceramic [11-15]. In order to decrease the costs and at 

the same time overcome the chipping problem, it is possible today to produce zirconia fixed 

dental prosthesis (FDPs) without veneering ceramic, called monolithic zirconia 

reconstructions. Currently, monolithic zirconia reconstructions could be constructed and 

subsequently only polished or characterized using a glaze layer in different colours. Glaze 

layer could be applied using layering technique or a glaze spray.  

To the authors’ best knowledge at present there is no information on the clinical 

performance of the available newly introduced monolithic zirconia reconstructions. 

Particularly mechanical properties, such as hardness, wear resistance, or fracture toughness, 

are supposed to influence the wear performance of such zirconia ceramics strongly [ 16-18]. 

In that respect, zirconia is expected to demonstrate favourable properties.   

One in vitro study tested the wear of five zirconia materials versus steatite and human 

enamel antagonist and found no wear in the zirconia ceramic. In that study, the wear rate of 

the enamel antagonists were not determined, but it was stated that the enamel generally 

showed cracks or even fractures at the ridges, in all tested zirconia ceramics [18].  
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Wear presents the loss of material from a surface, caused by mechanical contact, 

against a solid or liquid body, chemical reactions or simultaneous effect of chemical and 

mechanical reactions [19]. The hardness and thickness of enamel [18,20], the chewing 

behaviour in combination with parafunctional habits and neuromuscular forces [18,21,22,23], 

as well as the abrasive nature of food and the antagonist material all influence the clinical 

wear. Zirconia has elasticity modulus of 210 GPa and hardness of 1200 HV [1]. On the other 

hand, since veneering glass ceramic has elasticity modulus of 50-70 GPa and Vickers 

hardness of 470-600, more wear could be expected in enamel against non-veneered 

monolithic zirconia. 

Wear test have been performed in the dental literature using the test methods such as 

Acta, Zurich, Alabama, Freiburg, Minnesota, OHSU or Newcastle [19]. These test methods 

differ in the antagonist material and design, test medium, force application and mobility of 

specimens [19]. Among all these test methods, Zurich wear test method uses human enamel 

antagonists making the test more clinically relevant.  

The aim of this study was to investigate the two-body wear characteristics of 

differently polished monolithic, glazed and veneered zirconia and the wear of their 

corresponding enamel antagonists. The tested hypotheses were that a) polished monolithic 

zirconia would show higher wear of enamel antagonist compared to all other tested groups 

and b) polished monolithic zirconia would show similar abrasion resistance compared to 

veneered zirconia and monolithic alloy. 

 

Material and Methods 

This study tested the two-body wear of veneered zirconia (VZ), glazed zirconia using a glaze 

ceramic (GZC), glazed zirconia using a glaze spray (GZS), manually polished monolithic 

zirconia (MAZ), mechanically polished monolithic zirconia (MEZ), monolithic base alloy 

(control group, MA) and their corresponding enamel antagonists using Zurich wear 
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simulation (ISO/TS 14569-2) [19]. For each test group 6 specimens were fabricated. Table I 

describes the tested groups.   

Specimen preparation 

For all test groups one zirconia cylinder in white state (ZENOTEC Zr Bridge transluzent, 

Wieland Dental + Technik, Pforzheim, Germany) (diameter: 18 mm, length: 50 mm) and for 

the control group (MA), one wax cylinder (ZENO TEC Wax Disc, Wieland Dental + 

Technik) (diameter: 15 mm, length: 50 mm), were milled using a milling machine 

(ZENOTEC T1, Wieland Dental + Technik). Subsequently, the zirconia (N=30, n=6) and wax 

cylinder (N=6) were cut to a thickness of 2 mm with a low-speed diamond saw (Well 3241, 

Well Diamantdrahtsägen, Mannheim, Germany). The round specimens were ground to the 

final dimensions using SiC discs P600 (Silicon Carbide Paper, Struers, Ballerup, Denmark) 

under water-cooling.  

The zirconia specimens were sintered in the sintering oven (Thermostar, ZENO Fire, 

Wieland Dental + Technik, final sintering temperature: 1580°C and holding time: 4h) 

according to the manufacturer’s instructions.  

Thereafter, the surfaces of zirconia (n=12) were air-abraded using 120 µm alumina for 

10 s at a pressure of 4.5 bar from a approximate distance of 10 mm (LEMAT NT4: 

Wassermann; Hamburg, Germany). The zirconia surfaces were treated as follows using the 

ceramic firing parameters as described in Table II:  

(A) Veneered zirconia (VZ): The zirconia surface was conventionally veneered according 

to the manufacturer’s instructions, where initially a liner was applied (Liner A3 with 

Liner Liquid Optimix, Wieland Dental + Technik). Then dentin ceramic (Dentin A3, 

Zirox dentin with Carving Liquid Standard, Wieland Dental+ Technik), enamel 

ceramic (Enamel A3, Zirox enamel with Carving Liquid Standard, Wieland Dental + 

Technik) and glaze ceramic (Glaze Zirox with Stain Liquid, Wieland Dental + 

Technik) were added twice. 
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(B) Glazed zirconia using a glaze ceramic (GZC): The zirconia surface was glazed 

according to the manufacturer’s instructions using glaze ceramic (Glaze Zirox with 

Stain Liquid, Wieland Dental + Technik) twice. 

The remaining specimens (N=18, n=6) were randomly divided into three groups and treated 

as follows: 

(A) Glazed zirconia using a glaze spray (GZS): The zirconia surfaces were manually 

polished and glazed according to the manufacturer’s instructions using glaze spray 

(ZENOStar Magic, Wieland Dental + Technik) twice. 

(B) Manually polished monolithic zirconia (MAZ): The zirconia surfaces were polished 

using a goat hair brush (DT & Shop) and diamond paste (Dia-Glace, Yeti Dental) for 

1 min.  

(C) Mechanically polished monolithic zirconia (MEZ): The zirconia surfaces in this group 

were polished up to 3 µm using diamond suspensions (Struers, Ballerup, Denmark) in 

a polishing device (Accutom, Struers).  

In the control group, the wax specimens were invested (Wilavest Quick, Wieland Dental + 

Technik) according to the manufacturer’s instructions. After evaporating the wax in a 

standard oven (EWL Type 5636, KaVo, EWL, Leutkirch am Allgäu, Germany), the alloy 

(dentaNEM, Wieland Dental + Technik) was casted (Multicast compact, DeguDent, Hanau, 

Germany). The investment material was removed after cooling in a sandblasting unit 

(CEMAT NT4, Wassermann, Hamburg, Germany) using 110 µm alumina particles (Renfert, 

Hilzingen, Germany) at 4 bar pressure. Then, the alloy specimens were polished using a goat 

hair brush (DT & Shop, Mangelsfeld, Germany) and diamond paste (Dia Glaze, Yeti Dental, 

Engen, Germany) for 1 min per specimen. 

For two-body wear test, all specimens were fixed and embedded in the middle of 

round stainless steel mold using a chemically cured pattern resin (DuraLay, Dental Mfg, 

Worth, IL, USA). The specimens were aged in a chewing simulator (custom made: University 
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of Zurich), where thermo-mechanical loading was applied during cyclic loading, with 

maximum occlusal load of 49 N at 1.7 Hz and simultaneous thermal stress (5 °C to 50 °C 

every 120 seconds). For simulating a typical clinical situation, mesiobuccal cusp from nearly 

identical maxillary human molars, fixed in amalgam (Dispersalloy; Dentsply; Konstanz, 

Germany), acted as antagonists. The tip of the cusps was rounded to a spherical shape. The 

abraded surfaces were loaded intermittent. The horizontal distance between specimen surface 

and the enamel antagonist was 2 mm. The profiles of the specimens were measured with a 3D 

profilometer (custom made: University of Zurich) before aging and after 120.000, 240.000, 

640.000, and 1.200.000 masticatory cycles [19]. The vertical material loss (µm) of each 

specimen and the corresponding enamel antagonist was calculated using the 3DS software 

(custom made: University of Zurich) by overlapping the profiles with congruent points and 

subtracting the initial measurements from subsequent measurements.  

For the qualitative characterisation of wear patterns, all specimens and enamel 

antagonists were evaluated under scanning electron microscopy (SEM) (Carl Zeiss Supra 50 

VP FESEM, Carl Zeiss, Oberkochen, Germany).  

Statistics 

The data set were analysed with statistical software (SPSS Version 19, SPSS INC, Chicago, 

IL, USA). Descriptive statistics were computed. Linear mixed models were applied to 

investigate the influence of the number of masticatory cycles, reconstruction materials/enamel 

and the interaction between them. All results with p-values smaller than 5% were considered 

as statistically significant.   

 

Results 

The descriptive statistics of the wear results belonging to the reconstruction materials and 

their corresponding enamel antagonists are summarized in Table III. Reconstruction materials 

(p<0.001) and number of masticatory cycles (p<0.001) had a significant effect on the wear. 
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Material wear  

GZC (p<0.001) and GZS (p=0.033) showed higher wear rate compared to the control group 

(MA). No statistical differences were observed between the control group (MA) and VZ 

(p=0.314), MAZ (p=0.751) and MEZ (p=0.771) (Table IV, Fig. 1).  

VZ (p<0.001) and GZS (p<0.001) showed significantly higher increase in the material 

wear itself dependent on the number of masticatory cycles compared to the control group. 

Between MA, GZC (p=0.824), MAZ (p=0.290) and MEZ (p=0.285) no differences were 

found (Table IV, Fig. 1). 

Antagonist enamel wear 

GZC (p<0.001) showed higher wear rate of enamel antagonists than the control group, MA. 

No differences between MA and other tested groups (p>0.369) were found in wear values of 

enamel antagonists (Table V, Fig. 2).  

GZC (p=0.007) showed significantly higher increase than MA in loss of enamel 

antagonist dependent on the number of masticatory cycles. In contrast, the increase of wear of 

enamel antagonists was lower for MAZ (p=0.001) and MEZ (p=0.002) compared to the 

control group dependent on aging time. Between MA, VZ (p=0.193) and GZS (p=0.939) no 

differences were found in terms of enamel wear increase (Table V, Fig. 2).  

 The qualitative characterisation of wear of all reconstruction materials and their 

enamel antagonists are summarized in Fig. 3 and Fig. 4. 

Evaluation of the enamel antagonists with SEM showed damage in the form of cracks 

on the worn enamel surface. While in the MA, VZ, GZC and GZS groups 50% of specimens 

developed cracks in enamel, it was 100% in both MAZ and MEZ groups.  

 

Discussion 

This study showed that the wear rate in the material and on enamel antagonists was strongly 

dependent on the reconstruction material. Polished monolithic zirconia (MAZ, MEZ) showed 
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the lowest wear rate on enamel antagonists of all tested groups. Sandblasted and subsequently 

glazed zirconia using a glaze ceramic, the highest wear on enamel antagonists compared to all 

other test groups. Therefore, the first hypotheses that polished monolithic zirconia would 

present higher enamel antagonistic wear is rejected. The highest wear rate was observed for 

veneered and both glazed zirconia groups. On the other hand, the polished zirconia showed no 

wear in the material. No differences in zirconia and enamel wear were found between 

polished zirconia regardless of the polishing method. Hence, the second hypothesis that 

monolithic zirconia would show similar wear resistance compared to veneered, glazed 

zirconia and monolithic alloy, is also rejected. One other study tested the wear performance of 

polished hipped and presintered zirconia using a steatite balls and human enamel as 

antagonist. Similar to our results, in that study none of the tested zirconia ceramics showed 

any wear after the simulation tests neither with steatite nor with enamel [18].  

Glazing of zirconia may be required for aesthetic improvement of reconstructions. 

Under clinical conditions, glaze layers have shown to be worn after six months [24], which 

may require polishing of the zirconia surfaces after glazing. In this study, we tested the wear 

of two different glazing methods. The first method tested the wear of sandblasted zirconia that 

was glazed using a layering technique with glaze ceramic. This group showed the highest 

wear on enamel antagonist with 118 µm after 1.2 Mio masticatory cycles. The wear rate for 

enamel per year has been reported to range between 30 and 40 µm [24]. In this study, the 

glaze layer was observed to abrade already in the first masticatory cycle (120.000). Most 

probably, the increase in wear rate of the enamel antagonist was due to the continuous loading 

of rough sandblasted surface. On the other hand, polished zirconia that were glazed using a 

glaze spray, showed the highest loss of glaze layer but less enamel wear with 62 µm after 1.2 

Mio masticatory cycles. These results were comparable with the veneered group. The reason 

for the low wear rate of enamel compared to sandblasted and glazed zirconia could be due to 

the polished and smooth zirconia surface in the GZS. Since dental materials should ideally 
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present wear behaviour similar to that of enamel, the wear of dental materials is usually 

characterized in relation to that of dental tissues. These considerations imply that restorative 

materials, such as ceramics, should not damage natural antagonistic teeth [18,25]. 

In simulation tests, enamel antagonists are required to present clinical conditions. 

However, morphological and structural differences of enamel complicate standardized wear 

testing that may cause high variations in the wear data. In this study, the wear results varied 

highly within each group. This variation could be attributed to the inhomogeneity in the 

antagonists, namely human tooth tissues may show variations in geometry or thickness of 

enamel layers, and may become brittle due to storage conditions. 

In summary, monolithic zirconia groups showed the lowest wear rate on enamel and in 

the material itself compared to all other test groups. However, the evaluation of the enamel 

antagonists with SEM showed damages in the form of cracks on the worn enamel surface. 

Both monolithic zirconia groups developed 100% cracks in enamel, while all other tested 

groups only 50%. Obviously, sliding of the enamel antagonists on hard zirconia surface 

caused added cracks of the enamel. Future studies should clarify whether this problem is 

clinical relevant or happened as a possible consequence of dehydration of the dental tissues 

under vacuum during SEM analysis. Until this is classified, as clinical alternative to 

monolithic zirconia the monolithic lithium disilicate ceramic can be used. Early clinical 

reports show predicable results with lithium disilicate ceramics [26-28]. 

Most wear tests provide only limited or no correlation with the clinical data [29], ever 

though they allow a comparative evaluation and ranking of different materials under 

standardized testing conditions. Therefore, testing conditions close to the clinical situations 

are preferable. A chewing force of 50 N, applied with the frequency of about 1-1.6 Hz, 

presents the average mastication load [18,30] and is commonly used for oral simulation 

[18,31,32]. In this method, it is expected that permanent thermal cycling with water removes 
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wear debris from the specimens surface, but specimens are kept wet during the whole course 

of the test, and may have caused additional aging of the specimens [33].  

Monolithic zirconia FDPs require higher translucency when they are to be used in the 

anterior region with superior mechanical properties especially. For this reason, many zirconia 

manufacturers tend to increase the final sintering temperature with the expectation of 

increasing the translucency. One must consider the fact that the flexural strength and stability 

of zirconia above the sintering temperature of 1550°C decreases [34]. According to the 

manufacturer’s instructions the zirconia material used in this study was sintered at 1580°C. 

The grain size of Y-TZP increased with the rise in final sintering temperature may results in 

grain pull out and thereby, decreased mechanical properties [34]. The increased grain size 

may yield to crack propagation since applied stress intensity factor may affect the 

transformation change [35]. When tetragonal zirconia is subjected to tension, it minimizes this 

perturbation by expanding its dimensions and transforming to monoclinic zirconia, as this 

expansion decreases the initially applied tensile stress [5]. The phase transformation is 

combined with the aging effect of zirconia and decreases the mechanical properties [5]. In this 

study however, none of the monolithic zirconia specimens were broken. The long-term 

mechanical stability of the monolithic zirconia needs to be verified in future studies. 

Many studies reported that the major disadvantage of Y-TZP is its reduced stability 

against low temperature degradation (LTD) [36-40]. LTD is defined as the spontaneous 

tetragonal to monoclinic transformation occurring over time at low temperatures, when the 

transformation is not triggered by the local stress produced at the tip of the advancing crack 

[6]. Under hydrothermal changes, an undesired phase transformation from tetragonal phase to 

the weaker monoclinic zirconia can occur on the surface of the monolithic zirconia FDPs. 

This is combined with an increase in the surface roughness [39] resulting possibly in high 



	   12	  

abrasion of the antagonist enamel. Future studies should clarify whether wear rate is 

associated with grain pull out due to LTD. 

In this study, the tested specimens were repeatedly used and longitudinal data were 

therefore available. Consequently, the measurements from one particular specimen were 

correlated with one another. Thus, linear mixed models with random intercept were applied to 

investigate the influence of different wear times. Linear mixed models allow for correlated 

responses by including random effects in the linear predictor.   

Heintze [29] compared the ACTA, Zurich, Alabama, MTS and OHSU wear simulation 

devices for direct resin composites. The wear of ten direct resin composites with the five wear 

simulations methods showed no comparable results; as all methods follow different wear 

testing concepts. For characterizing the complex oral wear situation, clinical tests are 

essential. However, in vitro studies for wear measurement show only little correlation with 

clinical data [29] but present a comparative evaluation of different materials under 

standardized conditions [18]. Since no clinical study looked at wear rate of enamel against 

zirconia with and without veneering ceramic. The results of this study with the monolithic 

zirconia and their corresponding enamel antagonists require clinical verification.  
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Conclusions 

Within the limitations of this study, the following conclusions can be drawn:  

1. Polished monolithic zirconia showed the lowest wear rate on enamel antagonists of 

all tested groups. 

2. Glazed zirconia showed higher material wear rate than those of polished monolithic 

zirconia or monolithic alloy surface due to the abrasion of the glaze layer.  

3. Polished zirconia surface showed similar wear rate compared to monolithic alloy. 

4. Sandblasted, glazed zirconia using glaze ceramic showed the highest wear of enamel 

antagonists due to the rough zirconia surface after wear of the glaze layer. 

5. While in the groups of monolithic alloy, veneered and both glazed zirconia groups 

50% of the specimens developed cracks in enamel, it was 100% in both monolithic 

zirconia groups. 
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Figure 1. Linear mixed models diagram of reconstruction materials wear. 

Figure 2. Linear mixed models diagram of enamel antagonists wear. 

Figure 3. SEM pictures of abraded reconstruction materials after different masticatory cycles 

(MC). 

Figure 4. SEM pictures of abraded enamel antagonists after different masticatory cycles 
(MC). 
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Table I. The test groups, abbreviations, brands, batch numbers and manufacturers of the 

tested materials. 

Test group abbreviation brand batch 
number 

manufacturer 

monolithic alloy MA DentaNEM Z094348 Wieland Dental + 
Technik, Pforzheim, 
Germany 

veneered zirconia VZ ZENOTEC Zr 
Bridge 
transluzent 
Liner A3 
Zirox Dentin A3 
Zirox Emanel 3 
Carving Liquid 
Standard 
 
Zirox Gaze 
X Stain Liquid 

405648 
 
 
1/05 
1/05 
1/05 
 
30/06 
 
02/09 
10/05 

Wieland Dental + 
Technik, Pforzheim, 
Germany 

glazed zirconia with 
a glaze ceramic 

GZC ZENOTEC Zr 
Bridge 
transluzent 
Zirox Glaze 
Stain Liquid 

405648 
 
 
02/09 
10/05 

Wieland Dental + 
Technik, Pforzheim, 
Germany 

glazed zirconia with 
a glaze spray 

GZS ZENOTEC Zr 
Bridge 
transluzent 
Glaze Spray 
Zenostar Magic 
Glaze 

405648 
 
 
1/09 

Wieland Dental + 
Technik, Pforzheim, 
Germany 

manually polished 
monolithic zirconia 

MAZ ZENOTEC Zr 
Bridge 
transluzent 

405648 Wieland Dental + 
Technik, Pforzheim, 
Germany 

mechanically 
polished monolithic 
zirconia 

MEZ ZENOTEC Zr 
Bridge 
transluzent 

405648 Wieland Dental + 
Technik, Pforzheim, 
Germany 
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Table II. Firing procedures for the ceramics. 

 
Veneering 
ceramic 

Pre Drying Heating 
Rate 
(°C/min) 

Firing 
Temperature 
(°C) 

Fusion 
Time 
(min) 

Temperature 
(°C) 

Time 
(min) 

Zirox Liner  575 8 45 930 1 
Zirox Dentin 575 9 45 900 2 
Zirox Enamel 575 8 45 890 1 
Zirox Glaze 575 5 45 880 1 
Glaze Spray 575 2 45 880 1 
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Table III. Mean (SD), minimum, maximum, 95% confidence intervals (95% CI) of wear of 

tested reconstruction materials and their enamel antagonists (µm). Note: MC1 = after 120.000 

masticatory cycles, MC2 = after 240.000 masticatory cycles, MC3 = after 640.000 

masticatory cycles, MC4 = after 1.200.000 masticatory cycles. 

Test 
group
s 

Masti
catory 
cycles 

Material wear Antagonist enamel wear 
Mean (SD) mi

n 
max 95% CI Mean (SD) min max 95% CI 

MA MC1 2.8 (2.9) 0 7 (0.24;5.9) 16.3 (12.3) 4 35 (3.4;29.3) 
MC2 5.8 (2.3) 2 8 (3.4;8.3) 24 (14.1) 12 46 (9.2;38.8) 
MC3 10.5 (6.1) 3 19 (4.0;17.0) 34.2 (17.9) 14 56 (15.4;53) 
MC4 13.2 (8.3) 5 27 (4.4;22) 55.3 (38.5) 20 116 (14.9;95.7) 

VZ MC1 12.7 (7.9) 3 24 (4.3;21.0) 26.2 (7.7) 14 34 (18.1;34.2) 
MC2 26.5 (20.8) 7 59 (4.6;48.4) 33 (7.2) 19 39 (25.4;40.7) 
MC3 46.5 (30.6) 17 95 (14.3;78.7) 53.3 (17.6) 37 82 (34.8;71.8) 
MC4 66.8 (47.5) 21 136 (16.9;116.8) 73.5 (32.8) 49 134 (39;108) 

GZC MC1 38.7 (18.1) 15 68 (19.6;57.7) 51.7 (20.6) 22 74 (30;73.3) 
MC2 47.3 (10.9) 37 68 (35.9;58.8) 80 (18.3) 56 112 (60.7;99.3) 
MC3 47.8 (8) 38 62 (39.4;56.3) 97 (26.9) 65 145 (68.6;125.3) 
MC4 49.5 (10.3) 39 69 (38.7;60.3) 118 (30.9) 92 179 (85.5;150.5) 

GZS MC1 30.3 (10.9) 19 48 (18.8;41.8) 24.5 (8.3) 17 39 (15.8;33.2) 
MC2 34 (9) 21 48 (24.5;43.5) 31 (13.2) 21 56 (17;45) 
MC3 58 (20.2) 39 92 (36.7;78) 43.3 (11.6) 33 65 (31.1;55.6) 
MC4 91.3 (38.6) 49 137 (50.8;131.9) 62.2 (16.6) 46 83 (44.7;79.6) 

MAZ MC1 0.3 (0.5) 0 1 (0.2;0.9) 14.3 (5.6) 9 21 (8.4;20.3) 
MC2 0.5 (0.5) 0 1 (0.07;1.1) 17 (7.5) 9 28 (9.1;24.9) 
MC3 0.5 (0.5) 0 1 (0.07;1.1) 19.3 (9.3) 9 32 (9.5;29.2) 
MC4 0.8 (0.8) 0 2 (0.04;1.7) 27.3 (15.2) 12 53 (11.3;43.3) 

MEZ MC1 0.3 (0.5) 0 1 (0.2;0.9) 14.7 (10.1) 7 33 (4;25.3) 
MC2 0.8 (0.8) 0 2 (0.04;1.7) 17 (9.8) 8 33 (6.7;27.3) 
MC3 0.8 (0.8) 0 2 (0.04;1.7) 22 (13) 13 44 (8.3;35.7) 
MC4 0.8 (0.8) 0 2 (0.04;1.7) 28 (11.1) 15 45 (16.3;39.7) 
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Table IV. Estimates of regression coefficients for wear of reconstruction materials (linear 

mixed models analysis). 

Parameter Estimate (standard error) 

Significance 

p-values 95% CI 

Constant term 3.0 (6) 0.617 (-9.0;15.1) 

MA 0 (0) - - 

VZ 8.6 (8.5) 0.314 (-8.3;25.7) 

GZC 38.8 (8.5) <0.001 (21.7;55.8) 

GZS 18.5 (8.5) 0.033 (1.5;35.6) 

MAZ -2.7 (8.5) 0.751 (-19.7;14.4) 

MEZ -2.5 (8.5) 0.771 (-19.4;14.6) 

Masticatory cycles (MC) 9.1E-6 (5.8E-6) 0.119 (-2.3E-6;2.1E-5) 

MA * MC 0 (0) - - 

VZ * MC 3.9E-5 (8.2E-6) <0.001 (2.2E-5;5.5E-5) 

GZC * MC -1.8E-6 (8.2E-6) 0.824 (-1.8E-5;1.5E-5) 

GZS * MC 4.8E-5 (8.2E-6) <0.001 (3.2E-5;6.5E-5) 

MAZ * MC -8.7E-6 (8.2E-6) 0.290 (-2.4E-5;7.6E-6) 

MEZ * MC -8.8E-6 (8.2E-6) 0.285 (-2.5E-5;7.5E-6) 
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Table V. Estimates of regression coefficients for wear of enamel antagonists (linear mixed 

models analysis). 

Parameter Estimate (standard error) 

Significance 

p-values 95% CI 

Constant term 13.4 (6.9) 0.061 (-0.6;27.4) 

MA 0 (0) - - 

VZ 8.9 (9.8) 0.369 (-10.8;28.7) 

GZC 43.3 (9.8) <0.001 (23.5;63.2) 

GZS 8.1 (9.8) 0.414 (-11.6;27.9) 

MAZ -0.1 (9.8) 0.990 (-19.9;19.7) 

MEZ 0.4 (9.8) 0.972 (-19.4;20.2) 

Masticatory cycles (MC) 3.4E-5 (5E-6) <0.001 (2.4E-5;4.5E-5) 

MA * MC  0 (0) - - 

VZ * MC 9.2E-6 (7.1E-6) 0.193 (-4.7E-6;2.4E-5) 

GZC * MC 2.0E-5 (7.1E-6) 0.007 (5.5E-6;3.4E-5) 

GZS * MC -5.4E-7 (7.1E-6) 0.939 (-1.4E-5;1.4E-5) 

MAZ * MC -2.3E-5 (7.1E-6) 0.001 (-3.7E-5;-9.2E-6) 

MEZ * MC -2.2E-5 (7.1E-6) 0.002 (-3.6E-5;-8.4E-6) 
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Figure 1. Linear mixed models diagram of reconstruction materials wear. 
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Figure 2. Linear mixed models diagram of enamel antagonists wear. 
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Figure 3. SEM images of the abraded reconstruction materials after different masticatory 

cycles (MC). Note that the control group (MA) showed little deformation of alloy on the 

contact surface; the veneered and glazed groups VZ, GZC and GZS presented the highest 

wear and MAZ and MEZ showed practically no wear.  

 

MA, after 120 000 MC 

VZ, after 120 000 MC 

GZC, after 120 000 

GZS, after 120 000 MC 

MEZ, after 120 000 MC 

MAZ, after 120 000 MC 

GZS, after 240 000 MC GZS, after 640 000 MC GZS, after 1 200 000 

MA, after 240 000 MC MA, after 640 000 MC MA, after 1 200 000 MC 

VZ, after 240 000 MC VZ, after 640 000 MC VZ, after 1 200 000 MC 

GZC, after 240 000 MC GZC, after 640 000 MC GZC, after 1 200 000 MC 

MAZ, after 240 000 MC MAZ, after 640 000 MAZ, after 1 200 000 MC 

MEZ, after 240 000 MC MEZ, after 640 000 MC MEZ, after 1 200 000 MC 
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Figure 4. SEM images of the abraded enamel antagonists after different masticatory cycles 

(MC). Note that VZ, GZC and GZS showed the highest wear in enamel. The group images of 

VZ, GZS and MAZ indicates crack formation in enamel.  

 

 

MA, after 120 000 MC 

VZ, after 120 000 MC 

GZC, after 120 000 MC 

GZS, after 120 000 MC 

MEZ, after 120 000 MC 

MAZ, after 120 000 MC 

GZS, after 240 000 MC GZS, after 640 000 MC GZS, after 1 200 000 MC 

MA, after 240 000 MC MA, after 640 000 MC MA, after 1 200 000 MC 

VZ, after 240 000 MC VZ, after 640 000 MC VZ, after 1 200 000 MC 

GZC, after 240 000 MC GZC, after 640 000 MC GZC, after 1 200 000 MC 

MAZ, after 240 000 MC MAZ, after 640 000 MC MAZ, after 1 200 000 MC 

MEZ, after 240 000 MC MEZ, after 640 000 MC MEZ, after 1 200 000 MC 




