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TWO CELLS WITH N POINTS OF
LOCAL NONCONVEXITY

NICK M. STAVRAKAS, W. R. HARE AND J. W. KENELLY

Abstract. A subset S of the plane is a two cell provided 5 is

homeomorphic to {x\ ||x||âl}.

Theorem. Let S be a two cell with exactly n points of local non-

convexity. Then S is expressible as a union of re + 1 compact convex

sets with mutually disjoint interiors.

I. Introduction. We will prove that a two cell 5 in R2 which has

exactly n points of local nonconvexity is expressible as a union of w + l

compact convex sets with mutually disjoint interiors. It follows im-

mediately that 5 is w + l polygonally connected, i.e., an Zn+i set and

thus we have as a corollary a special case of a result of Valentine [l ].

Throughout, the symbols W, C\ and <~ denote set union, set inter-

section and set difference respectively. The interior, closure, and

boundary of a set SER2 are denoted by int S, cl 5 and bd S, respec-

tively. The convex hull of a set SER* is denoted by H(S). Ux,yES

then [xy ] and (xy) denote the closed and open line segments joining x to

y, respectively. The Euclidean norm is given by || || and d denotes the

Hausdorff metric on compact subsets of the plane as given in Valen-

tine [2]. If 5 is a set, | S\ denotes its cardinality. We define the dis-

tance between a point x and a set Sasinf {||x—y|| |y£.S} ; we denote

this distance by p(x, S). By the e ball about a set S we mean

{x\p(x,S)<e}.

Definition 1. A point xES is called a point of local convexity of 5

if there exists a neighborhood N oí x such that Nf\S is convex. If

such a neighborhood does not exist, x is called a point of local non-

convexity.

Definition 2. A set 5 is said to be starshaped relative to a pointy

if for each xES, [xp]ES.
Definition 3. A segment [xy] is said to be a crosscut of a set 5

provided x, y£bd S and (xy)Cint S.

Definition 4. A set SER2 is a two cell provided S is homeomorphic

to {x| IHI^l}.
Given a two cell 5 and a crosscut [xy] of S, [xy] induces a natural

decomposition of 5 into two new two cells Dlxy and D2xy such that
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D^xyC\D2xy = [xy ]. For a proof of this, see Newman [l ]. Specifically,

the points x and y divide bd 5 into two disjoint relatively open con-

nected subsets of bd S, say Clxy and C^xy, and Dlxy is the set whose

boundary is given by [xyjUC'xy and D2xy is the set whose boundary

is given by [xy]W(?xy. If 5 is a set, C(S) and L(S) will denote its

points of local convexity and nonconvexity, respectively, and 0 will

denote the empty set. The following two theorems constitute the

main results of this paper.

Theorem 1. Let SER2 be a two cell such that \L(S)\ =«, «^2.

Then there exists a crosscut [xy] of S such that x, y EC (S) and \L(Dixy)\

£n—ifori = l,2.

Theorem 2. Let SER2 be a two cell such that \L(S)\ =n. Then

S = \Slild where d, 1 g i g n +1, are compact, convex and have mutually

disjoint interiors.

Theorem 1 is of some independent interest, since it makes induc-

tion arguments readily accessible. Also, note that if « = 0 in Theorem

2, then the latter reduces to a special case of the important theorem of

Tietze [l ], which we state for later reference.

Theorem 3. Let S be a closed connected set in Rd, all of whose points

are points of local convexity. Then S is convex.

We also shall utilize the following result of Valentine [l ].

Theorem 4. Let S be a closed connected set in Rd such that L(S) is not

empty. Then given xES, there exists yEL(S) such that [xy]C-5.

II. Preliminary results and proof of Theorems 1 and 2.

Theorem 5. Let \Ai}™=l be a sequence of compact sets in R2 con-

verging to a set A in the Hausdorff metric d such that for each i, A <

= U"«iC~l where each C\ is convex and compact for l^/áw+l and

int cy~unt Ci = 0, for k^j and la*, j^n + 1. Then A=\J¡HC¡
where C¡ is compact and convex for 1 ̂  j ^ n +1 and int CjCMnt Ck = 0

forj^k, l^j,k^n + l.

Proof. By the theorem of Blaschke we may assume without loss of

generality that for each j the sequence {Cj}/L, converges to a set C,-.

Now Cj is compact and convex, since C¡ is the limit of compact con-

vex sets. Since for each i and j^k int CjiMnt C[ = 0, we have int C,

CMnt Ck = 0, and this completes the proof.

Theorem 6. Let SER2 be a two cell such that \L(S)\=1. Then

S = Ci<JC2 where C\ and C2 are compact, convex and int GPiint Cz = 0.
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Proof. Throughout the proof let L(S) — {x}.

Case 1. Suppose there exist z, q E bd 5, such thatz^x, q^x, [zx]

W[xg]Cbd 5 and [zx]Pi[xç] —x. Then clearly we may choose a

crosscut [xy] where yEC(S) such that xEC(D1xy)C\C(D2xy). Since

yEC(S), we have yEC(Dlxy)r\C(D2xy). Then Dxxy and D2xy are

convex by Tietze's Theorem and int Z^xyPiint D2xy = 0 by definition.

Thus D*xy and D2xy are the required sets.

Case 2. Suppose for each y£bd S, y^x, that [xy](£bd 5. For this

case, we need a lemma.

Lemma 1. Let S be a two cell satisfying Case 2. Then if ¿£bd S, ty^x,

(x/)Cint S.

Proof. Suppose the lemma is false. By Theorem 4, 5 is starshaped

relative to x, so [xt] ES. By hypothesis, (xt) (£bd S, so let zE(xt)CMnt 5.

Since S is starshaped relative to x, for each mE(xt) CWnt S we have

(xwz]Cint 5. Then, since we are denying the lemma, we may not find

a sequence {z,),°!.1such that z,£(xí)Púnt ¿'such that ¡z,}¡°=i converges

to t, for otherwise (xt) =(Jí™ i(xz¿] and Uili(xz,]Cint S by the last

sentence, so (xi)Cint S, a contradiction. Thus let q^t be the closest

point of bd SPi[zi] tox. Then [ig]Cbd Sand (g'x)CintS. Let qiE(tq).

Since ci is a point of local convexity, and since a two cell is the closure

of its interior, we may choose e>0, so that B(qi, e)C\ S is convex and

D = int(B(qi,e)r\S)^0, where   B(qu e) = {p\   \\p-qi\\<e\.   Let  6
= H(D\J {x})~{x}. Then e is an open set and eCint S since x is a

seeing point. Now let {/•< f/L, be a sequence of boundary points con-

verging to q, such that r^q, riE(tq) lor each i. Then {r¿}f" i must ap-

proach q from the open half space generated by the line containing

[xt], opposite from the open half space containing 6. Choose ô>0, so

that E=B(q, 8)C\S is convex. Then, clearly we haveint(Er\6)^0.

Since jr,}," i converges to q, there exists an integer k, such that if

i^k, we have rtEE. Let xiGint(FPie) be such that gG(r*Xi)Cint S.

This contradicts that q is a boundary point.

Returning to Case 2, let / be the homeomorphism mapping the

closed unit disc onto S. Then bd S is homeomorphic to the unit

circle. Let/(x*) =x. Let y*^x* be on the unit circle. Then x* and y*

naturally divide the unit circle into two nonempty, relatively open,

disjoint, connected  subsets, say  Bl*y* and  B^ty*. Let   {xjjj™, and

{x2} ¡"1 j be sequences of points in bd S such that the inverse images of

x\ and X( under / are in B]*y* and B2*^, respectively, for each i, and

both sequences coverge to x. Now define the set Si for each i to be

that subset of S whose boundary is given by [x]x]U[xx¡]U/(5¿)

where Bt is B\\ x\ if x^B\\ x] and Bt is B\\ x] if xEB2x\ x\. Now since S is
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simply connected, SiES, and Si for each i is well defined by Lemma

1. Then {Sj }¿" x converges to 5 in the Hausdorff metric. Since for each

*', x\, x2EC(S), we have x\, x2EC(Si). Then, the only possible point of

local nonconvexity of Si is x. For some integer k, we must have for

each i^k, that xEL(Si) for otherwise 5 would be convex. Now by

Case 1 each Si, i^k, is a union of two compact convex sets with

mutually disjoint interiors. Thus, by Theorem 5, 5 is a union of two

compact convex sets with mutually disjoint interiors.

Case 3. Suppose there exists z E bd .Ssuch thatz^x, [xz]Cbd Sand

there does not exist ziGbd 5, Zi^z, such that [xz]C [xzi]Cbd 5.

Further, suppose for each y G bd S~ [xz] that [xy ] (£bd S. Then, follow-

ing a similar proof as in Lemma 1 we show that if yGbd S~[xz],

then (xy)Cint 5. Finally, as in Case 2, we construct a sequence of

compact sets {St j/Li such that | L(Si) \ = 1 for each i beyond some k

and {S.jjli converges to S in the Hausdorff metric, and then apply

Theorem 5.

Proof of Theorem 1. We begin with a lemma.

Lemma 2. Let S be a two cell such that \ L(S) \ is finite. Let [xy] be a

crosscut of S such that x, yEC(S). Then there exists a convex subset

Axy of S such that (xy) E'mt Axy.

Proof. Choose e>0 so that B(x, e)C\S is convex, B(y, c)H5 is

convex, clP(x, e)C\L(S)=0 and clP(y, t)r\L(S)=0. For each

zE(xy), choose e2>0 so thatclP(z, e,)CintS. Since [xy] is compact

select a finite subcover \B(x, e/2), B(y, e/2), B(zu ezi/2), • • • ,

B(zn, ezn/2)} of the cover {B(x, e/2), B(y, e/2), B(z, ez/2)|zG(xy) }•

Choose 5>0 so that ô<min {e/2, ezi/2, • • • , ezB/2}. Let B be the

closure of the 5/V2 ball about the set [xy]. Then BC\S is clearly

connected, closed and BC\SC\L(S)= 0. Then BC\S is convex by

Tietze's Theorem and this is the required set A xy.

Now suppose Theorem 1 is false. Let r, sEL(S) such that C),

C\L(S) =0 or Cf,r\L(S) = 0, which is possible since | L(S) | is finite.
Let us suppose that C),r\L(S) =0. Let 6= { [xy]| [xy] is a crosscut

and x, yEC(S) }. Since |/-(S)| is finite, every interior point of 5 is

contained in an element of C, so int SCUe. Since we are assuming

that Theorem 1 is false, if [xy]GC, then x, y EC), or x, y EC2,.

Consider any two crosscuts in Q, say [xiyj and [#2^2] such that

xi, yiEC), and X2, y2E(%,. These crosscuts can not intersect. To see

this suppose zG(xiyi)r>l(x2y2). Then the set R whose boundary is

given by [xryi] and the portion B of bd 5 in C\v between xi and yi,

is convex by Tietze's Theorem. Since B r\[x2y2] =0, this forces X2 or y2
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to be an interior point of R, and hence an interior point of S, a con-

tradiction.

To continue, the interior of S is connected since it is the homeo-

morphic image of a connected set. Let [xy]£e. Let .4xy be as in

Lemma 2. Then letting fti= {int Axy\ [xy]EC, x, yECl„] and

a2= {int Axy\ [xy]EC, x, yEC2,}, we have int SCUaAJUctî since

Ue=UftiWU(Î2. Since int S is connected, we must have UctiPlUftî

9^0, which says that there exists [xiyi] and [x2y2] in C with xi,

yiEC)i, x2, y2ECf, and int ^xryiHint Ax2y2?¿0. Let z£int Axiyi

Oint Ax2y2. Then z lies in a crosscut having endpoints in C), and in a

crosscut having endpoints in C2S, which says these crosscuts intersect,

which is a contradiction by the last paragraph. Thus Theorem 1 holds.

Proof of Theorem 2. We know Theorem 2 holds when w = 0, and

n = 1 by Tietze's Theorem and Theorem 6, respectively. Thus, assume

the theorem holds for O^k^n — 1 and we will show the result holds

for n. We begin by considering cases. Let xEL(S).

Case 1. Suppose there exist z, çCEbd-Ssuch that zs^x, q^x, [zx]

\J[xq]Ebd S and [zx]^[xg] = {x}. Then choose a crosscut [xy]

where yEC(S) such that xEC(D1xy)C\C(D2xy). Since yEC(S),

yEC(D1xy)C\C(D2xy). Now suppose d = \ L(Dlxy) |. Then d^n — l

and by hypothesis D^xy = \}\t\Ci where for each i, l^t^d + l, C, is

compact and convex and for 1 r^i, j^d + i, i^j, int CiPiint C, = 0.

Since | L(Dl„) | =d and since xEC(D1xy)C\C(D2xy), we have | L(D2xy) |

= «—¿ — 1. Thus, by hypothesis Z>2xy = U"r?-B, where for each *,

0<;i ^n—d, Z?, is compact, convex and for i^j, 1 ̂ i, j^n—d, int5,-

CMnt Bj = 0. Thus 5 is a union of (d + l)+(n — d) =w + l compact

convex sets with mutually disjoint interiors.

Case 2. Suppose for each yEbd S, yj^-x, that [xy](£bd 5. We shall

need the following lemma.

Lemma 3. Let S be a two cell such that \ L(S) | = n ^ 1 satisfying Case 2.

Let {Xi} 4°1 x be a sequence in bd 5 with x —>x, x EL(S) and x-^xfor each i.

Then there exists an integer k such that for each i^k, (xxi) Ont 5.

Proof. We proceed by induction. We know by Lemma 1 the lemma

holds when | L(S) | = 1. So suppose the lemma holds for 1 g k ̂  n — 1.

By Theorem 1, there exists a crosscut [rs] of 5 such that r, sEC(S)

and |Z(Z>J,)| ^w —1 for* = l, 2. Suppose xEL(D},). Then since there

exists an e>0 such that B(x, e)r\SED)s, the result holds. The same

argument applies if xED2,.

To complete Case 2, we argue the same way as in Case 2 of Theorem

6. We construct a sequence of sets {S<}¿li such that {Si}¿" i con-

verges to 5 in the Hausdorff metric and using Case 1 of this theorem
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we show each 5< is representable as « + 1 compact convex sets with

mutually disjoint interiors and then apply Theorem 5. This com-

pletes Case 2.

Case 3. Suppose there exists xEL(S) and zGbd S, z^xsuch that

[zx]Cbd 5 and there does not exist ZiGbd S, zi^z such that [xz]

C[xzi]Cbd 5. Further suppose for each yGbd S~[xz], that [x, y]

Cjlbd 5. Then using a similar proof as in Lemma 3, we prove that if

{x.Jjl] is a sequence in bd S~[xz] converging to x, then there exists

an integer k, such that for each i^k, (x;x)Cint S and use the same

construction as in Case 2 to get the theorem. This completes the proof

of Theorem 2.

III. Consequences of Theorem 2. As immediate corollaries of

Theorem 2 we have

Corollary 1. Let S be a two cell such that \L(S)\ =n. Then S is

an Ln+i set.

Corollary 2. Let S be a two cell such that \L(S)\ =n. Then for

every line L,LC\Sis a union of at most n +1 closed line segments.

Corollary 2 is a generalization of the familiar fact that the intersec-

tion of a line and a compact convex set is a point or a closed line seg-

ment.

Examples are easily constructable to show the number w-f-1 is best

in Theorem 2.
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