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Abstract

We report on two-center convergent close-coupling calculations of positron-lithium collisions.

The target is treated as one active electron interacting with an inert ion core. The positronium

formation channels are taken into account explicitly utilizing both negative- and positive-energy

Laguerre-based states. A large number of channels and high partial waves are used to ensure the

convergence of the cross sections. We find the Ramsauer-Townsend minimum in total and elastic

cross sections at the impact energy E about 0.0016 eV. As found previously for H and He, the

contribution to the break-up cross section from both the Li and Ps centers becomes the same as

the threshold is approached.
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I. INTRODUCTION

The physics of positron collisions with atomic targets is of practical and fundamental

interest. Positron interactions with matter can be used to access a wealth of information on

atomic and molecular structures and reaction mechanisms. Their understanding is crucial

for development and improvement of a number of high-tech applications such as positron-

annihilation material analysis and cancer imaging. The two center nature of the problem,

atom and positronium, generates particular challenge for theorists, while generation of suit-

able positron beams is a substantial experimental challenge.

The last decade has seen significant advent of low-energy trap-based positron beams

[1–3]. New high-resolution experiments have been conducted for a number of atomic and

molecular targets such as He [4], Ne and Ar [3], CO2 [5], H2 [6], H2O and HCOOH [7].

From the theoretical side there are several approaches to positron scattering such as, for

example, the eikonal final state-continuum distorted wave approximation [8, 9], the exterior

complex scaling method [10], the hybrid R-matrix approach [11], the momentum–space

coupled–channel optical method [12] and the close-coupling method [13, 14].

In this paper we study positron scattering from atomic lithium. For positron collisions

with alkalies both elastic and rearrangement channels are open at all incident energies.

Hence, the valid theoretical description has to treat appropriately the “competition” between

the positive-charge centers, Li+ and positron, for the valence electron. However, the first

attempt to treat the problem was to use the one-center expansion of the total wavefunction

over atomic orbitals [15–17]. This counter-intuitive approach is consistent with the idea of

basis completeness. But convergence of such expansions turned out to be very poor [18].

Another way to tackle the problem was to use the two-center expansion where both atom

and positronium states are taken into account on equal footing. This approach resulted in

better agreement with the experiment. For positron-lithium case the two-center expansion

was employed by Guha and Ghosh [19], Basu and Ghosh [20], Abdel-Raouf [21], Hewitt

et al. [22], McAlinden et al. [18] and Le et al. [23].

In this paper we report two-center convergent close-coupling (CCC) calculations of

positron scattering by atomic lithium. Previously, this method was implemented for positron

collisions with hydrogen [24] and helium [25, 26] targets. The usage of complete bases on

both centers resolved the issue of unphysical resonances [24] and resulted in excellent agree-
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ment between the theory and experiment. Our purpose is to provide convergent results at

energies where Ps formation is not negligible. At very low energies we identify a Ramsauer-

Townsend minimum [19]. This structure not previously been found for this collision system.

The paper is organized as follows. In Sec. II we describe the theoretical approach together

with the used model potentials. The results are presented in Sec. III, followed by concluding

remarks.

II. THEORY

In this paper we follow the approach where a positron-lithium collision is treated as a

three-body problem. The interacting particles are the incoming positron, the active (outer

shell) electron and the Li+ ion. The 1s electrons of the core do not participate directly in

the collision event. They provide screening of the nucleus and take part in exchange with

the active electron.

The scattering wave function Ψ satisfies the Shrödinger equation

(E −H)Ψ = 0 (1)

where E is the total energy and

H = H0 + V, (2)

is the Hamiltonian of this system with H0 and V being, respectively, the three-free-particle

Hamiltonian and the sum of all two-body interactions. The Hamiltonian H0 is used in two

different forms

H0 = −(1/4)∇2
ρβ

−∇2
rβ
, (3)

= −(1/2)∇2
ρα

− (1/2)∇2
rα. (4)

corresponding to two different sets of Jacobi coordinates {rα, ρα} and {rβ, ρβ}, see Fig. 1. In

this paper we follow the notations adopted in Ref. 27. In our case symbols α, e and β point

to individual particles - positron, electron and Li+ ion, respectively. Also, they label the

particle pairs so that α indicates the electron-Li+, e - positron-Li+ and β - electron-positron

pair.
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FIG. 1: Jacobi coordinates for positron (α), electron (e) and Li+ ion (β).

For potential V in Eq. (2) we use in pairs α, β and e

V = Vα(rα) + Ve(re) + Vβ(rβ). (5)

where the electron-ion and positron-ion terms, Vα and Ve, are

Vα(r) = Vst(r) + Vex(r), (6)

Ve(r) = −Vst(r), (7)

with Vst and Vex being the static and exchange terms of the Hartree-Fock potential. The

static term is calculated by

Vst(r) = −
Z

r
+ 2

∑

ψj∈C

∫

d3r′
|ψj(r

′)|2

|r − r′|
, (8)

where Z is the charge of the nucleus and ψj are the states of the ion core C generated by

performing the self-consistent-field Hartree-Fock calculations [28]. The summation in Eq. (8)

is done for all core states. The exchange between the active electron and core electrons is

taken into account in the framework of the equivalent local-exchange approximation [29–31]

Vex(r, Eex) =
1

2
[(Eex − Vst(r)) −

√

(Eex − Vst(r))2 + ρ(r)], (9)

where

ρ(r) =
∑

ψj∈C

∫

dr̂|ψj(r)|2 (10)
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is the electron density distribution in the core and Eex is a some adjustment parameter.

Finally, the electron-positron interaction Vβ in Eq. (5) is the Coulomb potential.

Following the two-center CCC approach [27], wavefunction Ψ in Eq. (1) is sought as an

expansion

Ψ ≈

Nα
∑

α

Fα(ρα)ψ
Nα

α (rα) +

Nβ
∑

β

Fβ(ρβ)ψ
Nβ

β (rβ) (11)

where ψNα
α and ψ

Nβ

β are atomic and positronium pseudostates, respectively, and Fα and Fβ

are their associated weight functions. The pseudostates, ψNα
α and ψ

Nβ

β , are generated by

diagonalizing the one-particle Hamiltonians [32]

Hα = −
1

2
∇r + Vα(r) (12)

and

Hβ = −
1

4
∇r + Vβ(r) (13)

using the square-integrable orthogonal Laguerre basis

ξn,l(r) =

(

λl(n− 1)!

(2l + 1 + n)!

)1/2

(λlr)
l+1 exp[−λlr]L

2l+2
n−1 (−λlr), (14)

where L2l+2
n−1 (x) is the associated Laguerre polynomial and n ranges from 1 to the basis

size Nl for l = 0, 1, ... , lmax. The complete sets of pseudostates contain both negative- and

positive-energy states. Negative-energy states correspond to the bound states of the atomic

target and positronium while positive-energy ones provide a discretization of their continuum

spectra. The number of negative-energy states depends on parameters λl and Nl which are

specific for every given orbital momentum number l.

Table I shows the energies of a few low levels resulted from the Hamiltonian dioganaliza-

tion with Nl = 10 − l and Nl = 50 − l, with Eex = −0.3831 a.u.. These energy values are

compared with the experimental data by Radziemski et al. [33] as well as the results of self-

consistent-field Hartree-Fock (SCFHF) calculations. The value of local-exchange parameter

Eex was chosen so that the ground-level energy was equal to the experimental value. We

see that the positions of the low-energy levels are well reproduced when the sufficiently big

Nl is used. For Nl = 50− l the largest relative error is 1.9%. This is comparable with 1.2%

error for the energy obtained with the SCFHF method.
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TABLE I: Experimental and theoretical energies of several low-lying levels of lithium in units of

eV.

state Exp SCHF Nl=10 Nl=50

2s -5.392 -5.342 -5.392 -5.392

2p -3.544 -3.501 -3.614 -3.614

3s -2.019 -2.009 -2.009 -2.019

3p -1.558 -1.544 -1.540 -1.579

3d -1.513 -1.512 -1.493 -1.514

4s -1.051 -1.047 -0.589 -1.051

4p -0.870 -0.865 -0.144 -0.879

4d -0.851 -0.850 -0.316 -0.851

Substituting expansion (11) into (1) and following [27], one can derive the set of

momentum-space coupled-channel equations for transition matrix elements

Tγ′,γ(qγ′ , qγ) = Vγ′,γ(qγ′, qγ) +

Nα+Nβ
∑

γ′′

∫

dqγ′′

(2π)3

Vγ′,γ(q
′

γ, qγ′′)Tγ′,γ(qγ′′ , qγ)

[E + i0 − ǫγ′′ − q2
γ′′/(2Mγ′′)]

, (15)

where qγ is the momentum of the free particle γ relative to the c.m. of the bound pair in

channel γ (γ = α or β), ǫγ is the corresponding pseudoenergy of the bound pair, Mγ is its

reduced mass. The effective potential Vγ′,γ is defined as

Vγ′,γ(qγ′ , qγ) = 〈qγ′ |〈ψγ′|Uγ′,γ|ψγ〉|qγ〉, (16)

where |qγ〉 is a plane wave representing the free particle γ and Uγ′,γ stands for one of the

following channel operators

Uα,α = V − Vα, Uβ,β = V − Vβ, Uα,β = H0 + V −E. (17)

By performing partial-wave expansion in the total orbital angular momentum J one can

get from Eq. (15)

TL
′LJ

γ′,γ (qγ′ , qγ) = V L′LJ
γ′,γ (qγ′ , qγ) +

Nα+Nβ
∑

γ′′

∑

L′′

∫

dqγ′′ q
2
γ′′

(2π)3

V L′L′′J
γ′,γ (q′γ, qγ′′)T

L′′LJ
γ′,γ (qγ′′ , qγ)

[E + i0 − ǫγ′′ − q2
γ′′/(2Mγ′′)]

, (18)
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where Vγ′,γ(qγ′ , qγ) and V L′LJ
γ′,γ (qγ′ , qγ) (and similarly Tγ′,γ(qγ′ , qγ) and TL

′LJ
γ′,γ (qγ′ , qγ)) are

related to each other by

Vγ′,γ(qγ′ , qγ) =
∑

L′,M ′,L,M,J,K

YL′M ′(q̂γ′)C
JK
L′M ′l′m′V L′LJ

γ′,γ (qγ′ , qγ)C
JK
LMlmY

∗

LM(q̂γ), (19)

and

V L′LJ
γ′,γ (qγ′ , qγ) =

∑

m′,m,M ′,M

∫ ∫

dq̂γ′dq̂γ′

×Y ∗

L′M ′(q̂γ′)C
JK
L′M ′l′m′Vγ′,γ(qγ′ , qγ)C

JK
LMlmYLM(q̂γ), (20)

where YLM is a spherical harmonic and CJK
L′M ′l′m′ is a Clebsch-Gordan coefficient. The

effective potentials V L′LJ
γ′,γ (qγ′ , qγ) can be computed similarly to how it was done for the

positron-hydrogen problem [27].

III. MATRIX ELEMENTS

Calculation of the effective potentials V L′LJ
γ′,γ (qγ′ , qγ) is straightforward but tedious. In

contrast to the hydrogen case there is no analytical expressions for the potentials Ve(r) and

Vα(r). These potentials are available in numerical form only. This means that we cannot

use some intermediate analytical steps in calculation of the matrix elements which increases

significantly the computation time.

To calculate matrix elements for direct (atom-atom and positronium-positronium) tran-

sitions one needs the spherical harmonic expansion of Vα′,α(qα′, qγ) and Vβ′,β(qβ′, qβ). In

turn, this requires the spherical wave expansion of Uα,α and Uβ,β. Using the approximation

re ≈ ρα (atomic c.m. assumed to be at the ion center) one can get

Uα,α = V − Vα = Ve(re) + Vβ(rβ)

≈
∞

∑

λ=0

4π

2λ+ 1
Uλ
α,α(ρα, rα)(Yλ(ρ̂α) · Yλ(r̂α)), (21)

where

Uλ
α,α(ρα, rα) = Ve(ρα)δλ,0 −

min[rα, ρα]
λ

max[rα, ρα]λ+1
, (22)

and

(Yλ(ρ̂α) · Yλ(r̂α)) =

λ
∑

µ=−λ

(Y ∗

λ,µ(ρ̂α)Yλ,µ(r̂α)). (23)
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Taking into account that re = −ρβ − rβ/2 and rα = −ρβ + rβ/2 we derive

Uβ,β = V − Vβ = Ve(re) + Vα(rα)

=
∑

λ

4π

2λ+ 1
U

(λ)
β,β(ρβ, rβ)(Yλ(ρ̂β) · Yλ(r̂β)), (24)

where

U
(λ)
β,β(ρβ, rβ) =

2λ+ 1

2

1
∫

−1

dzPλ(z)
[

Ve(ρβ +
rβ

2
) + Vα(ρβ −

rβ

2
)
]

=
2λ+ 1

2

1
∫

−1

dzPλ(z)
{

Vα

(

√

r2
< + r2

> − 2zr<r>

)

+(−1)λVe

(

√

r2
< + r2

> − 2zr<r>

)}

(25)

and where Pλ(z) is the Legendre polynomial of degree l, r< = min(ρ, r/2) and r> =

max(ρ, r/2).

The matrix elements Vβ,α(qβ, qα) for rearrangement transitions are presented as a sum of

two terms, V
(1)
β,α(qβ, qα) and V

(2)
β,α(qβ, qα), calculated separately. The first term is

V
(1)
β,α(qβ, qα) =

∫ ∫

dρβdrβe
−iqβ ·ρβψ∗

β(rβ)[(H0 − E) + Vβ(rβ) + Vα(rα)]ψα(rα)e
iqα·ρα

= (2π)3[E(qβ, qα)ψ̃
∗

β(pβ)ψ̃α(pα) + ψ̃∗

β(pβ)g̃α(pα) + g̃∗β(pβ)ψ̃α(pα)], (26)

where pα = qβ − qα, pβ = qβ/2 − qα, and E(qβ, qα) = p2
α/2 + q2

α/2 − E. Functions with a

tilde, ψ̃i(p) and g̃i(p), are the Fourier images of ψi(r) and Vi(r)ψi(r) respectively.

The second term V
(2)
β,α(qβ, qα) is

V
(2)
β,α(qβ, qα) =

∫ ∫

dρβdrβe
−iqβ ·ρβψ∗

β(rβ)Ve(re)ψα(rα)e
iqα·ρα

= (2π)3

∫

dp

(2π)3/2
ψ̃∗

β(p
′

β)Ṽe(p − qα)ψ̃α(p
′

α), (27)

where p′

β = (qβ/2) − p, p′

α = qβ − p and Ṽe(p) is the Fourier transform of Ve(r). Eq. (27)

leads for the following expression for its reduced matrix element

V
L′L(2)
βα (qβ, qα) =

1

8π3

∞
∫

0

dq q2Q′

L(q, qα)
∑

m,m′,M,M ′

CL′l′J
M ′m′KC

LlJ
MmK

×

∫ ∫

dq̂βdq̂Y
∗

L′M ′(q̂β)YLM(q̂)ψ̃∗

β(p
′

β)ψ̃
∗

α(p
′

α), (28)
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where

Q
(v)
l (q, qα) = 2π

1
∫

−1

Pl(z)Ve(q − qα)dz (29)

where z = cos(α) and α is the angle between vectors q and qα.

Calculation of matrix elements, especially those for rearrangement transitions, is the most

time consuming part of the CCC calculations. The system of close-coupled equations we

need to solve is ill-conditioned due to the usage of the two center expansion, requiring the

matrix elements.

IV. RESULTS

To obtain the transition matrix elements Tγ′,γ(qγ′ , qγ) the system of coupled momentum-

space integral equations (17) is converted into equations for the K-matrix and then solved

numerically using real arithmetic [32]. Calculations are performed for a limited number of

partial waves J . We found that first ten partial waves are enough for get reliable results for

the positronium formation cross sections at all energies. Direct scattering channels require

at least ten partial waves more at the higher energies. Using the developed code we perform

calculations with as many pseudostates from both centers as required for the convergence.

We conduct calculations with different basis sets to be sure that our results are indepen-

dent of the set parameters such as exponential fall-off parameter λl, and convergent when

increasing the parameters contributing to the basis size

N =

lLi
max
∑

l=0

NLi
l +

lPs
max
∑

l=0

NPs
l . (30)

To make convergence issues simpler we set λPs
l = λPs, λLi

l = λLi, lPs
max = lLi

max = lmax and

NPs
l = NLi

l = N0 − l. This way we reduce the number of parameters to just N0, lmax, λ
Li

and λPs.

Given the commensurate treatment of both centers we need to demonstrate that conver-

gence is possible, and that there is no double-counting of the ionization processes due to

positive-energy states of both centers. We illustrate this in Fig. 2, within the S-wave model,

where only zero orbital angular momenta are retained. Presented are the total break-up
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2σion(Ps): N0 = 35

σion(Li + Ps): N0 = 40
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FIG. 2: Break-Up cross section σion(Li + Ps) and 2σion(Ps) as functions of energy computed within

the S-wave model, see text. The number of states used in calculations are indicated in the legend.

cross section σion(Li + Ps) as well as the positronium break-up cross section σion(Ps) multi-

plied by two. The first one equals to the sum of all cross sections over the positive-energy

pseudostates of both centers

σion(Li + Ps) =
∑

n:ǫLi
n >0

σn +
∑

n:ǫPs
n >0

σn

≡ σion(Li) + σion(Ps), (31)

while the second, σion(Ps), is due to the contributions of just the positronium positive-

energy pseudostates. We see excellent convergence for both σion(Li + Ps) and σion(Ps) when

the number of states on each center goes from 35 to 40. The two values of N0 yield indis-

tinguishable results at all energies except in the small region around 10 eV. Thus, the two

independent Li and Ps contributions to the break-up cross section are independently con-

vergent. Furthermore, the fact that the curves converge to each other at threshold indicates

that there σion(Ps) ≈ σion(Li). Previously, such behavior was demonstrated for the cases

10



(c)

impact energy (eV)

10210110010−110−210−3

80

60

40

20

(b)

10210110010−110−210−3

160

140

120

100

80

60

40

20

spd
sp
s (a)

cr
os

s
se

ct
io

n
(1

0−
16

cm
2
)

10210110010−110−210−3

200

180

160

140

120

100

80

60

40

20

FIG. 3: (a) Total, (b) elastic and (c) positronium formation cross sections for positron-lithium

collision calculated with the use of two-center CCC method. The number of basis states were the

same for both centers and equal to N0 = 20 s-states for the s-basis, N0 = 10 and N1 = 9 for the

sp-basis, and N0 = 10, N1 = 9 and N2 = 8 for the spd-basis.

of hydrogen [34] and helium [25]. We note that the system of equations becomes rapidly

ill-conditioned as N0 is increased.

Having established convergence in a model problem, we now consider the full problem.

Figure 3 shows the total, elastic, and positronium formation cross sections as functions of

the impact energy. They where calculated with the use of three different sets with lmax = 0

(s basis), lmax = 1 (sp basis) and lmax = 2 (spd basis). Equal number of pseudostates were

taken for both centers in our calculations. Figures 3 (a), (b) and (c) reveal the significant

difference in the energy dependence between the results calculated with the s and sp bases.

The differences between the sp- and spd-basis calculations are only marginal. These results

suggest good convergence with N0 and lmax for the presented transitions.

The grand total and elastic cross sections are presented in figures 4 and 5. They were

calculated with the use of Nl = 10 − l pseudostates for each center with lmax = 2. Also

shown with black lines are calculations by McAlinden et al. [18]. We see that the results are

generally in good agreement. The only difference is the resonant-like structure in the total
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McAlinden et al
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FIG. 4: Total cross sections for positron-lithium scattering. The CCC results (red lines) are

compared with the data by McAlinden et al. [18] (black line). The spd-basis as in Fig. 3 was used

in calculations.

cross section near 1.6 eV. We found this structure and its position to be basis-dependent.

It disappears for sufficiently large bases on both centers. Also, for very low energies CCC

predicts a shallow Ramsauer-like minimum in both total and elastic cross sections near

E = 0.0016 eV (see Fig. 5).

Figure 6 shows the positronium formation cross section. We compare our calculations

(red solid and blue broken lines) with the experimental data by Surdutovich et al. [35] and

theoretical results by McAlinden et al. [18] and Le et al. [23]. We also present results from a

truncated basis that has only three eigenstates (1s, 2s and 2p) for positronium and twenty

nine states (2s-9s, 2p-9p, 3d-9d and 4f-9f) for lithium. The states were chosen so that

their energies were in close correspondence to the energies of the mixed-basis states used by

McAlinden et al. [18].

We see that all theoretical curves are in overall qualitative agreement with each other. Our
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McAlinden et al
CCC: Ps form.
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FIG. 5: Same as Fig. 4 but for the elastic cross sections. Also shown with the broken blue line is

the positronium formation cross section. The CCC basis is the same as for Fig. 4.

truncated-basis calculations agree well with the results of McAlinden et al. [18], with both

having a pseudoresonance, though at different energies. The differences can be attributed

to the fact that we take into account the exchange part of the electron-electron interaction,

and also use slightly different lithium states. The exchange interaction was also taken into

account in the hyper-spherical close-coupling calculations [23]. The authors obtained a

resonance-free energy dependence for the positronium formation cross section. We see that

the only slight disagreement of the CCC and their results is in the magnitude of the peak.

Agreement with experiment is not at the level that we would hope for this relatively simple

collision system.

V. CONCLUSION

The two-center CCC method has been developed to calculate positron scattering with

lithium atoms, where the positronium formation channel is taken into account explicitly.
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Le et al
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CCC: spd basis
Surdutovic et al: exp 2
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FIG. 6: Total positronium formation cross section for e+-Li along with the experimental points

[35] and theoretical calculations [18, 23]. The CCC basis is the same as for Fig. 4. The truncated

basis CCC calculation is an attempt to reproduce the states used by McAlinden et al. [18].

Direct scattering and positronium formation cross sections have been calculated for a broad

range of energies of practical interest. Convergence in the calculated cross sections was

demonstrated by increasing the basis sizes and orbital angular momentum of the included

states for each of the centers. The obtained results are in good agreement with available

theoretical data. Our calculations reveal a shallow Ramsauer-like minimum in the total and

elastic cross sections near 0.0016 eV. We would appreciate further experimental investigation

to see if the present discrepancy with experiment can be resolved.
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