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ABSTRACT 
In this correspondence, a two-channel linear phase finite impulse response (FIR) quadrature mirror 

filter (QMF) bank minimax design problem is formulated as a nonconvex optimization problem so that a 
weighted sum of the maximum amplitude distortion of the filter bank, the maximum passband ripple 
magnitude and the maximum stopband ripple magnitude of the prototype filter is minimized subject to 
specifications on these performances. A modified filled function method is proposed for finding the global 
minimum of the nonconvex optimization problem. Computer numerical simulations show that our proposed 
design method is efficient and effective. 
 
Index Terms⎯Two-channel linear phase FIR QMF bank minimax design, nonconvex optimization problem, 

filled function, global optimization. 
 

I. INTRODUCTION 
Since transition bandwidths of the filters in two-channel filter banks are usually larger than those in 

multi-channel filter banks, lengths of the filters in two-channel filter banks are usually shorter than those in 
multi-channel filter banks. Moreover, as only a single prototype filter is required for the design of a QMF 
bank and all other filters are derived from the prototype filter, the total number of filter coefficients required 
for the design of a QMF bank is usually smaller than those in general filter banks. Furthermore, as the linear 
phase property of the filters guarantees no phase distortion of the filter bank and the FIR property of the 
filters guarantees the bounded input bounded output stability of the filter bank, two-channel linear phase FIR 
QMF banks find many applications in image and video signal processing [1]. 

Unlike a multi-channel QMF bank [2], [3], a two-channel QMF bank could not achieve the exact 
perfect reconstruction with the prototype filter having very good frequency selectivity [4]. Hence, it is useful 
to design a two-channel QMF bank so that a weighted sum of the maximum amplitude distortion of the filter 
bank, the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the  
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prototype filter is minimized subject to specifications on these performances. Nevertheless, this QMF bank 
minimax design problem is a nonconvex optimization problem. As nonconvex optimization problems usually 
consist of many local minima [14], it is usually stuck at these local minima and very difficult to find the 
global minimum if conventional gradient based approaches are employed for finding the global minimum. 

When nonconvex optimization problems consist of finite numbers of local minima, it is possible to 
find the global minimum of these nonconvex optimization problems. There are mainly two different 
approaches for finding the global minimum of these nonconvex optimization problems. The first type of the 
approaches is nongradient based approaches, such as evolutionary algorithm based approaches [5], [6]. These 
approaches keep generating evaluation points randomly. Those evaluation points with better performances 
are kept, while those evaluation points with poor performances are ignored. However, computational 
complexities of these nongradient based approaches are very high because most of the evaluation points are 
ignored. The second type of the approaches is filled function approaches [7]-[12]. The definition of filled 
functions and the working principle of filled function methods are discussed in Section II. Nevertheless, it is 
very challenging to find a filled function that satisfies the required properties. To tackle this difficulty, filled 
functions with several parameters are defined [7]-[12]. However, there is no general rule for the selection of 
these parameters. In this correspondence, extra constraints are imposed on the optimization problems so that 
the required properties of the filled function are guaranteed to be satisfied. 

In this correspondence, a modified filled function method is proposed for finding the global minimum 
of a two-channel linear phase FIR QMF bank minimax design problem. The outline of this correspondence is 
as follows. In Section II, the definition of filled functions and the working principle of filled function 
methods are reviewed. In Section III, a two-channel linear phase FIR QMF bank minimax design problem is 
formulated as a nonconvex optimization problem and a modified filled function method is proposed for 
finding the global minimum of the nonconvex optimization problem. In Section IV, computer numerical 
simulations are illustrated. Finally, conclusions are drawn in Section V. 
 

II. REVIEW ON DEFINITION OF FILLED FUNCTIONS AND WORKING PRINCIPLE OF 
FILLED FUNCTION METHODS 

A filled function [7]-[12] is a function satisfying the following properties: (a) the current local 
minimum of the original cost function is the current local maximum of the filled function; (b) the whole 
current basin of the original cost function is a part of the current hill of the filled function; (c) the filled 
function has no stationary point in any higher basins of the original cost function; and (d) there exists a local 
minimum of the filled function which is in a lower basin of the original cost function. 

Some terminologies related to filled functions have been used above. Notably, a basin of a function is 
defined as the subset of the domain of the optimization variables such that any points in this subset will give 
the same local minimum of the function via conventional gradient based optimization methods. A hill of a 
function is defined as the subset of the domain of the optimization variables such that any points in this 
subset will give the same local maximum of the function via conventional gradient based optimization 
methods. A higher basin of a function is a basin of the function with the cost value of the local minimum of 
the basin being higher than that of the current basin of the function. A lower basin of a function is a basin of 
the function with the cost value of the local minimum of the basin being lower than that of the current basin 
of the function. 

Due to property (a), by evaluating the filled function at a point slightly deviated from the current local 
minimum of the original cost function, a lower filled function value can be obtained. Hence, the filled 
function could kick away from the current local minimum of the original cost function. Due to properties 
(b)-(d), the current local minimum of the filled function is neither in the current basin nor any higher basins 
of the original cost function. Hence, the current local minimum of the filled function is in a lower basin of 
the original cost function. As a result, by finding the next local minimum of the original cost function, i.e., 
searching the neighborhood around the current local minimum of the filled function, a better local minimum 
of the original cost function can be obtained. Following these procedures, if the original cost function 
contains a finite number of local minima [14], then the global minimum of the original cost function will be 
eventually reached. 
 

III. PROBLEM FORMULATION AND MODIFIED FILLED FUNCTION METHOD 
A. Problem formulation 

Denote the transpose operator, the conjugate operator and the conjugate transpose operator as the 
superscripts T , ∗  and + , respectively, and the modulus operator as ⋅ . Let the transfer functions of the 
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lowpass and the highpass analysis filters of a two-channel linear phase FIR QMF bank be ( )zH0  and ( )zH1 , 
respectively, and those of the synthesis filters of the filter bank be ( )zF0  and ( )zF1 , respectively. Here, 

( )zH 0  is the transfer function of the prototype filter. Denote the impulse response of the prototype filter as 
( )nh , the passband and the stopband of the prototype filter as pB  and sB , respectively, the length of the 

prototype filter as N , the maximum passband ripple magnitude and the maximum stopband ripple 
magnitude of the prototype filter as pδ  and sδ , respectively, the specifications on the acceptable bounds on 
the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter 
as pε  and sε , respectively, and the desired magnitude response of the prototype filter as )(ωD . In this 
correspondence, it is assumed that the prototype filter is even length and symmetric. Let the polyphase 
components of ( )zH 0  be ( )2

0 zE  and ( )2
1 zE , that is 

( ) ( ) ( )2
1

12
00 zEzzEzH −+≡ . (1) 

Denote the transfer function of the filter bank as ( )zT , the maximum amplitude distortion of the filter bank 
as aδ , and the specification on the acceptable bound on the maximum amplitude distortion of the filter bank 
as aε . Let the vector containing these distortions and the even-time index filter coefficients be x , that is 

( ) ( ) ( )[ ]Tspa Nhhh 2,,2,0,,, −≡ Lδδδx . (2) 
In order to achieve both the aliasing free condition and the QMF pairs condition, the relationships 

among the analysis filters and the synthesis filters are governed by 
( ) ( )zHzH −= 01 , (3a) 
( ) ( )zHzF 00 2=  (3b) 

and 
( ) ( )zHzF −−= 01 2 . (3c) 

As the prototype filter is even length and symmetric, we have 
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and 
( ) ( ) ( ) ( ) ( ) ( )2

0
2

0
12

1
2

0
1 44 −−−− == zEzEzzEzEzzT N . (7) 

Denote 

( )
TNj

j ee
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡

⎟
⎠
⎞

⎜
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2,,,1,0,0,0 Lη , (8) 

then 
( ) ( ) ( )( ) ( )( ) xηηx TTNjeT ωωω ω 224 *1−−= . (9) 

Obviously, the filter bank does not suffer from the phase distortion and the amplitude distortion of the filter 
bank can be expressed as ( )( ) ( )( ) 1224 * −xηηx TT ωω . Denote 

( ) ( )( ) ( )( )Tωωω 228 * ηηQ ≡ , (10) 

then the amplitude distortion of the filter bank can be further expressed as ( ) 1
2
1

−xQx ωT . Denote 

[ ]Ta 0,,0,1 L≡ι , (11) 
then the constraint on the maximum amplitude distortion of the filter bank can be expressed as 

( ) 01
2
1

≤−− xιxQx T
a

T ω  (12) 

and 
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and the passband ripple magnitude of the prototype filter can be expressed as ( )( ) ( )ωω DT −xκ  pB∈∀ω . 

Define 
[ ]Tp 0,,0,1,0 L≡ι , (16) 

then the constraint on the maximum passband ripple magnitude of the prototype filter can be expressed as 
( )( ) ( ) xιxκ T

p
T D ≤− ωω  pB∈∀ω . (17) 

Define 
( ) ( ) ( )[ ]Tppp ικικA −−−≡ ωωω ,  (18) 

and 
( ) ( ) ( )[ ]Tp DD ωωω −≡ ,c , (19) 

then the constraint on the maximum passband ripple magnitude of the prototype filter can be further 
expressed as 

( ) ( ) 0cxA ≤− ωω pp  pB∈∀ω . (20) 
Similarly, define 

[ ]Ts 0,,0,1,0,0 L≡ι , (21) 
( ) ( ) ( )[ ]Tsss ικικA −−−≡ ωωω ,  (22) 

and 
( ) ( ) ( )[ ]Ts DD ωωω −≡ ,c , (23) 

then the constraint on the maximum stopband ripple magnitude of the prototype filter can be expressed as 
( ) ( ) 0cxA ≤− ωω ss  sB∈∀ω . (24) 

Define 
[ ]0IA ,≡b  (25) 

and 
[ ]Tspab εεε ,,≡c , (26) 

in which I  is the 33×  identity matrix, then the specifications on the acceptable bounds on the maximum 
amplitude distortion of the filter bank, the maximum passband ripple magnitude and the maximum stopband 
ripple magnitude of the prototype filter can be expressed as 

0cxA ≤− bb . (27) 
In order to minimize a weighted sum of the maximum amplitude distortion of the filter bank, the maximum 
passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter subject to the 
specifications on these performances, the filter bank design problem is formulated as the following 
optimization problem: 
Problem ( P ) 

x
min  ( ) ( ) xιιιx T

spaf γβα ++≡ , (28a) 

subject to ( ) ( ) 01
2
1,1 ≤−−≡ xιxQxx T

a
Tg ωω  [ ]ππω ,−∈∀ , (28b) 

 ( ) ( ) 01
2
1,2 ≤+−−≡ xιxQxx T

a
Tg ωω  [ ]ππω ,−∈∀ , (28c) 

 ( ) ( ) ( ) 0cxAx ≤−≡ ωωω ppg ,3  pB∈∀ω , (28d) 
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 ( ) ( ) ( ) 0cxAx ≤−≡ ωωω ssg ,4  sB∈∀ω  (28e) 
and ( ) 0cxAx ≤−≡ bbg5 , (28f) 

where α , β  and γ  are the weights of different criteria for formulating the cost function, ( )xf  is the cost 
function, and ( )ω,1 xg , ( )ω,2 xg , ( )ω,3 xg , ( )ω,4 xg  and ( )x5g  are the constraint functions of the 
optimization problem. 

As the set of the filter coefficients satisfying the constraints (28b) and (28c) is nonconvex, the 
optimization problem is a nonconvex optimization problem. In general, it is difficult to find the global 
minimum of a nonconvex optimization problem. 
B. Modified filled function method 

To find the global minimum of a nonconvex optimization problem, the following algorithm is 
proposed. 
Algorithm 
Step 1: Initialize a minimum improvement factor ε , an accepted error ε′ , an initial search point 1

~x , a 
positive definite matrix R  and an iteration index 1=k . 

Step 2: Find a local minimum of the following optimization Problem ( fP ) using our previous proposed 
integration approach with the initial search point kx~  [13]. 

Problem ( fP ) 

x
min  (28a), 

subject to (28b)-(28f), 
 ( ) ( )( ) 0~16 ≤−−≡ k

T
ag xxιx ε , (29a) 

 ( ) ( )( ) 0~17 ≤−−≡ k
T
pg xxιx ε  (29b) 

and ( ) ( )( ) 0~18 ≤−−≡ k
T
sg xxιx ε , (29c) 

where ( )x6g , ( )x7g  and ( )x8g  are the constraint functions we imposed. Denote the obtained local 
minimum as ∗

kx . 
Step 3: Find a local minimum of the following optimization Problem ( HP ) using our previous proposed 

integration approach with the initial search point ∗
kx  [13]. 

Problem ( HP ) 

x
min  ( ) ( )

( ) ( )∗∗ −−
+++≡

k
T

k

T
spaH

xxRxx
xιιιx 1γβα , (30a) 

subject to (28b)-(28f), 
 ( ) ( )( ) 016 ≤−−≡′ ∗

k
T
ag xxιx ε , (30b) 

 ( ) ( )( ) 017 ≤−−≡′ ∗
k

T
pg xxιx ε  (30c) 

and ( ) ( )( ) 018 ≤−−≡′ ∗
k

T
sg xxιx ε , (30d) 

where ( )xH  is the filled function we defined, and ( )x6g ′ , ( )x7g ′  and ( )x8g ′  are the constraint functions we 
imposed. Denote the obtained local minimum as 1

~
+kx . Increment the value of k . 

Step 4: Iterate Step 2 and Step 3 until 
( ) ( ) εγβα ′≤−++ ∗

−
∗

1kk
T

spa xxιιι . (31) 

Take the final vector of ∗
kx  as the global minimum of the original optimization problem. 

Step 1 is an initialization of the proposed algorithm. In order not to terminate the algorithm when the 
convergence of the algorithm is slow and to have a high accuracy of the solution, both ε  and ε′  should be 
chosen as small values. Also, as 1

~x  is an initial search point of the optimization algorithm, this initial search 
point should be in the feasible set. However, in general it is difficult to guarantee that 1

~x  is in the feasible 
set, it should be chosen in such a way that most of the constraints are satisfied. Moreover, as R  is a positive 
definite matrix, it controls the spread of the hill of ( )xH  at ∗

kx . If R  is a diagonal matrix with all diagonal 
elements being the same and positive, then large values of these diagonal elements will result to a wide 
spread of the hill of ( )xH  at ∗

kx  and vice versa. Since the local minima of nonconvex optimization 
problems could be located very close together [14], the spread of the hill of ( )xH  at ∗

kx  should be small 
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and the diagonal elements of R  should be chosen as small positive numbers. Step 2 is to find a local 
minimum of ( )xf . As the constraints (29a)-(29c) are imposed on the Problem ( fP ), the maximum amplitude 
distortion of the filter bank, the maximum ripple magnitude and the maximum stopband ripple magnitude of 
the prototype filter corresponding to the new obtained local minimum are guaranteed to be lower than that 
corresponding to kx~ . Similarly, Step 3 is to find a local minimum of ( )xH . As the constraints (30b)-(30d) 
are imposed on the Problem ( HP ), the maximum amplitude distortion of the filter bank, the maximum ripple 
magnitude and the maximum stopband ripple magnitude of the prototype filter are guaranteed to be lower 
than that corresponding to ∗

kx . Step 4 is a termination test procedure. If the difference of the weighted 
performance between two consecutive iterations is smaller than a certain bound ε′ , then the algorithm is 
terminated. 

It has been discussed in Section I that conventional filled function methods require that (a) the current 
local minimum of the original cost function is the current local maximum of the filled function; (b) the whole 
current basin of the original cost function is a part of the current hill of the filled function; (c) the filled 
function has no stationary point in any higher basins of the original cost function; and (d) there exists a local 
minimum of the filled function which is in a lower basin of the original cost function. As R  is a positive 
definite matrix and ∗

kx  is in the denominator of ( )xH , ( ) +∞→xH  as ∗→ kxx . Hence, ∗
kx  is the global 

maximum of ( )xH  and property (a) is guaranteed to be satisfied. As the constraints (30b)-(30d) are imposed 
on the Problem ( HP ), when a new local minimum of ( )xH  is found, this new local minimum of ( )xH  will 
not be located at ∗

kx  and the original cost value evaluated at 1
~

+kx  will guarantee to be lower than that at ∗
kx . 

Hence, properties (b)-(d) are guaranteed to be satisfied. As a result, the proposed algorithm guarantees to 
reach the global minimum of the nonconvex optimization problem. 

As the efficiency of general nonconvex optimization algorithms would depend on the initial search 
points, the total number of local minima of the optimization problems and the stopping criteria of the 
optimization algorithms, there is always a tradeoff between the accuracy of the obtained solutions and the 
efficiency of the optimization algorithms. For nongradient based approaches, as most of the evaluation points 
are ignored, the effectiveness of these algorithms is low. On the other hand, our proposed method guarantees 
to obtain the local minimum in each iteration, the effectiveness of our proposed algorithm is high. Hence, for 
the same period of time, our proposed method would obtain a better solution than that of nongradient based 
approaches. 
 

IV. NUMERICAL COMPUTER SIMULATIONS 
In order to have a fair comparison, the performance of the QMF banks designed via our proposed 

method is compared to that designed via the minimax approach discussed in [4]. We choose the same 
passband, stopband, filter length, maximum passband ripple magnitude, maximum stopband ripple 
magnitude and desirable magnitude response of the prototype filter as that in [4], that is 

[ ]ππ 4.0,4.0−=pB , (32) 

[ ] [ ]ππππ 6.0,,6.0 −−= UsB , (33) 
36=N , (34) 

50−=pε dB, (35) 

50−=sε dB (36) 
and 

( )
⎩
⎨
⎧

∈
∈

=
s

p

B
B

D
ω
ω

ω
0
1 . (37) 

In order to guarantee that the performance of the QMF bank designed via our proposed method is better than 
that in [4], the specification on the maximum amplitude distortion of the filter bank is chosen as 58−=aε dB, 
which is better than that in [4] ( 4576.50003.0 −==aε dB). In order not to have any bias among the maximum 
amplitude distortion of the filter bank, the maximum passband ripple magnitude and the maximum stopband 
ripple magnitude of the prototype filter, all the weights in the cost function are chosen to be the same, that is 

1=== γβα . In this correspondence, 610−=′= εε  are chosen which is small enough for most applications. 

1
~x  is chosen as the filter coefficients obtained via the Remez exchange algorithm, which guarantee to satisfy 
the specifications on the maximum passband ripple magnitude and the maximum stopband ripple magnitude 
of the prototype filter. R  is chosen as the diagonal matrix with all diagonal elements equal to 310− , which is 
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small enough for most applications. 
To compare the efficiency of the designed method, our proposed method only takes three iterations to 

converge and the total time required for the computer numerical simulations is 1.6 seconds. On the other 
hand, the method discussed in [4] takes 68 iterations to converge and the total time required for the computer 
numerical simulations is 80 seconds. Hence, it can be concluded that the method discussed in [4] requires 
more computational efforts than our proposed method and our proposed method is more efficient than that 
discussed in [4]. The magnitude responses of the filter banks as well as the magnitude responses of the 
prototype filters in both the passband and the stopband designed via our proposed method are shown in 
Figure 1. It can be seen from Figure 1 that the prototype filter designed by our proposed method could 
achieve 2416.64−=pδ dB and 3625.50−=sδ dB, and the QMF bank could achieve 1557.58−=aδ dB. It can be 
checked easily that the QMF bank designed via our proposed method achieves better performances on the 
maximum amplitude distortion of the filter bank, the maximum passband ripple magnitude and the maximum 
stopband ripple magnitude ripple of the prototype filter than that designed by the method discussed in [4]. 
This is because the QMF bank designed by the method discussed in [4] is not the global minimum, while that 
designed by our proposed method is the global minimum. 
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Figure 1. (a) Magnitude response of the filter bank. (b) Magnitude response of the prototype filter in the 

passband. (c) Magnitude response of the prototype filter in the stopband. 
 

V. CONCLUSIONS 
This correspondence proposes a modified filled function method for the design of a two-channel linear 

phase FIR QMF bank so that a weighted sum of the maximum amplitude distortion of the filter bank, the 
maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter is 
minimized. The proposed method could find the global minimum of the nonconvex optimization problem 
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efficiently. 
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