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Two-Channel Perfect-Reconstruction FIR QMF 
Structures Which Yield Linear-Phase 

Analysis and Synthesis Filters 

Abstruct-Among all cases of two-channel FIR perfect-reconstruc- 
tion QMF structures which yield linear-phase filters, only two cases 
yield good filters in the practical sense. In this paper, lattice-type struc- 
tures are derived for both cases-to structurally enforce the perfect- 
reconstruction and linear-phase properties simultaneously. The struc- 
ture in the first case is related to the linear prediction lattice structure. 
For the second case, new structures are developed by propagating the 
perfect-reconstruction and linear phase properties. Design examples, 
based on optimization of the parameters in the lattice structures, are 
presented for both cases. 

I .  INTRODUCTION 

UADRATURE mirror filters (in short, QMF’s) are 
used in many speech and communications applica- 

tions [ l ] ,  [2]. A two-channel QMF bank is shown in Fig. 
1 where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH o ( z ) ,  HI ( z )  are the transfer functions of anal- 
ysis bank filters, and F, (z ) ,  F ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) are the synthesis fil- 
ters. The reconstructed signal, in general, suffers from 
aliasing error, amplitude, and phase distortions, due to 
the fact that the filters H , ( z ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,(z), F o ( z ) ,  and F , ( z )  
are not ideal. A common requirement in most applications 
is that the reconstructed signal R ( n )  should be “as close” 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  as possible in some well-defined sense. A system 
that is free from aliasing, amplitude, and phase distortions 
is called a perfect-reconstruction QMF bank. The recon- 
structed signal is therefore just a time-delayed version of 
the transmitted signal x ( n ) ,  i.e., y ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= b.r(n - no) for 
some nonzero constant b and some positive integer no. 

The theory of perfect reconstruction, when the number 
of channels is a power of 2,  is well known [2]-[4]. The 
design method in [2] and [3] is based on spectral factor- 
ization of an FIR halfband filter. The elegant choices of 
H o ( z ) , H l ( z ) , F o ( z ) ,  and F,(z)cancelaliasingandyield 
a perfect-reconstruction system. Some methods of perfect 
reconstruction for an arbitrary number of channels have 
been reported recently [5]-[7]. In [6] and [lo], a proce- 
dure for designing two-channel perfect-reconstruction 
systems with linear-phase FIR filters has been outlined. 
This procedure is based on judicious factorization of a 
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Fig. 1. The 2-channel QMF bank. 

linear-phase FIR halfband filter. However, the number of 
possible spectral factors grows exponentially with respect 

to the order of the filters and the resulting filters are not 
guaranteed to be optimal. In a recent paper [20], the au- 
thors discussed several properties of M-channel linear- 

phase perfect-reconstruction systems and, moreover, they 
derived a lattice structure for the two-channel linear-phase 
perfect-reconstruction QMF bank. Based on optimization 
of these lattice coefficients, they have been able to obtain 
good design examples. 

The linear-phase analysis filters Ho ( z )  and HI ( z )  of the 
two-channel perfect-reconstruction systems developed in 
[6], [lo], and [20] have odd order and opposite symme- 
try. In other words, the impulse responses of H o ( z )  and 
HI ( z )  are symmetric and antisymmetric, respectively, or 
vice versa. This, as we shall show in Section 11, is one of 
the two cases that yield nontrivial perfect-reconstruction 
linear-phase FIR filters. The other choice yields filters 
with even orders and with symmetric impulse responses. 

Let H k ( z )  and F k ( z ) ,  0 I k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1, denote the analysis 
and synthesis filters, respectively, of a two-channel QMF 
bank. We can always represent them in terms of their 
polyphase components [ 11, [5], [ 1 13 as 

I 

H k ( z )  = z - ’Ek , ( ( z2 )  and 
/ = 0  

1 

Fk(Z)  = / = 0  c z - ( l - / ) R / , J ( z 2 ) .  (1) 

With E ( z )  [ E k . / ( z ) ]  and R ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 [ R l . k ( z ) l ,  we can 
redraw the QMF bank of Fig. 1 as Fig. 2. Based on stan- 
dard identities for multirate systems [ l ] ,  Fig. 2 can be 
redrawn as Fig. 3. We can obtain a perfect-reconstruction 
system [5] if we choose R ( z )  = E - ‘ ( z ) .  If the analysis 
filters are FIR, the choice R ( z )  = E - l ( z )  gives rise to 
FIR synthesis filters, provided det E ( z )  = bz-‘ where b 
and r are a nonzero constant and a nonnegative integer, 
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Fig. 2. An equivalent structure for Fig. 1 .  

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. A redrawing of Fig. 2. 

respectively. In this paper, the term “perfect reconstruc- 
tion” is synonymous with the condition det E ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= bz-‘. 

Our aim is to obtain a structure for the pair of transfer 
functions [ H o ( z ) ,  HI ( z ) ]  with overall form as in Fig. 4. 
The structure should have the following features zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAregard- 
less of the multiplier values in the structure: 

1) Ho(z) and HI ( z )  are linear-phase FIR filters; 
2) det E(z) = bz-’; 
3) every pair of FIR transfer functions [ Ho (z ), HI (z ) ] 

with the above two properties should be realizable by the 
structure. 

Such a structure will be called a linear-phase perfect- 
reconstruction structure, and such a pair [ H o ( z ) ,  H , ( z ) ]  
will be called a perfect-reconstruction pair. As a first step 
toward this goal, we obtain structures satisfying Property 
1 and then incorporate Property 2 above. 

Most of the two-channel QMF designs, known so far, 

satisfy the power-complementary property (i.e.,  

I Ho( e j “ )  l 2  + I HI (e’”) = 1 ) either approximately, as 
in [ 11 and [ 161, or exactly as in perfect-reconstruction sys- 

tems [2]-[5]. This condition, however, is not necessary 
for perfect reconstruction [6], [20]. In fact, if we con- 
strain Ho(z )  and HI ( z )  to be linear-phase filters, it will 
be necessary to give up the power-complementary prop- 
erty [2 11. All the QMF analysis filter designs in this paper 
have the linear-phase and perfect-reconstruction property, 
accomplished by relaxing the power-complementary re- 
quirement. 

We would like to mention the fact that for the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M channels where M > 2, all three requirements, namely, 
perfect reconstruction, linear phase, and power comple- 
mentarity, can be simultaneously imposed on the QMF 
structure (see comments below (9) in [20]). It turns out 
that the resulting structure in [20] yields only trivial filters 
for the case of two-channel QMF bank [21]. 

In Section 11, we derive the necessary form of E ( z )  
such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) and HI ( z )  are linear-phase FIR analysis 
filters of orders No - 1 and N I  - 1, respectively. Impos- 
ing the perfect-reconstruction condition on the above 
E ( z ) ,  we first show that the only two cases which yield 
nontrivial analysis filters are such that the sum of their 
lengths is a multiple of 4 and either 

Fig. 4.  Pertaining to the discussion of a perfect-reconstruction pair. 

1) both filters have odd order and opposite symmetry, 

2) both filters have even order and are symmetric. 
We study the first case extensively in Section I11 and 

present a structure which covers all pairs of odd-order lin- 

ear-phase FIR analysis filters with opposite symmetry. I 
This structure is closely related to the linear prediction 
lattice structure [8]. With the perfect-reconstruction con- 
dition imposed on this lattice structure (with some modi- 
fications), most pairs of linear-phase perfect-reconstruc- 
tion odd-order analysis filters (with opposite symmetry) 
are covered. We follow the theory by a design example. 
Similarly, the second case is discussed in Section IV. 
Based on the theory of symmetric polynomials, we show 
that all symmetric even-order linear-phase perfect-recon- 
struction pairs can be realized using this structure. A de- 
sign example is included. 

Notations Used in the Paper: We consider only real- 

coefficient linear-phase FIR filters in this paper. Bold- 
faced letters indicate vectors and matrices whereas super- 
script T denotes transposition. Node-labelings, such as 
TN ( z )  in Fig. 5, are often used to denote the transfer 
function from the input x (  n )  to the indicated node. If the 
impulse response t, of T ( z )  is symmetric, we say “ T ( z )  
is symmetric,” and so on. The center of a linear-phase 
FIR transfer function is defined to be the center of sym- 
metry or antisymmetry of t,,. Clearly, the center of T(z) 
could be either an integer or an odd multiple of ( 1  /2) .  
The tilde accent-on a transfer matrix F(  z )  is defined such 
that E ( z )  = FT(z - ’ ) .  In the scalarcase:F(z) = F ( z - ’ ) .  
The mirror image of T( z) ,  denoted by T(  z )  is defined as 

f(z) z-“-’)T(z-I)whereN - 1 isthedegreeofT(z).  
[ T(z),  U(z) ]  is called a mirror image pair (in short, MIP) 
if T ( z )  = o(z). Naturally, two transfer functions in an 
MIP have the same order. Similarly, for a transfer matrix 
E ( z ) ,  e( , )  is defined to be a matrix whose elements are 
the mirror images of the corresponding element of E ( z ) ,  
i.e., & ( z )  = [Ekk, ,  ( z ) ] .  For brevity, “linear-phase’’ and 
“perfect-reconstruction” are abbreviated as LP and PR, 
respectively. The adjectives, symmetric, antisymmetric, 
even, and odd are also abbreviated as S, A, E, and 0, 
respectively. For example, if H o ( z )  is symmetric, even 

order and H I  ( z )  is antisymmetric, odd order, then the pair 
[Ho(z), HI ( z ) ]  is called an SAEO pair. 

At this point, we would like to warn the reader that the 
acronym QMF is a misnomer. The letter “M” which 
stands for “mirror” was originally invented [24] because 
the response I HI (e’“) I was a perfect mirror image of 
1 Ho(e j “ )  I with respect to 2 ~ / 4  which is a “quarter” of 

or 

‘Independent work in this direction has also been reported in I251 
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Fig. 5 .  The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2 LPC lattice structure and its resulting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALP pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[H"(Z). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,(2)1. 

27r. In order to obtain linear-phase analysis filters which 
are compatible with perfect reconstruction, it is necessary 

to give up the "Quadrature Mirror" property. However, 
the better alternative to the acronym QMF, viz., "maxi- 
mally decimated analysis/synthesis system, " is too in- 
convenient for frequent use (unless a new acronym such 
as MDASS is added to the evergrowing list of acro- 
nyms!). We shall therefore use the term QMF to signify 
any system which can be drawn as in Fig. 1 .  

11. TWO-CHANNEL LP PR FIR QMF BANKS 

The impulse response of a linear-phase real-coefficient 
filter could be either a symmetric or an antisymmetric se- 
quence and, furthermore, its center could be either an in- 
teger or an odd multiple of ( 1 / 2 )  (i.e., its order could be 
either even or odd [9]). As recognized by Vetterli in [lo], 
there are thus several cases to study. With two analysis 

filters H o ( z )  and H I  ( z )  to consider, we have in total 16 
cases. Let the centers and orders of Hk ( z )  be ck and Nk - 
1, respectively, 0 I k I 1. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk(z), 0 I k I 1 is 
linear phase, it satisfies 

H~(z) = Jkz2"Hk(z)  ( 2 )  

where 

1, H k ( z )  is symmetric; 

- 1 ,  Hk ( z )  is antisymmetric. 
J k  = [ 

In terms of the polyphase components Ek,, ( z ) ,  Hk(  z )  is 
represented as 

( 3 )  

where 

Using (3 )  in ( 2 ) ,  we obtain 

We shall define the center of Ek,j ( z )  as ckj where 

c k / 2 ,  if ck is an integer; 

if ck is an odd multiple of (1 / 2  

if ck is an integer; c k / 2  - 1 / 2 ,  

if ck is an odd multiple of ( 1 / 2  

Using (6a) and (6b) in ( 5 )  and comparing like powers of 
both sides, we have the necessary form of E ( z )  which 
yields linear-phase analysis filters. Thus, 

\ if ck is an odd multiple of ( 1 / 2 ) .  

( 7 )  

Having found the necessary form for E ( z ) ,  we proceed 
to examine which case (out of 16 possible ones) could 
yield nontrivial filters under the perfect-reconstruction 
constraint. In Table I we shall eventually summarize these 
16 possibilities. 

Suppose that both filters H k ( z )  are antisymmetric (i .e. ,  

Jo = JI = - l ) ,  then they both have a zero at z = 1 .  
Consequently, perfect reconstruction is not possible here 
since we cannot reconstruct the zero-frequency compo- 

nent of the signal. The 12 remaining cases can be reduced 
further by observing that the second column in Table I is 
the same as its third column if we interchange the filters. 

Thus, there are only 8 cases to consider, namely, the cases 
that lie in the first and second columns of Table I. 

A. co and c1 are Integers (No - I and N ,  - 1 are 
Even) 

Using (7), B ( z )  takes the form 

It is clear from (8) that each element Ek,j ( z )  is either a 
symmetric or antisymmetric polynomial. Taking the de- 
terminant of both sides of (8) and noting that det E ( z )  = 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
S L ' M M 4 R Y  OF Al.1. C A S t S  tOR . T H t  ?-CHANNEL PR LP FIR Q M F  B A N K .  S,  
A.  E. A N D  0 STAN11 FOR SYMMETRIC, ANTISYMMETRIC,  EVEN. A N D  O D D ,  

R F S P E C ~ I V E I . Y .  Ht ,RE,  "YES" DENOTES THE EXlST tNCE OF NONTRIVIAL 

"TRIVIAL"  DENort,s EXlSrt.NCt OF O N L Y  TRIV IAL  FILTER BANKS 
FILTER BANKS.  "NO" DENOTES NONEXISTENCE OF A N Y  FILTER BANK A N D  

FILTER SYMMETRY 

FILTER 
ORDER 

det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ) ,  we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
det E ( z )  = det E ( z )  = JoJ l  [ Z ~ ( ~ ' " ~ + ~ I ~ )  Eo.o(z) El, I ( z )  

E0,I ( z )  E1.0(z)l 
- z2(col  + C I ' l )  

= J o J I z ( c o + c I - l )  det E ( z ) .  

Since det E ( z )  is required to be a delay (i.e.,  Z-' where 
r is a nonnegative integer), the above equation yields 

(9)  
Z r  = J ~ J ~ ~ ( ~ I I + ~ I - I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- r  z .  

The only solution for Jo and Jl from (9) is Jo = J1 = 1 
(we have excluded the case when Jo = JI = -1 above 
since PR is not possible here). In other words, PR is pos- 
sible only if both filters are symmetric. Writing (9) in 
terms of the orders of H k ( z )  and using the relation ck = 
(Nk - 1)/2,  we have 

No + NI = 4r2, r2 = nonnegative integer. (10) 

Due to the symmetry property of det E ( z ) ,  the number of 
distinct constraints obtained from det E ( z )  = z - ~  is (No 
+ Nl) /4 ,  whereas the number of coefficients from H k ( z )  
are ( N o  + N l ) / 2  + 1. Hence, the number of degrees of 
freedom left over for the design in this case (SSEE) is ( N o  
f Nl)/4 + 1. 

B. co and cI are Odd Multiples of ( 1  /2 )  (No  - 1 and 
NI - 1 are Odd) 

Using the relation in (7), E ( z )  has the following form: 

Moreover, we note from (6a) and (6b) that cko = ckl ;  thus, 
(1 1) yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 

det E ( z )  = det E ( z )  = -JoJIz2(c*1+c10) det E ( z ) .  (12)  

With (6a), (6b) and the PR requirement det E ( z )  = Z-', 
(12) yields 

(13)  
Z r  = - J ~ J ~ ~ C O + C I  - I - r  z .  

This is possible if and only if Jo and Jl have opposite 
signs, i.e.,  H o ( z )  and H I  ( z )  have opposite symmetry. We 
furthermore know that coo = ( N o  - 2)/4,  and cIo = (NI 
- 2) /4 ,  therefore, (13) yields 

No + N I  = 4r1, r I  = nonnegative integer. (14) 

Similar to the above case, the degree of freedom in this 

case (SAOO) is (No + Nl) /4 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. co and cl are Integer and Odd Multiple of ( I  /2 )  (No  
- 1 and NI - 1 are Even and Odd) 

We will not discuss the other case where co is an odd 
multiple of ( 1 / 2 )  and cI is an integer here since it can be 
similarly derived. Using (7), E ( z )  takes the form 

Using the fact that cl0 = cI I [derived from (6a) and (6b)], 
the determinant of E ( z )  in (15) is 

det E ( z )  = JoJ1z2c~o[z2CooEo,o(z) E l . o ( ~ )  

(16) - Z2ColE . ( 0 I z )  El, I ( Z , ] .  

Since the degrees of (z2C"Eo,o(z)  E l , o ( z ) )  and ( z ~ ~ " '  
Eo, I ( z )  E l .  I ( z ) )  differ in general by one, therefore, 
det E ( z )  is not naturally symmetric. Observing also that 

CW = (No - 1)/4, 

col = (No - 3)/4, 

C I O  = (NI - 2)/4, 

C I I  = (NI - 2)/4,  r 
then (16) yields ( N o  + NI - 1 )/2 constraints when we 
equate it with bz'. Meanwhile, the number of coefficients 
are (No + NI + 1 )/2.  The degree of freedom is therefore 
only 1 and, thus, the resulting filters are trivial. One ex- 
ample of such trivial PR LP pair is 

No - 1 

Ho(z)  = c z-', H l ( z )  = I + Z - I .  (17) 

We summarize all the cases in Table I. From the table, 

we observe that there are only two distinct cases which 
yield nontrivial filters. These are the S A 0 0  and SSEE 
cases, which we shall hereafter call Type A and Type B, 
respectively. 

Let us now discuss the properties of the synthesis filters 
of a PR system. From Fig. 2, with R ( z )  = E - ' ( z ) ,  we 
have 

/ = 0  

Since det E ( z )  = bz-', the above equation becomes 

Simplifying the above expression, we have 

. (19) 
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Note that the above relation (20) between the synthesis 
and analysis filters holds regardless of phase responses of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HA ( z ) .  Moreover, if the analysis filters have linear phase, 
then so do the synthesis filters. The noncausal factor z Z r  
can be dropped in practice. 

111. ANALYSIS FILTERS A N D  LATTICE STRUCTURES FOR 

TYPE A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASYSTEMS 
Recall that “Type A” implies that [ H o ( z ) ,  HI ( z ) ]  is 

a linear-phase FIR S A 0 0  pair, and that det E ( z )  is a de- 
lay. Our aim here is to obtain FIR lattice structures for 
the pair [ H o ( z ) ,  HI ( z ) ]  such that it is guaranteed to be 
Type A.  We shall first propose a structure, and then prove 
that (almost) any Type A pair can be realized by the struc- 
ture, so that the structure is a general tool for optimal 

design of such pairs of filters. (The parenthetical adjective 
“almost” is elaborated toward the end of this section.) 
The basic ingredient of the proof will be to show that such 

a pair can be systematically synthesized in the proposed 
structural form. In the following discussions, the synthe- 
sis procedures are primarily rools for such proofs. 

Without loss of generality, we assume that H , ( z )  and 
H I  ( z )  are symmetric and antisymmetric, respectively. 
Their lengths, No and N I ,  are both even. We start with a 
structure closely related to the well-known linear predic- 
tion lattice [8], [12] shown in Fig. 5 (for the moment ig- 
nore the last section [ 1 -11). Traditionally, in the linear 
prediction lattice, the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,, which are real val- 
ued, are constrained to be k f ,  < 1. This constraint is a 
necessary and sufficient condition for the FIR transfer 
function TN ( z )  to have minimum-phase (i.e., all N zeros 
strictly are inside the unit circle). The FIR function UN ( z )  
is automatically constrained by the structure to be such 
that U N ( z )  = z - ~ T ~ ( z - ’ )  = & ( z ) .  Thus, [ T N ( z ) ,  

U,, ( z ) ]  is an MIP, and UN ( z )  is a maximum-phase FIR 
filter. 

If we permit k, to be arbitrary real numbers (i.e.,  not 
constrained to be k:, < 1 ), then UN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I) and TN ( z )  are 
still related as UN ( z )  = pN ( z ) ,  but UN ( z )  can now have 
arbitrary phase response. Caution should, however, be 
exercised concerning the possibility of k:, = 1 ,  which 
leads to “singularities” as elaborated a few paragraphs 

later. We shall now exploit the fundamental features of 
this structure (unconstrained k,,,, with k;n # 1 ) to even- 
tually obtain Type A pairs. 

Given the pair [ Ho ( z ) ,  HI ( z )  1, the idea is to generate 
the MIP [ T N ( z ) ,  UN ( z ) ] ,  which can be synthesized in 
the form of a lattice. If H o ( z )  and HI ( z )  have the same 

lengths (No = N I )  the MIP can be generated as 

If, on the other hand, we have No < N I ,  the centers of 
symmetries of H o ( z )  and HI ( z )  should first be aligned. 
The MIP is then generated as 

The inverse relation is evidently 

which is represented in Fig. 5 .  The purpose of the delay 
1s to align the centers of symmetry of both 

Ho(z) and H l ( z ) .  For arbitrary choices of Ho(z) and 

HI ( z ) ,  the filters TN ( 2 )  and UN ( z )  obtained from (22) no 
longer have minimum phase and maximum phase. How- 
ever, by permitting unconstrained real values for k,,,, one 
can still realize the pair [ TN ( z ) ,  UN ( z ) ]  by using the 
structure of Fig. 5. 

To comprehend the nature of the synthesis problem at 
hand, we shall, for a moment, relax the perfect-recon- 
struction constraint. Thus, let [ TN ( z ) ,  UN ( z ) ]  be any 
MIP of order N .  The procedure to synthesize a lattice of 

the form in Fig. 5 can be understood by referring to Fig. 
6(a), which shows the mth section of Fig. 5 .  Since the 
polynomials T,(z) and U,,,(z) are given as 

Z - l N ~ - N ~ ) ) / ?  . 

we can invert the relation to obtain 

(24 1 
provided that k i  # 1. Thus, given the MIP [ TN ( z ) ,  
UN ( z )  1, we can iteratively compute the lower order pairs 

[ T ~ ( z ) ,  U~(Z)], k = N - 1, N - 2, * * * , by repeated 
application of (24), resulting in the structure of Fig. 5. 
The quantity k,, which results in a reduced-order pair 

[Trn - l (Z) ,  U,,-l(z)l is given by k ,  = l m . r n / t m . o  where 
rm, ;  is the ith coefficient of the impulse response of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,, ( z  ), 
i .e.,  T,(z) = E ~ = o t , ~ l , j z - ’ .  It can be verified that 

[ T, - I  ( z  ), U,,, - I  ( z  ) I is an MIP (assuming, of course, that 
[ T, (z ) ,  U , ( z ) ]  is an MIP). This procedure is the famil- 
iar “downward recursion” in the Levinson’s algorithm 

[8], [12], [13] with the exception that k,, is now arbitrary 
(rather than constrained to be k:, < 1 as in Levinson’s 
algorithm). 

Now, the above procedure works for any MIP [ TN ( z ) ,  
UN ( z ) ]  provided that kf, # 1 at any stage. If k f ,  = 1 for 
some m, the 2 X 2 matrices in (23) and (24) are singular. 
The meaning of this singularity situation is discussed fur- 
ther in Appendix A. In what follows, we shall outline a 
method to overcome singularity situations. 

The iteration in (23) is not the only means of construct- 

ing a lower order MIP [ T,, - I  ( z ) ,  U,, - ( 2 )  ] from an MIP 
[ T,,(z), U,,, (z) ] .  A more general procedure would be to 
define 
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UN(/) S=iN I- No'/? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(C) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  (a) Type I building block. (b) Type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 building block for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS A 0 0  
or  SAEE LP FIR lattice structure. (c) The S A 0 0  or SAEE LP FIR lattice 
structure. 

and 

which works as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzm is an arbitrary real number. 
The parameter k, is chosen to be 

so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,( z )  - k, U r l l ( t )  has a zero at z = z,,,, cancelling 
the denominator 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz-lz, in (25a). Since [ T , ( z ) ,  
Utr,(z)] is MIP, the factor ( z - '  - z , )  is cancelled off in 
(25b) by the same choice of kin. Furthermore, since the 
pair [ 1 - Z - ~ Z ~ , ~ ,  z-I - z , ]  is MIP, the pair [ T,- I ( z ) ,  
U,,,- I (z)] is guaranteed to be a reduced-order FIR MIP! 

The purpose of the number z,, is to avoid the possibility 
of k i  being unity. Since T,, ( z )  2~ U,,, ( z )  is a finite degree 
polynomial, it has only m zeros so that there is guaranteed 
to exist z ,  such that T,(z,,,) + U,,,(Z,,,> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0,  T,,,(z,,) - 
U,,,(zm) # 0, and U,(z,,) # 0. Except for this restric- 
tion, z ,  is entirely arbitrary. In order to find a z ,  that 

works, it is only necessary to try out at most 3m values, 
say, z ,  = 2-', k = 0, 1 ,  . , 3m - 1. In Appendix B, 
it is shown that such a z,,, is guaranteed to exist as long as 
there is no common factor between TN ( z )  and UN ( z ) .  (It 
is also shown in Appendix C that such a common factor 
cannot exist if [Ho(z), Hl(z)] is a PR pair.) Fig. 6(b) 
shows the structural interpretation of the new order-re- 
duction scheme. The resulting structure for arbitrary MIP 
[ T N ( z ) ,  U N ( z ) ]  is as in Fig. 6(c) with building blocks 
A , , ( z )  as in Fig. 6(b). It is clear that any arbitrary MIP 
[ TN ( z ) ,  UN ( z  ) ] can be represented in this form, and that 

for arbitrary k,, z ,  ( k i t  f l ) ,  the structure gives rise to 

only MIP [ T N ( z ) ,  U, ( z ) ] .  Notice that the traditional 
structure of Fig. 5 is obtained as a special case with zlr1 = 

0. Readers familiar with the relation between the linear- 
prediction IIR lattice and FIR lattice structure [8] will rec- 
ognize that the relation between Fig. 6(b) and the IIR all- 
pass structures in [13, p. 4831 is similar. For convenience 

of discussion, the building blocks in Fig. 6(a) and (b) will, 
respectively, be called Types I and 11. These are equiva- 
lent when z,, = 0. 

The structures for [ H,( z ) ,  HI ( z ) ]  proposed in Figs. 5-  
7 are not in the form of Fig. 4 ,  and this gap should now 
be bridged. First consider Fig. 5. It is clear that we can 

represent [ Ho ( z ) ,  H i  ( z )  1 as 

where G ( z )  is a 2 X 2 FIR transfer matrix with det G ( z )  
= delay. However, since this is not in the form (3) [i.e.,  
G ( z )  is not equal to E(z*)], we cannot conclude that 

d e t E ( z )  = delay. Thus, it is nor true that all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Ho(z), 
Hl(z)] pairs represented by Fig. 5 lead to FIR perfect- 
reconstruction analysis banks. If we impose the stipula- 
tionthatk, = O f o r e v e n m i n F i g . 5 , t h e n G ( z )  = E ( z ' ) ,  
and det E (  z )  is indeed a delay. What is more important, 
however, is the following stronger result. 

Lemma 3.1: Let [ H o ( z ) ,  HI (z)] be a Type A pair such 
that we can synthesize it in the form of Fig. 5, such that 
k,, # & 1 for any m. Then the even-numbered coefficients 
k2,  automatically turn out to be zero, if det E (  z )  is a de- 
lay. 

Proof: The proof is inductive. Suppose that we are 
given an mth-order MIP [ T r r 1 ( z ) ,  U , l l ( z ) ]  which at the 
same time is a PR pair, i .e.,  

with det E,, , (z)  = cz-'. 

power in det E r l 1 ( z )  is 
should be 0. This condi- 

tion, together with k,,, = t r r l . , l l / t r r , ,o,  yields 

I l l  (28b) 
= & - tm. 111 - I 

tm,o rm, I 

Substituting (28b) in (24), we obtain r,,, - I ,,,, - I - - U,,, 

= 0. Thus, an order reduction by two is automatically 
enforced, so that 

(29 )  

By combiSing (29) and (28a), we also see that [Til-?(:), 
U,,, - 2 ( 2 )  ] is an MIP PR pair. So if we start with an MIP 
PR pair [TN  ( z ) ,  U,v ( z ) ]  and repeat the above order re- 
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S=(N1- N o ) /  2 

Fig. 7. The S A 0 0  or SAEE LP FIR lattice structure. 

duction process, we see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ,  = 0 for even zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and Fig. 

8 reduces to a PR structure as shown in Fig. 9. QED 
Since we restrict z ,  to be zero in Lemma 3.1, it there- 

fore does not cover all Type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA pairs of filters. The pairs 
of filters which the structure of Fig. 9 excludes are essen- 
tially the ones which, during the synthesis process, yield 
internal transfer function pairs (the [ T,( z ) ,  U, ( z ) ]  pairs) 
such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtm.o = ft,.,, forcing k,  = 1. Suppose that the 
optimal filter happens to be one of these excluded filters. 
Then, in practice, we can still always get as close to it as 
possible by using the structure of Fig. 9. Thus, these ex- 
cluded filters are not expected to result in serious loss of 
generality. 

A result similar to Lemma 3.1 does not hold for the 
structure with the generalized building blocks shown in 
Fig. 7. Even if such a result were true, the quantity 
E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I  ( z )  which arises in the synthesis bank would contain 
the inverses of these building blocks. These inverse build- 
ing blocks would contain the two factors 1 /( 1 - z-Iz,,) 
and l / ( z - '  - z,) at least one of which is necessarily 
unstable (i.e., synthesis filters are IIR and unstable) for 
any choice of z,*. This observation excludes the consid- 
eration of Fig. 7 for the rest of this paper. 

Example 3. I :  In the optimization procedure, we addi- 

tionally use two scale factors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, and P2 at the end of the 
structure in Fig. 9. The objective function to be mini- 
mized is 

"11 

0 ws 

@ = i [ 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ho(e'")l]2 dw + i n  [HO(e'")]' dw 

U/, 
2 + j" [ l  - (Hl(e'")(] dw + i [ H ~ ( e ' " ) ] ' d w .  

"I 0 

A mathematical optimization subroutine [15) is used to 
search for an optimal solution. In order to initialize the 
lattice coefficients, we use the tabulated linear-phase fil- 
ters designed earlier by Johnston 1221, (1, p. 4011. For 
our example, the filter 64D was used for HO( z ) ,  and H I  ( z )  
was taken to be Ho( - z ) .  With this "initial pair," the 
lattice of Fig. 5 was synthesized. Since the filters obtained 
from [ l ,  p. 4011 give only an approximation to a PR pair, 
the even-numbered coefficients k2, do not turn out to be 
zero. These were forced to be zero during initialization, 
and the odd-numbered coefficients reoptimized using [ 151. 
The frequency responses of these reoptimized filters are 
shown in Fig. 10(a). The number of lattice sections in the 
example is equal to 32 and the transition bandwidth is Af 

S = ( N 1 -  N o ) /  2 

Fig. 8. A redrawing of Fig. 7 with ;,,, = 0 

S = ( N l - N 0 ) / 2  

Fig. 9. The lattice stmcture for Type A system. N is odd. 

= 0.086. Notice that these filters form an exact PR pair, 
and retain the PR property in spite of quantization of the 
coefficients k,, to a n j  desired level. The synthesis filters 
F o ( z )  and F ,  ( z )  can be obrained by using (20). Table I1 
displays the lattice coefficients k2,,, + I ,  and the impulse re- 
sponses of both analysis filters. Table I1 displays only the 
first half of the coefficients of Ho ( z )  and H I  (I) since the 
impulse responses are symmetric and antisymmetric, re- 
spectively. 

It is interesting to compare the above perfect-recon- 
struction design with Johnston's 64D filter in [ I ,  p. 4011 
(to be referred to as the 64D filter in the following dis- 
cussion). Both designs have linear phase and filter lengths 
equal to 64. The PR pair has a minimum stopband atten- 
uation of about 42 dB, and reconstruction error equal to 

zero. On the other hand, the 64D filter has a better mini- 
mum stopband attenuation of about 65 dB, but a nonzero 
reconstruction error (defined in [l])  of about 0.002 dB. 
Both designs have about the same transition bandwidth, 
viz., A f = 0.086. The tradeoff is therefore very clear. For 
comparison, the frequency responses of the 64D-analysis 

filters are shown in Fig. 10(b), and the impulse response 
coefficients in Table 111. Notice that the significantly large 
coefficients in the 64D filter agree closely with those in 
the PR pair. The 64D filters satisfy the relation HI ( z )  = 

HO( - z ) ,  whereas the PR pair does not. It can in fact be 
shown that, with H , ( z )  = HO( - z ) ,  it is impossible to 
force det E (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) to be an exact delay unless H, ( z )  is a triv- 
ial function (see Appendix D). Notice, finally, that some 
of the trailing coefficients in the PR pair (Table 11) are 
very small (compared to the ones in Table 111). These can 
be replaced with "zero" without significant effect on the 
PR property. 

A second major difference between the above PR de- 
sign and the 64D filter is that the 64D pair [ H,, ( z  ), HI (I ) ] 
is approximately power complementary, i.e., 1 ~ ~ ( e ' " )  1 '  
+ ( H I  (e ' " )  1' = 1 [see Fig. 10(c)]. In fact, the design 
procedure in [22] is such that [ 1 - 1 Ho( e '*) 1 '  - 
I H I  ( e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ " )  dw is minimized. On the other hand, the PR 
pair does not satisfy the power-complementary property 
[see Fig. lO(c)]. In fact, the main basis of the PR designs 
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i+PR P A I R  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.0 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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w g 4 o . n  
D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
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z 

w -60.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 
z -80.0 

Coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAho,, Coefficients h,,, 
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Fig. 10. (a) Example 3.1: Magnitude response plots for the optimized 
analysis filters. Each filter has length = 64. (b) Example 3.1 : Magnitude 
response plots for the 64D analysis filters. Each filter has length = 64. 
(c) Example 3.1:  The plots of IHo(e'")12 + IHl(e'")12 for the 64D 
pair of filters and the new PR pair of filters. 

introduced in this paper is the fact that PR property can 
be accomplished exactly for linear-phase filters, by giving 
up power complementarity of the pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ H o ( z ) ,  H ,  ( z ) ]  as 
well as the relation H ,  ( z )  = Ho( - z )  which are two re- 
strictions forced in most of the earlier designs [ 161, [22]- 
[24] .  After relaxing these two restrictions, we can obtain 
good PR pairs which in addition have linear phase. 

Implementation Complexity: A further interesting point 
of comparison between the 64D design and our PR design 

TABLE I1 

ANALYSIS FILTERS I N  EXAMPLE 3.1.  (SAOO) PI = 9.3367072622762 x 
1O-Io, p2 = 8.6458769493813 X lo-'" 

LATTICE COEFFICIENTS A N D  IMPULSE RESPONSES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF THE OPTIMIZED 

6 11 -3.823631 x lo-' 1 -3.823631 x 
7 11 1.138260 x lo-' I -1.138260 x lo-$ 

I20 (1 -4.313674 x lo-' 1 -4.313674 x Kr51 
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0.002dB No error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TABLE IV 

COMPARISON BETWEEN JOHNSTON’S 64D FILTERS AND THE N E W  PR 
FILTERS 

Feature 

Phase Response Linear Linear 

Stopband 42.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdB 
Filter Length 

for Analysis Bank 
Implementation 
Number of APU 

for Analysis Bank 
Implementation 
Power Comple- 

mentarity 

Relation between 
Analysis Filters 

Overall Group 
Delay of 

QMF bank 

32 17 

32 49 

Approximately Does not 
holds hold 

Not explicit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H l ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= H&z) Implicitly 

such that 
det E(r )  = delay 

63 63 

is the number of multiplication and addition operations 
per unit time (abbreviated MPU and APU, respectively)2 

required to implement the analysis bank. A direct-form 
implementation of the 64D filter pair [ Ho(z), HI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  I 
would appear to require 2 X 64 = 128 MPU. However, 
there are three simplifying factors involved, viz.: a) the 
relation HI ( z )  = Ho( -z) ;  b) the symmetry relation ho(n )  
= ho(N‘  - 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn )  where N ‘  is the length of Ho(z); and 
c) the decimation by a factor of 2. Only two of these three 
factors can be simultaneously exploited, due to the fact 
that N ‘  is even (see [16] for details). As a result, we re- 
quire 128/4 = 32 MPU to implement the 64D pair using 
a direct-form polyphase structure. The number of APU’s 
required is 32. 

Now consider the PR pair of length 64 designed above 

[Table I1 and Fig. 10(a)], implemented in lattice form of 
Fig. 9. There are 32 lattice sections in the structure. Each 
lattice section can be implemented efficiently using only 
one multiplication and three addition operations (see [ 171 
and [18]). Second, both the decimators can be moved to 
the left of all the building blocks in Fig. 9 (which are 
functions of z 2 )  by replacing z P 2  with z - ’  in these build- 
ing blocks (see [ l ]  or use the identity (a) in Fig. 11 of 

[ 191). With such rearrangement, each lattice building 
block operates at the lower rate, and so the total number 
of MPU’s is equal to (32 + 2) /2 = 17. The number of 

APU’s required can be similarly verified to be 49. In con- 
clusion, for the same filter length, the PR pair requires 
only 17 MPU and 49 APU, whereas the 64D pair requires 

32 MPU and 32 APU. 
The significant features of the above comparison are 

summarized in Table IV.  As a final observation, suppose 

‘A unit of time is defined to be the sampling period ofthe input sequence 
x ( r 7 )  in Fig. 1 .  

we consider Johnston’s 32D pair in [ 11.  This filter has the 
same number of MPU and nearly the same attenuation as 
the PR pair under discussion, and in addition has recon- 
struction error = 0.025 dB [ l ] .  In other words, the 32D 
pair and the above PR pair have nearly the same cost (as- 
suming that the multiplication time significantly domi- 

nates addition time) and same performance, except the 
reconstruction error. The only price paid for perfect re- 
construction appears to be the overall group delay of the 
QMF bank, which is 63 for the PR pair, and 31 for the 
32D pair. 

The structure in Fig. 9 can be partly generalized for the 
case where M is an even integer. We briefly discuss this 
in Appendix E. 

IV. ANALYSIS FILTERS AND LATTICE STRUCTURES FOR 

TYPE B SYSTEMS 

Recall that for a Type B pair, the FIR filters Ho ( z )  and 
Hl (z )  have even orders and symmetric impulse re- 
sponses, and the determinant of E ( z )  is a delay. Let 
[Ho(z), H, (z ) ]  be a Type B pair with orders No - 1 and 
NI - 1 ,  respectively. Without loss of generality, assume 
that NI 1 No. As we have shown from Section 111, i.e., 
(lo), the lengths of these filters satisfy the condition 

No + NI = 4rl,  rl = nonnegative integer (31) 

which we call the “length condition.” Based on the fact 
that both No and N ,  are odd, it can be shown that the only 

choice for No and NI which satisfies (31) is 

NI = NO + 4L + 2, L = nonnegative integer. (32) 

In other words, the lengths of any Type B pair of filters 
have to obey both (31) and (32) simultaneously. 

We would like to find a structure which covers all Type 
B pairs of filters [ H o ( z ) ,  H I  ( z ) ] .  We accomplish this by 
showing that every such pair can be synthesized as a cas- 
caded lattice. The building blocks of the lattice will be 
such that the Type B property propagates down the struc- 
ture. Consider Fig. l l(a) where the pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ P r ( z ) ,  Qrn(z ) ]  
is a Type B pair with orders r = ( m  - 41 - 2 )  and m, 
respectively, with even m. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, ( z )  = Cy=-<‘-2 c,.~ zPJ 
and Q,(z) = Cy=o q,,,,, z-’. We shall assume that 

Pr.0 = 9,n.o f 0 (33) 

which will be justified soon. Since m is even, the order of 
[P,. ( z ) ,  Q,,(z) ]  satisfies the length condition. 

For convenience, let us express the pair [ P,. ( z ) ,  Q,, ( z ) ]  
in polyphase form, i.e., 

(34) 
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vo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  
I 

(c) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Pertaining to the downward recursion of Type B system. (b) 
The building block for Type B system where both p,', # 0 and q;, # 0. 
(c) The building block for Type B system. 

The elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,,, ( z )  have orders given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L - 

1 d  LZ 2 
- -  

(35)  

The determinant Pr.,(Z) Q , n , i ( z >  - P r , i ( z )  Q,,,.o(z) is a 
linear-phase polynomial (because P, ( z )  and Q,,, ( z )  are 
linear-phase polynomials of even order). Since this deter- 
minant is also equal to a delay, the following equation 
holds: 

- ( t n / 2  - I -  I I 
Pr.o(Z) Q , n . i ( ~ )  - Pr , i ( z )  Q n i , ~ ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC' 

(36)  

Our aim is to use (36) to extract the building block 

B( ' " ' (z2)  in Fig. l l (a)  such that the remainder pair 
[ P ' ( z ) ,  Q ' ( z ) ]  is also a Type B pair with orders ( m  - 
41 - 4 )  and ( m  - 41 - 2) ,  respectively. Since both pairs 

[ P ,  ( z ) ,  Q,,,(z) ]  and [ P ' ( z ) ,  Q ' ( z ) ]  are PR pairs, the 
building block should be a function of z' ,  which justifies 
the notation B"""( z 2 ) .  Furthermore, the determinant of 
B"""(z2) is required to be a delay, in view of the PR 
property. 

Denoting the elements of B"""(z) by B j , y ' ( z ) ,  Fig. 
1 l(a) yields 

The orders of the components in (37) are related as 

1 Order [Bb$ ' (z2) ]  Order [B: ; ' (z2)]  

Order [B :$ ' ( z * ) ]  Order [B\ '" ; ' (z2)] 

m - 4 1 - 4  

' [ m - 4 1 - 2 ]  
(39) 

Both pairs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Pr ( z ) ,  Q , n ( z ) l  and [ P ' ( z > ,  Q ' ( z ) 1  are sym- 
metric polynomials, therefore, it can be shown that 
B $ ' ( Z ' )  also have to be symmetric polynomials. More- 
over, from the first equation of (38), in order to yield a 

symmetric polynomial on the left-hand side, Bb!; ( z  * )  
P ' ( z )  and Bb'" ; ) (z2) Q ' ( z )  have to have the same orders 
so that the centers of symmetry align. Thus, from (39), 
Order [ B h ' ( z 2 ) ]  = 2 and Order [ B c ; ' ( z 2 ) ]  = 0. Sim- 
ilarly, by considering the second equation of (38), 
Order [B\ ! ; (z2)]  = (41 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) and Order [B( l ! ; ' (z2) ]  = 
(41 + 2 ) .  In summary, to obtain a symmetric pair [ P ' ( z ) ,  
Q ' ( z ) ]  with orders ( m  - 41 - 4 )  and ( m  - 41 - 2 )  from 
a symmetric pair [ P ,  ( z ) ,  Q , ( z ) ]  with orders ( m  - 41 - 
2)  and m, all the elements of the building block B"""(z2) 
are symmetric polynomials and moreover, the orders of 
the elements can be summarized as 

0 [: + 4 41 + 2 
Order [B""l ' (z2)] = 

We now propose a particular form for B""" (z*)  and 
through the "downward recursion" on the pair [ P ,  ( z ) ,  
Q,,,(z) ]  show that this particular form of B"""(z*) is in- 
deed sufficient to cover all Type B pairs. The proposed 
form is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(z) and U ( z )  are symmetric polynomials of or- 
ders (21 + 2 )  and (21 + l ) ,  respectively, i.e., T(z) = 
-y2/ + 2 ,=o f j z - j  and U ( z )  = Cy'_+' ujz-'. We assume that to 
= uo = 1 (see justification later). From (41), the condi- 
tion "det B'"" '(z) = delay" is equivalent to 

Equating the like powers of z in (42), we obtain 

Thus, any choices of uk and tk that satisfy (43) guar- 
antee that det B"""( z )  = cz-( '+  ' ) .  In the synthesis pro- 
cedure, we show how to find uk,  1 I k I / such that the 
orders of [ P ' ( z ) ,  Q ' ( z ) ]  are ( m  - 41 - 4 )  and ( m  - 41 
- 2 ) .  Then det B ' L " ) ( z )  is forced to be a delay by choos- 
ing tk as in (43), and the synthesis procedure is completed. 
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Noticing from (43) that t l+  I is arbitrary, we assume that 
it is chosen such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 0. From Fig. I l(a),  we then 
have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(44) 

Since we are interested in obtaining causal filters P ‘ ( z ) ,  
Q r ( z ) ,  we should choose U ( z )  such that 

U(Z ’ )  P , ( z )  - Q,(z) = Z - ~ ( ‘ + I ) ~ ~ ( Z )  

(45 1 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-T(z*) P , ( z )  + ( 1  + Z-’) Q,(z) = z-’( ‘+~)cY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2  ( ) 

(46)  

for some causal FIR a o ( z ) ,  a I  ( z ) .  Now, forcing the con- 
dition (45) automatically guarantees (46) because (45) im- 
plies 

( 1  + Z-‘) U ( Z ’ )  P , ( z )  - ( 1  + Z-’) Q,(z) 

( 1  + z-’) ao(z),  - - Z - 2 ( 1 + l )  

which, in view of (42), simplifies to the form (46). It 
therefore remains only to satisfy (45). For convenience, 
write Pr ( z )  and Q, ( z )  in the polyphase forms Pr ( z )  = 

z-IQ,,, ( z 2 ) ,  respectively. Then (45) breaks into two 
equations : 

p r , ~ ( z 2 >  + Z - ’ P r , , ( z 2 )  and Q m ( z )  = Qm,,(z’) + 

U ( z )  Pr,o(z) - Q m . o ( Z )  = z - “ + ‘ ) O O ( Z )  (47) 

U ( Z )  Pi-,l(Z) - Qrn.I(z> = z - ( ‘ + l ) P l ( z )  (48) 

for some causal FIR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP o ( z ) ,  O l ( z ) .  We now show that 
(47) implies (48) automatically because of the constraint 
(36). For this, note that m - 41 - 2 is the degree of Pr ( z )  
so that m/2 - 21 - 1 > 0, which implies m/2  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI - 1 
1 1 + 1. As a result, (36) implies, in particular, 

Pr.o(Z> Q m , l ( z )  - P r , l ( z )  Q m , , ( z )  = Z - ( ‘ + ’ ’ ~ O ( Z )  

(49) 

for some causal FIR 6 , ( z ) .  Multiplying both sides of (47) 
by P ,  I ( z )  and substituting (49) results in 

U ( Z )  Pr.o(z) f ‘ r . l ( z )  - P ~ . o ( z )  Qm.I(z> = z - ( ” ’ ) & ~ ( z )  

( 5 0 )  

for some causal FIR 6,  ( z ) .  Sincep,,  # 0 by assumption, 
(50) implies (48) proving that (47) implies (48). 

Summarizing, we can ensure that we obtain a causal 
reduced-degree Type B pair [ P ’ ( z ) ,  Q r ( z ) ]  in Fig. I l(a) 
simply by satisfying (47)! The condition (47) can be sat- 
isfied by choosing the coefficients U , ,  1 i n I 1 of U ( z )  

such that U ( z )  Pr , , (z )  = Q,,,(z) + Z - ( ‘ + ~ ’ ~ , ( Z ) .  This 
can be written as a triangular set of equations 

The first equation above is automatically satisfied because 
of (33). The remaining equations can be satisfied by solv- 

ing for a unique set u l ,  * e , U /  because pr,,# 0 in (51). 
In summary, we first find U ( z )  satisfying (51) and then 

find T ( z )  using (43). Consequently, B(’””(z) is deter- 

mined. To be able to apply the same synthesis procedure 
on the Type B pair [ P ’ ( z ) ,  Q ’ ( z ) ] ,  its coefficients have 
to satisfy a condition analogous to (33). Denoting the coef- 
ficients of P ’ ( z )  and Q ‘ ( z )  by p; and q;, this condition 
is satisfied by a scale factor a, ifph # 0 and q; # 0. The 
complete building block for the case where pb # 0 and 
qb # 0 is shown in Fig. Il(b). Clearly, (33) cannot be 
satisfied by just a scale factor if p(, = 0 or qh = 0. We 
now elaborate on the remedy for this case ( pb = 0 or q,!, 
= 0). 

The remedy is to choose the extra freedom r I  + such 
that qh # 0. With qb # 0, we show now that ifp;  = 0, 
then we can always pull out a delay of the specific form 
z-*~”’ [as demonstrated in Fig. l l(c)]  such that the first 
coefficient of Vo( z )  is nonzero. (Having done so, the pair 

[ VI ( z ) ,  Q ’ ( z ) ]  is a causal Type B pair. We can therefore 
repeat the above order-reduction process.) For this, rep- 
resent the pair P ’ ( z )  and Q ’ ( z )  in polyphase form: 

( 52a ) 
We know that the determinant of E ’ ( z )  is a delay by our 

above construction of the pair [ P ’ ( z ) ,  Q ’ ( z ) ] .  Thus, 

. (52b) - ( m / 2  - 21 - 2 )  
P h k )  Qik) - P ; ( z >  Q h ( z )  = z 

If, for some reason, we have ph = 0, then P b ( z )  Q ;  ( z )  
has the form z -  la ( z )  where a ( z )  is some causal FIR sys- 
tem. Because of (52b), this implies that Pi ( z )  Q ~ ( Z )  has 
this form as well. Since 91, # 0, this necessarily implies 
pi = 0. In other words, p; = 0 implies p ;  = 0 as well. 
More generally, it is easily verified based on this type of 
argument that if pI: = 0 for 0 5 n I K with pk+ # 0, 
then K is odd. This means we can factorize P ’ ( z )  as P ’ ( z )  

With this, Fig. 1 l(a) becomes Fig. 1 l(c) where the pair 

[ V O ( Z ) ,  Q ’ ( z ) ]  now satisfies U , , ,  # 0, qh z 0. We now 
insert a scale factor a, as shown in Fig. l l (c)  such that 
the pair [ V l ( z ) ,  Q ’ ( z ) ]  in Fig. l l ( c )  is a Type B pair 
with orders ( m  - 41 - 4 - 4K,)  and ( m  - 41 - 2 ) ,  
respectively. Moreover, it satisfies u l , ,  = qh # 0, which 
is analogous to (33). Consequently, the order reduction 

V o ( z ) .  = z-2Kn, 
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Fig. 12. The lattice structure for Type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB system. 

process can now be repeated to obtain a Type B structure 
as shown in Fig. 12 where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z 2 )  is shown in Fig. 1 l(c). 
Note that Fig. 1 l(b) is the same as Fig. 1 l(c) when K, = 
0. 

The only remaining question to be answered is whether 
or not we can choose t l+ such that q; # 0 (and c # 0) .  
The answer is in the affirmative. From (44), 

/ 

9; = q ,n ,2 /+2  + qm,2/+4 - C f j p , 2 / + 2 - 2 j  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt/+Ipr.o. J = o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(53) 

It is clear from the above equation and the assumption 

pr ,o # 0, that we have to choose r l t l  such that 

(54 )  

We summarize the synthesis procedure as follows. 
Given a Type B pair [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, ( z ) ,  Q,,, ( z )  ] of order ( m  - 41 

- 2 )  and m (where m is even) which satisfies ( 3 3 ) ,  do the 
following. 

Compute U,,, 0 I n 5 1 using (51) and t,, using (43). 
Choose the coefficient t l +  I such that q; # 0. This deter- 
mines B""" ( z  ). 

Ifp; # 0, then scale the pair [ P ' ( z ) ,  Q ' ( z ) ]  to sat- 
isfy p;  = q;. The complete building block is shown in 
Fig. l l(b).  

If p ;  = 0, then pull out the delay z - ~ " " ,  with appro- 
priate K,. Then scale the pair [ V o ( z ) ,  Q ' ( z ) ]  to obtain 

[ V I  ( z ) ,  Q ' ( z ) ]  which satisfies v I . o  = qb. The resulting 
block is shown in Fig. 1 l(c). 

Since Fig. l l (b)  is a special case (K,,, = 0) of Fig. 
1 l(c), therefore, the most general building block AJ ( 2 )  

of the overall Type B structure (in Fig. 12) is as in Fig. 

Example 4.1:  The building blocks in Fig. 12 have the 
two added freedoms, namely, I,,, and K,,,. To simplify the 
optimization process, we choose I , ,  = K,,, = 0 for all 
blocks A, ( z )  in Fig. 12. The resulting structure to be used 
in the optimization procedure is shown in Fig. 13 where 

1 l(c). 

Even though the structure has 2N parameters cyrn, a,,,, 1 I 

m I N ,  there are only N degrees of freedom. This is ev- 
ident from the deviation of the structure above. Thus, the 
parameters a,, are precisely the free parameters t l +  I used 
in  (43), and can be chosen arbitrarily. In the design ex- 
ample, we fixed the parameters a,,, to be equal to 64 and 
optimized cy l l i .  The choice U,,, = 64 is, however, entirely 

Fig. 13. The lattice structure for Type B system used in the optimization 

procedure. Here I,,, = 0 and K,,, = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 14. (a)  Example 4.1: Magnitude response plots tor the optimized 
analysis filters (Type B) .  The filter lengths are 23 and 25. respcctivclq 
(b) Example 4. I :  Magnitude response plots for the optimized analysis 
filters (Type A) .  The filter lengths are 22 each. 

arbitrary and not based on any engineering judgement. At 
this point in time, we do not have any indication that a 
particular set of a,, should be preferred to another. 

We have N = 1 1 ,  and the transition bandwidth Af = 

0.1 in the example. The orders of Ho( z )  and H ,  ( z )  are 
thus 22 and 24, respectively. We minimize the objective 
function described in (30) using [ 151. The magnitude re- 
sponses of the optimized analysis filters are shown in Fig. 
14(a). The lattice coefficients CY,,, and the impulse re- 
sponses of both filters are summarized in Table v. The 
complexity of this structure can be readily computed by 
noting that there is only one multiplier per building block 

in Fig. 13, namely, cy,,, (a , , ,  = 64 can be realized by shift- 
ing). Moreover, each building block can be implemented 
with 5 addition operations. Thus. with a factor o f3  saving 
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m Lattice Coeff. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ~,,,+~ Filter Coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAho,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0.37779962858106 5.9250950404227 x lo-' 

1 28.980740681587 -1.5683167986894 x lo-' 
2 -47.817981025871 4.5594028972112 x lo-' 
3 -26.R1 SO36810932 3.6047559927372 x lo-' 

TABLE V 
LATTICE COEFFICIENTS A N D  IMPULSE RESPONSES OF THE OPTIMIZED 

ANALYSIS FILTERS I N  EXAMPLE 4.1. (SSEE) 01 = 7.81221 X IO-", 02 = 
1.37742 X 

Filter Coefficients h,, 
1.0446957436687 x lo-' 

-2.7652111453693 x lo-' 
8.2562648947712 x lo-' 

-1,3369902864879 x lo-' 

TABLE VI 
COMPARISON BETWEEN TYPE A A N D  TYPE B PR SYSTEMS FOR THE DESIGN 
EXAMPLE. HERE 6 ,  A N D  6, DENOTE THE PEAK-RIPPLE SIZES I N  PASSBAND 

A N D  STOPBAND, RESPECTIVELY. BOTH TYPES REQUIRE 6 .5  MPU'S FOR THE 

ANALYSIS BANK. THE TYPE A SYSTEM REQUIRES 17.5 APU's WHEREAS 
THE TYPE B SYSTEM REQUIRES 27.5 APU's 

in the decimation ratio, the complexity of the analysis 
bank is ( N  + 2) /2  = ( 11 + 2) /2  = 6.5 MPU and 5N/2 

= 27.5 APU. 
The fact that we can obtain a linear-phase PR pair with 

even orders for the filters and with both filters symmetric 
is not entirely surprising. Indeed, procedures for design 
of QMF banks with linear-phase even-order filters have 

been presented in [ 161, which are approximately PR. The 
results we have presented above, however, have exact PR 
property. It should be noticed that Johnston's filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ l ] ,  
[22] were designed for the even-length case, and therefore 
are not suitable for comparison to the Type B PR system 
reported in this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Comparison of Type A and Type B Systems 

To compare the two types of PR systems reported in 
this paper, we design a Type A pair with the same number 
of sections and transition bands as the Type B pair in Ex- 

ample 4.1, i.e.,  N = 11 and Af = 0.1. The frequency 
response of this Type A pair is shown in Fig. 14(b). The 

lengths of the Type A analysis filters are 22. The pass- 
band and stopband errors of H0 ( z )  and H I  ( 2 )  for both PR 
systems are summarized in Table VI. The number of 

MPU's and APU's required for both types are also in- 
cluded in the table. From the table, i t  is evident that both 
systems have nearly identical filtering performance, and 
require the same number of MPU's. Type B systems, 
however, require a larger number of APU's. 

V. CONCLUDING REMARKS 

We have described two perfect-reconstruction struc- 
tures for the two-channel QMF bank, free of aliasing and 

distortions of any kind, in which the analy-sis filters have 
linear phase. The first lattice structure relates closely to 
the LPC lattice, and it covers most of the S A 0 0  LP PR 
FIR pairs of filters. The second lattice structure covers all 
SSEE LP PR FIR pairs of filters. Furthermore, the per- 
fect-reconstruction and linear-phase properties of these 
filters are structurally enforced (in spite of quantization of 
the lattice coefficients). Design examples are given to ver- 
ify the theory. 

APPENDIX A 
SINGULARITY ISSUES 

Given the MIP [ TN ( z ) ,  UN ( z )  1, consider the synthesis 
procedure of the lattice of Fig. 5 again. The synthesis 
procedure is to recursively compute lower order MIP's 
according to the relation 

with TE,(z)  = T N ( z )  and U h ( z )  = U N ( z ) .  The coeffi- 
cient k, is computed as 

The unprimed polynomials in (24) are essentially scaled 
versions of the primed ones in (Al).  The inverse of the 
relation (Al)  is 

which results in the lattice structure of Fig. 5 (except for 
the scale factor 1 - k i ) ,  upon repeated application of the 
above recursion. 

Assume now that, at some stage, k:, = 1. This means 
that the recursion (Al)  would give rn- l ( z )  = 
+z-IU,', - ( z ) .  However, the inverse relation (A3) is now 
meaningless [and so is the scaled inverse relation (23)] 
because the 2 x 2 matrix in (Al)  is singular. This means 
that we cannot get back [ T,,(z), Um(z)] by starting from 
[T , - , ( z ) ,  UmPl(z)],  i .e.,  there simply does not exist a 
lattice of the form of Fig. 5 in this case. (Notice that, 
under this situation, an attempt to use (23) would lead to 
the conclusion T,,,(z) = k U , , ( z ) ,  which of course is not 
necessary for " k ;  = 1" to happen.) 

Next, conversely, suppose we have the lattice of Fig. 
5 already synthesized for some MIP [ TN ( z ) ,  U, ( z ) ] ,  and 
we replace k,, with unity for some m. This means from 
(23) (which now holds!) that T,, , (z)  = U r l l ( z ) ,  which in 
turn means that TN ( z )  and U, ( z )  share the common fac- 
tor T,, ( z ) .  An attempt to synthesize this [ TN ( z ) ,  UN ( z )  I 
using (Al )  will once again bring about the situation k:, = 

1, but the synthesis procedure cannot be carried out be- 
yond this point. 
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APPENDIX B 
EXISTENCE OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,,, 

As explained in Section 111, a singularity situation can 

be avoided by using the modified recursion (25a), (25b), 
with k,,, as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(26) .  We can find a z,?, such that k f , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 1 (and 
kf,,  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 )  as long as none of the three polynomials 

f ' l ( z )  = T n k )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAum(z) (A41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P2(z) = T,i(z) + um(z) ('45) 

P ~ ( z )  = u,n(z> (A6) 

is identically zero. If [ H, ( z ) ,  H I  ( z )  ] is such that one of 
these polynomials is identically zero for some m, what 
does this signify? 

Assume that we start with m = N and carry out (25) 
until we arrive at the situation when one of the three poly- 
nomials Pl(z) ,  P 2 ( z ) ,  and P ~ ( z )  is zero. If Pl(z) = 0 
or P 2 ( z )  = 0, this means T,,(z) = +Um(z) ,  which in 
turn means (see Fig. 15) that T,,,(z) is a common factor 
between H o ( z )  and H I  ( z ) .  If, on the other hand, Um(z)  
= 0, this means T,,(z) = 0 as well since T,,,(z) = om(z), 
and this implies H, (z )  = H ,  ( z )  = 0 .  

In conclusion, if H , ( z )  and H I  ( z )  are not identically 
zero, and do not share a common factor, then there will 
exist a z,,, such that k i  # 1 for every m. 

APPENDIX C 
EXISTENCE OF COMMON FACTORS 

Consider the QMF bank of Fig. 1 where the four filters 

are FIR. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) and H I  ( z )  have a common zero on the 
unit circle of the form ( 1 - z-le'mo), then an input x ( n )  

cannot be "perfectly reconstructed." In fact, if - e IW0,l 

H o ( z )  and H I  ( z )  share any common factor ( 1 - z-la), 
then an exponential input x ( n )  = 01'' would produce an 
identically zero output a( n ) ,  violating the PR property. 
Without loss of generality, we can therefore assume that 
H,(z )  and H I  ( z )  do not have any common factors. 

- 

APPENDIX D 

Let the FIR filters H, ( t  ) and H I  ( z  ) be related as H I  ( z )  
= Ho(  - z ) .  Then the polyphase-component matrix E ( z )  
has the form 

so that det E ( z )  = - 2 E o o ( t )  Eo, ( z ) .  If this has to be a 
delay, then we must have E o o ( z )  = coz-J1O and Eol ( z )  = 
c ~ z - ~ '  for some integers no, n 1  2 0. This means H o ( z )  = 
c"z-2,111 + CIz-(2 , r l  + I )  which is a very restricted class of 
transfer functions indeed. In order to obtain a good PR 
pair, it is therefore essential to remove the restriction 

HI ( z )  = H,( - z ) .  

APPENDIX E 
M-CHANNEL GENERALIZATIONS (EVEN M ,  SAOO) 

Let Hk ( z )  be the analysis filters of odd order Nk - 1 ,  
0 I k P M - 1 .  Furthermore, we assume that the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 1  

Fig. 15. Pertaining to Appendix B. 

Fig. 16. The lattice structure for the M-channel S A 0 0  LP PR QMF bank 
(even M ). 

M / 2  filters are symmetric and the last M / 2  ones are an- 
tisymmetric. Consider H k ( z )  and H M P I - & )  for 0 I k 
I M / 2  - 1. Since they have odd orders and opposite 
symmetries, they constitute an S A 0 0  pair which we dis- 
cussed in Section 111. Thus, one obvious extension from 
the two-channel S A 0 0  case to the M-channel case (even 
M ,  SAOO) is that we consider M / 2  S A 0 0  pairs in such 
a way that they do not interact with each other. In other 
words, each S A 0 0  pair [ H k ( z ) ,  H~-~-k(z)], 0 I k 5 

M/2 - 1 is realized as in Fig. 9 with z - 2  replaced by 
z - ~ .  These pairs can then be appropriately combined. The 
overall PR structure is shown in Fig. 16 where the build- 
ing blocks are 

c; = [' 7, 
POW0 z 

- ri 0 - * .  0 0 * * -  0 1  

l o  0 1 . . .  0 0 . . .  

D =  

. .  . .  . . . . . . . . .  * .  . *  

0 0  

0 0  

1 1 * * *  0 0 * * .  

0 0 . . .  1 -1 . . .  
. .  . .  . .  . . . . . . . . . .  . . . .  

-1 0 0 1 . . .  0 0 . . .  
Ll 0 - * *  0 0 * - .  0 - 1- 

where 
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This structure (Fig. 16) yields PR odd-order linear-phase 

the most genera1 structure for this PUTose, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat this time. 
This is currentlv under studv. 

1201 T. Q. Nguyen and P. P. Vaidyanathan, “Perfect reconstruction QMF 
structures which yield linear phase FIR analysis filters,” presented at 

1211 P. P. Vaidyanathan, “On power-complementary FIR filters,’’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE 
Trans. Circuits Sysr., vol. CAS-32, pp. 1308-l310, Dec. 1985 

with Opposite do not have 
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