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SVAZEK 29 (1984) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

TWO CHARACTERIZATIONS OF PARETO MINIMA 
IN CONVEX MULTICRITERIA OPTIMIZATION*) 

S A N J O Z L O B E C 

(Received May 5, 1983) 

We give two conditions, each of which is both necessary and sufficient for a point 
to be a global Pareto minimum. The first one is obtained by studying programs 
where each criterion appears as a single objective function, while the second one 
is given in terms of a "restricted Lagrangian". The conditions are compared with 
the familiar characterization of properly efficient and weakly efficient points of 
Karlin and Geoffrion. 

Key words: Pareto minimum, properly efficient point, weakly efficient point, 
characterization of optimality, convex functions. 

1. I N T R O D U C T I O N 

For real functions in n variables <P\...,<Pm a point x* is a Pareto minimum 
(also called: "efficient point") if there is no other x such that 

&(x) g <2>fc(x*), k e P « {1,..., m] 

with at least one strict inequality. Possibly the first constructive characterizations 
of Pareto minima for convex criteria <Pk, k e P seem to be given in [3], see also [4]. 
These characterizations are given in terms of 2 c a r d p, where p is the cardinality of P, 
systems of inequalities and in terms of the "minimal index set of active constraints" 
(see also [1] and [18]). In this paper we will give two different characterizations 
of Pareto minima. Our results are stated in terms of one or more Lagrangian type 
functions and therefore they come closer to the classical results of Karlin [10] and 
Geoffrion [9]. Their results, in the case of convex criteria, characterize more restrictive 
"properly efficient points" and less restrictive "weakly efficient points". 

*) Research partly supported by the Natural Sciences and Ergirxeiing Research Council of 
Canada and by le Ministere de l'Education du Quebec ( F . C A . C ) 
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The results of this paper can bJ generalized and set up in the framework of 
the abstract Dubovitskii-Milyutin optimization theory as it was done for necessary 
conditions for Pareto minimum by Censor [7]. For related ideas on Pareto minima 
and applications in economics and control see e.g. [6], [8], [11] and [14]. 

2. THE MULTI-LAGRANGIAN CHARACTERIZATION OF A PARETO MINIMUM 

In order to avoid familiar technicalities, let us assume that all convex criteria are 
differentiable. We recall that the cone of directions of constancy of <Pk at some 
arbitrary point x* is the set (see e.g. [4]). 

Dk(x*) = {d: 3d > 0 3 $\x* + ad) = $\x*) Va e [0, a]}. 

For an arbitrary set M we denote its polar by 

M+ = {u:urx = 0 *xeM} . 

For each r e P, let us denote 

p = P\{r} = {keP:k #= r} ._ 

Also, for a fixed point x*, let us denote by Fr(x*) the feasible set of the program 
(P, r\ i.e. 

Fr(x*) = {x: <P\x) ^ <P\x*)9 k e Pr} 

and by Pr
=(x*) the corresponding minimal set of active constraints (see [1] or [4]), i.e. 

Pr
=(x*) = {kePr:xe Fr(x*) => <P\x) = &\x*)} . 

Finally, denote 

P =.(**) = U P'(x*) = {keP:xe Fr(x*) -=> &\x) = <P\x*) for some r e Pk} 
reP 

and note that 

P \ P=(x*) = {ke P: 3x e Fr(x*) e <P\x) < &\x*), for every r e P } . 

It is obvious (see also [7], [11], [12]) that x* is a Pareto minimum if, and only if, 
x* is an optimal solution of the following m programs: 

{P, r) Min <Pr(x) 

s.t. 

<P\x) ^ <P\x*) , k e Pr 

r = 1, ..., m . 

By characterizing the optimally of x* in (P, r) we are characterizing a Pareto mini
mum. Since the constraints in (P, r) may not satisfy the Slater condition, the Kuhn-
Tucker conditions do not characterize optimality for (P, r). (The constraints fk(x) :g 
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g O , k e P satisfy Slater's condition if there is an x* such that fk(x*) < 0, k e P, 
e.g. [4].) However, the complete characterizations (the "BBZ conditions") from [4] 
are readily applicable and they give the following result. 

2.1. Theorem. Let $\...,<Pm be convex and differ enti able criteria. Then an 
x* e R" is a Pareto minimum if, and only if, for every r e P the system 

(2.1) V<Pr(x*) + X 4V0*(x* )e{ 0 £>/(**)}+ 

kePr\Pr = (x*) iePr=(x*) 

4 ^ 0 , kePr\PL(x*) 
has a solution. w 

If the index set Pr
= is empty, then the intersection on the right-hand side in (2.1) 

is defined as the whole space, implying that its polar is zero. After adding all systems, 
and using the properties of polars, we obtain the following necessary condition 
for optimality. 

2.2. Corollary. Let <PX, ...,<Pm be convex and differ enti able criteria. If x* e Rn 

is a Pareto minimum, then there exist positive numbers Xk> 0, k e P such that 

(2.2) X ^ V ^ ( x * ) e { n Dk(x*)}+. m 
keP keP = (x*) 

We will return to the above corollary in Section 4. 

3. THE SINGLE-LAGRANGIAN CHARACTERIZATION OF A PARETO MINIMUM 

Our next result is stated in terms of the derivative of the single "restricted" Lagran-
gian 

L(X,x)= £ Xk<P\x). 
keP\P = (x*) 

3.1. Theorem. Let the criteria <Pk, ke P be convex and differ enti able. Then an 
x* e Rn is Pareto minimal if, and only if, either P = P=(x*) or there exist non-
negative numbers Ak = 0, k e P\ P=(x*) not all zero, such that 

(3.1) £ AkV<Pk(x*)e{ n Dk(x*)}+. 
keP\P = (x)* keP = (x*) 

Proof. An x* is not Pareto minimal if, and only if, there is an x, different from 
x*, such that <Pk(x) = <Pk(x*), ke P with at least one strict inequality. Hence 

(3.2) <l>k(x) < <Pk(x*), k e P \ P=(x*) 

<pk(x) = 0fe(x*), keP=(x*). 

(First, note that x e Fr(x*) for every reP and then use the definition of P=(x*) 
and standard convexity arguments.) But the consistency of (3.2) is equivalent to the 
consistency of the system 
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V<Pk(x*)d < 0 , keP\P=(x*) 

(3.3) rfe 0 Dk(x*) 
keP = (x*) 

and further, by a theorem of the alternative (say, Dubovitskii-Milyutin's one, e.g. [4] 
or Ben-Israel's from [2]), to the nonexistence of Xk ^ 0, k e P \ P=(x*) not all zero, 
such that (3.1) holds. The complementary statement proves the theorem. (If P=(x*) = 
= 0, then the se" relation (3.3) becomes de Rn.) 

4. COMPARISONS WITH CLASSICAL RESULTS 

First, let us recall the following sufficiency result from Karlin's book [10]: 

4.1. Proposition. 1f the criteria <Pk, ke P are convex and differ en ti able, and if 
there exist positive numbers Xk> 0, k e P, such that at some point x* 

(4.1) £ Afc Vd>fe(x*) = ° 
keP 

then x* is a Pareto minimum. 

Remark . It can be seen, by applying standard convexity arguments (as for in
stance in [13, p. 213 e.f.]), that the condition in Proposition 4.1 is sufficient that 
a point x* be even properly efficient. Moreover, in view of Geoffrion's result [9, 
p. 620], above sufficient condition is also necessary for proper efficiency. (We recall 
that a Pareto minimal point x* is properly efficient for the criteria <Pk, ke P if there 
exists a scalar /? > 0 such that for each ke P, and x e Rn satisfying <Pk(x) < &k(x*), 
there exists at least one keP\{k} with <Pk(x) > #*(x*) and (<Pk(x*) — <Pk(x)) / 
/(<p\x)- <Z>*(x*)) S P, e.g. [8].) J m 

In the comparison we will use the point-to-set mapping 

£(*) = { n ok(x)}+ 

keP = (x) 

appearing in (2.2). If <Pk, ke P are convex analytic functions then Dk(x), ke P are 
subspaces independent of x (see e.g. [4], [5]). Then we use the notation Dk rather 
than Dk(x). However, E(x) remains a function of x. The function E(x) can be con
sidered as a "measure of discrepancy,, between Pareto and properly efficient solutions. 

Our first comparison gives the following result. 

4.2. Corollary. Let the criteria <Pk,ke P be convex and differentiable. If E(x*) = 0 
at some Pareto minimum x*, then x* is properly efficient. 

Proof. Since x* is a Pareto minimum, we know that (2.2) in Corollary 2.2 holds. 
But E(x*) = 0 implies that also (4.1) in Proposition 4.1 holds. The proper efficiency 
of x* now follows from the above Remark. B 
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A sufficient condition for E(x*) = 0 is, for example, when each of the m programs 
(P, r) satisfies Slater's condition. (This does not imply that all m criteria <Pk, ke P 
satisfy Slater's condition!) If at least one criterion <Pk in the set PL, for some r, is 
strictly convex then the other extreme situation occurs, i.e. E(x*) = R". 

Next we turn our attention to Karlin's necessary condition, also from [10]: 

4.3. Proposition. If the criteria <Pk, ke P are convex and differ entiable, and if 
x* is a Pareto minimum, then there exist nonnegative numbers Xk ^ 0, keP, 
and not all zero, such that 

(4.2) X Xk V<Pk(x*) = 0 . 
keP 

Remark . The above statement characterizes the so-called "weakly efficient" 
minima. (A point x* is not a weakly efficient minima if, and only if, there is a point x 
such that <Pk(x) < <Pk(x*) for every k e P.) 

The results will be illustrated by examples. Their purpose is to demonstrate that 
our conditions can identify some weakly efficient points as Pareto nonoptimal and 
that they can also identify some points which are not properly efficient as Pareto 
optimal. The familiar optimality conditions fail to make this identification. 

4.4. Example. Consider the two criteria 

(4.3) &1 = max {0, x2 sgn x) 

& = (X - 1)2 . 

The set of Pareto minima is the closed interval between x = 0 and x = 1. First, 
we will demonstrate that the conditions from Propositions 4.1 and 4.3 are not success
ful at some selected points. 
(i) Is x* = — 1 Pareto minimal? Since (4.1) is here 

Xx V$\x*) + X2 V#2(x*) = Xt . 0 + X2(-4) = 0 

we note that Karlin's necessary condition is satisfied with Xt > 0 and X2 = 0, although 

the point is not optimal. (Note that x* = — 1 is weakly Pareto minimal.) 

(ii) Is x* = 1 Pareto optimal? The equation (4A) is now 

Xx . 2 + X2 . 0 = 0 

which doss not have a positive solution Xx > 0, X2 > 0. Thus Karlin's sufficient 
condition is not satisfied although the point is optimal. (Of course, since all the inte
rior points 0 < x* < \ are properly efficient, Karlin's condition holds at these 
points.) 

4.5. Example. Consider again the criteria (4.3). This time we will use our conditions, 
of optimality. 
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(i) Is x* = — 1 Pareto optimal? The necessary condition for optimality (2.2) is here 

Xx V<Z>J(x*) + A2 V<f>2(x*)e {D1(x*)} + 

;l1 > 0 , X2 > 0 . 

Since Dj(x*) = R and hence {D1(x*)}+ = {0}, the above becomes 

h - 0 + A 2(-4) = 0 

Xx > 0 , A2 > 0 

clearly not satisfied. Conclusion: x* = —1 is nOt Pareto optimal. 

(ii) Is x* = 1 Pareto optimal? Since PL = {2} and Pi = 0, the optimality condi

tions (2.1) become 

(4.4) W01(x*)e{D2(x*)}+ = {0}+ = R 

and 
V<Z>2(x*) + Xx V<2>J(x*) = 0 

Ax ^ 0 
i.e. 

(4.5) 0 + 2Aj = 0 

Both systems (4.4) and (4.5) are clearly satisfied, so x* = 1 is indeed Pareto optimal. 

Conclusions. Using Theorem 2.1 and Corollary 2.2 we have established Pareto 
optimality of x* = 1. Since x* = 1 is not properly efficient, the optimality could 
not have been established here by Proposion 4.L We have also established that the 
weakly Pareto optimal point x* = — 1 is not Pareto optimal. This could not have 
been established here by Proposition 4.3. 

Example 4.6. The "discrepancy function" for the two criteria &1 and <P2 is 

\ 

E(x)= J 
0 if x < 0 

- o o , 0 ] if x = 0 
0 if 0 < x < 1 
K if x = 1 . 

In view of Corollary 4.2, this shows that Karlin's sufficient condition is also necessary 
for x e (— oo, 1) except x + 0. It also confirms that the Pareto minima on the open 
interval (0, 1) are properly efficient. 

Our characterizations also establish connections between the three types of minima. 
To this end we will use the following lemma. 

4.7. Lemma. Let 0k, keP be convex differentiable criteria. If V<Pk(x*) = 0 
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for some ke P, then k e P=(x*). On the other hand, if k e P=(x*) and int Fr(x*) =J= 0 
for every r e Pk then V<Pk(x*) = 0. 

Proof. If V<Pk(x*) = 0 for some ke P, then x* minimizes <Pk. Therefore, there is no 
x such that <Pk(x) < <Pk(x*), i.e. 

x e Fr(x*) for any r e Pk => 0k(x) = <Pk(x*). 

This means that k e P=(x*). On the other hand, if k e P=(x*) for some ke P, then 
we must have V<Pk(x*) = 0. If not, then x* is not optimal and we can find an x 
such that <£fe(x) < #*(x*). But <Pk is constant over int Fr(x*) for some r e Pk. These 
two statements contradict convexity of <Pk. m 

4.8. Corollary. Let the criteria <Pk, ke P be convex and differentiable. If at some 
point x* all gradients of <Pk, keP are different from zero and int F*(x*) =|= 0, 
k e P, then x* is Pareto optimal if, and only if, it is weakly Pareto optimal. 

Proof. The assumptions on gradients and interior points imply P=(x*) = 0, 
by Lemma 4.7. This means that the polar set in (3.1) is zero. (The intersection over 
the empty set has been defined to be the whole space.) But now (4.2) and (3.1) coincide. 

The above result, in particular, says, that if a weakly efficient point x* is not 
Pareto optimal, then the gradient of at least one criterion must vanish at x* or at 
least on3 F*(x*), keP must have an empty interior. 

When combined with Corollary 4.2, the above corollary gives a condition when all 
three points: Pareto minimum, properly efficient point, ano weakly efficient point 
coincide. A stronger condition for that coincidence is that the constraints determining 
F*(x*), k — 1, ..., m satisfy Slater's condition. 
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S o u h r n 

DVĚ CHARAKTERIZACE PARETOVÝCH MINIM 
V KONVEXNÍ OPTIMIZACI S VÍCE KRITÉRII 

SANJO ZLOBEC 

Jsou udány dvě podmínky, každá z nich je nutná a postačující, aby daný bod byl 
globálním Paretovým minimem. První byla získána studiem programů, v nichž se 
každé kritérium objevuje jako jediná cílová funkce, zatím co druhá je dána ve tvaru 
„restringováného Lagrangiánu". Podmínky jsou porovnány se známými charakteri
zacemi skutečných a slabých Karlinových a Geoffrionových bodů. 
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