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Abstract

Given a single outdoor image, this paper proposes a

collaborative learning approach for labeling it as either

sunny or cloudy. Never adequately addressed, this two-

class classification problem is by no means trivial given

the great variety of outdoor images. Our weather feature

combines special cues after properly encoding them into

feature vectors. They then work collaboratively in synergy

under a unified optimization framework that is aware of

the presence (or absence) of a given weather cue during

learning and classification. Extensive experiments and

comparisons are performed to verify our method. We build

a new weather image dataset consisting of 10K sunny and

cloudy images, which is available online together with the

executable.

1. Introduction

Rain and sunshine make up our everyday weather expe-

rience. The weather affects our daily lives in many ways,

from solar technologies, outdoor sporting events, to the sort

of clothes we wear and whether to stay indoors or not on

weekend.

While current accurate weather detection technologies

rely on expensive sensors, for centuries weather observing

tools consisted of the human eye (and various human senses

as well). If we can exploit existing surveillance cameras,

which are found almost everywhere, it may be possible to

turn weather observing and detection into a powerful and

cost-effective computer vision application. In fact, robotic

vision has been benefited with better weather understand-

ing [7].

Despite its remarkable value, weather understanding

from a single image has not been thoroughly studied.

While [16, 21] propose weather recognition from vehicles,

they rely on priors specific to vehicles. Scene understand-

ing approaches [4, 23] rely on structural information for
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(a) (b)
Figure 1. (a) A sunny image with mean lightness 32.41. (b) A

cloudy image with mean lightness 58.25.
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Figure 2. Pixel intensity distributions in the lightness L channel in

the LAB color space of 5K cloudy images and 5K sunny images.

It is almost impossible to draw a decision boundary between the

two types of weather.

categorizing the scene into different classes. The structural

information is based on illumination-invariant features such

as SIFT or HOG [2, 5, 15, 11]. Weather cues are more

complicated and not scene specific, making conventional

scene classification methods inapplicable. Unsupervised

visual learning methods [12] are also unsuitable for this task

owing to the lack of weather prior.

This paper makes the first attempt to address the two-

class weather classification problem from a single outdoor

image. This seemingly easy task for human – to tell whether

it is a sunny or cloudy image – turns out to be challenging.

Outdoor images shot during daytime can be captured at
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different times of the day using different cameras under dif-

ferent weather conditions. Naive schemes based on image

brightness (Figure 1) or color/intensity statistics (Figure 2)

are doomed to fail in this two-class classification problem.

Our first technical contribution consists of the design

and implementation of the various weather cues which are

used to form the weather feature. These everyday weather

cues (such as sky, shadow, reflection, contrast and haze)

are what human are still using for weather observing –

a hazy or grayish sky characterizes a cloudy day, hard

shadow cast on ground indicates a sunny day, as illustrated

in Figure 3(a). Conversely, in the absence of any weather

cues, we ourselves would lower the confidence to correctly

label weather, as shown in Figure 3(b).

Given the weather feature, the next question is how to

properly learn the classifier. The main issue is that not

all of the weather cues are available in an image (e.g., not

every outdoor image has a sky region), which is problematic

to a discriminative training process adopted by traditional

classifiers, such as SVM. To address this problem, our

second technical contribution consists of a collaborative

learning framework using homogeneous voters: we group

outdoor images into clusters where images in the same

cluster are similar in terms of the weather cues. This

allows us to build classifiers in a conventional way thanks

to the homogeneity in each cluster. The final labeling is the

weighted voting result of the cluster classifier outputs. The

cluster closer to the testing image is given a larger weight.

As will be explained in the following, homogeneous voters

are learned together in synergy under a unified optimization

framework.

Despite the absence of representative work on image-

based weather labeling, we perform quantitative compar-

ison with a few common baselines including SVM, Ad-

aboost [19, 22], and weather-related prior methods [9, 21,

16]. Perspectives on related work will be put into context

when they are described.

Our final contribution consists of a 10K weather image

dataset properly selected and annotated. This is used to

evaluate our learning and labeling strategy.

2. The Weather Feature

We compute for each image the weather feature, a 621-D

feature vector formed by concatenating five components

[ fsk; fsh; fre; fco; fha ] (1)

where each of them, namely, sky, shadow, reflection, con-

trast and haze, corresponds to a key weather cue to be

defined shortly. Since not all of these cues are necessarily

present in a given outdoor image, we also compute the

existence vector

[ vsk vsh vre vha ]T (2)

where each of the scalar score in [0, 1] indicates the confi-

dence in the corresponding weather cue being present in the

(a)

(b)
Figure 3. Weather cues. (a) General weather cues in red rectangles.

(b) Regions in (a) lacking any weather cues.

given image. Since image contrast is present in both sunny

and cloudy photos, vco is always 1, and thus is not included.

2.1. Sky

If present in an outdoor image, the sky is the most

important cue for weather labeling. A clear, cloudless sky is

blue as air molecules scatter blue light more than red light.

Cloud is made of tiny water droplets, making sky look grey

or white.

To define vsk , the sky region is detected in a pixel-wise

manner in the following steps. We respectively collect

20000 sky and non-sky patches, each of size 15 × 15,

and extract a 131 dimensional feature, which contains the

SIFT descriptor (128D) and mean HSV color (3D). This

feature is suggested in [18]. Then random forest classifier is

learned on the two patch classes. Now, given an image, we

uniformly sample 15×15 patches and test their label (sky or

non-sky patch) as seeds. Sky region can be segmented by

implementing graph cuts on those seeds (see Figure 4(a)–

(b)). Let A be the sky to image area ratio. We set vsk ∈
[0, 1] as

vsk =

{
1 if A > 0.5

min{2A, 1} otherwise
(3)

To define the fsk vector we consider various alternatives.

Straight-forward color histogram feature in the sky region

suffers from two defects. First, possible sky color (both

cloudy and sunny) is sparse, thus yielding most color bins

with value zeros (Figure 4(c)). Second, color contrast is

not considered. In this paper, we define fsk using color-pair

dictionary coding as follows.

We collect 2000 images with detected sky regions.

Neighborhood pixels in pairs are extracted from the sky re-

gion to form a large number of 6D vectors, each consisting

of a total of 6 RGB values. This process results in about
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(a) (b)

(c) (d)
Figure 4. Sky. (a) input image, (b) the detected sky region, (c)

color histogram of the sky, (d) plot of fsk.

100K pixel pairs. We then learn a sky color-pair dictionary

D ∈ R
6×256 on the vectors using the method of [13]. This

results in neighborhood-pixel vectors sparsely coded over

the learned dictionary, expressed as

min
βi

‖pi − Dβi‖
2
2 + λ‖βi‖1, (4)

where pi ∈ R
6×1 is ith vector, βi ∈ R

256×1 is the sparse

code over D. We solve Eq. (4) using [19]. Our final fsk is

filtered by max pooling of all βi. That is, the jth bin of our

feature set to maxi{βi,j} where βi,j is the jth bin of βi.

Max pooling can preserve minor sun-to-cloud contrast in

feature representation. Figure 4(d) shows a typical fsk plot.

In comparison to color histogram, our 256-D fsk exploits

the full range of the histogram and encodes color contrast

information as well. We will demonstrate its advantage over

color histogram in our experiments.

2.2. Shadow

Hard shadow boundaries present another useful cue as

they are often found in outdoor photos shot in sunny days.

To compute vsh and fsh, we resort to shadow detection

tools. Unlike detecting sky in an image, shadow detection

is still a challenging problem. Our extensive evaluation

indicates that while working well in sunny images, state-

of-the-art shadow detection often fails for cloudy images,

where dark regions are often misclassified as shadow, as

shown in Figure 5.

Notwithstanding, to set vsh we apply the shadow detec-

tion tool [8], rank the resulting shadow boundary confidence

scores and take the 10th highest score. A large vsh indicates

strong shadow presence.

Using a data-driven approach we design our fsh by

relying on shadow detected in training images restricted to

(a) (b)
Figure 5. Shadow detection results of [8] for (a) a cloudy image

and (b) a sunny image. Shadow detection in cloudy images is

vulnerable to false detection.

5 Nearest NeighborsTesting

Figure 6. K-nearest neighbor matching in P . What are shown in

the blue rectangles are the five nearest neighbors.

sunny outdoor photos. If a given boundary is similar to

those training shadow boundaries, we regard this as also a

shadow boundary typical of a sunny image.

In detail, initially, for all of the sunny images in the

training set, we use the method of [8] to detect shadow

boundaries and generate their corresponding confidence

scores and boundary descriptors. For each image, we keep

only the top 10 most confident shadow boundaries, and save

them to the pool P which has 10V samples, where V is the

number of training sunny images.

Given a boundary, we measure its likelihood to be a

shadow boundary typical of a sunny photo by the mean

distance to its K-nearest (K = 5) neighbors in P . Two

examples of K-nearest neighbor matching are shown in

Figure 6. The distance we use in the nearest neighbor

matching is Euclidean distance of two boundaries descriptor

vector provided by [8]. Given an image we obtain its top

10 most confident shadow boundaries and compute their

likelihood as described above to form the 10-D fsh vector

for the image.

2.3. Reflection

Strong sunlight reflected from shiny objects is another

powerful cue. Except for a perfect mirror reflector at

the right reflection angle, sunlight reflection is usually

characterized by a brightly lit region in the image where

pixels in the region center are brightest and saturated in

nearly all color channels. The reflection intensity decays

from the center toward the boundary of the reflection region.

An example is shown in Figure 7, which compares strong

sunlight reflection with the reflection from a brightly-lit

matte/dull object.
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Figure 7. Reflection cue. A sunny image with strong sunlight

reflection in (a) versus a cloudy image with inherently white

regions in (e). (b) and (f) are the corresponding alpha mattes. In (c)

and (g), red and blur points indicate background and foreground

seeds used in alpha matting. (d) and (h) are distributions of the

alpha maps, taking as the fre cue.

We set vre to 1 if white pixels are present in the image

and 0 otherwise. To construct fre, we apply image matting

[10] at the detected white pixels. The definite foreground

consists of white pixels, and definite background consists

of a closed curve enclosing those foreground seeds. We

then estimate the closed curve under the constraint that

the distance between pixels along the curve and enclosed

foreground seeds should be larger than a threshold (set to

0.5 in our experiments). This closed curve can be computed

by simple dynamic programming. An example is shown in

Figure 7(b)–(c).

Given the matting result (e.g., Figure 7(b) and (f)) we

plot the alpha matte distributions as shown in (d) and (h),

and then assign the 100-bin alpha matte histogram as our

100-D fre vector.

2.4. Contrast

Outdoor images captured in sunny and cloudy days

exhibit different global and local saturation contrast, as

shown in Figure 8. To compute fco, we utilize contrast

information encoded as image saturation percentile. For

example, a value at the 20th saturation percentile means

that 20% of the image pixels are grayer than it. Clearly,

if all saturation percentiles are the same for a given image,

the saturation contrast is low. If on the other hand the

50th percentile is at 100 (saturation level) while the 49th

percentile is 0, this image is very likely to have a high

saturation contrast. In our paper, we use C channel of LCH
color space as our saturation map.

We collect all saturation percentile ratios to build fco and

leave the selection process to the final classifier. Specifi-

cally, we denote pi as the ith percentile in the input image

in the saturation map. The set of all saturation percentile

ratios is given by {r|r = pi/pj , ∀i > j}, where i and j are

multiples of 5. We thus obtain 171 percentile ratios in total,
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Figure 8. Contrast difference in sunny and cloudy images. (a)

Sunny image, (b) cloudy image, (c) their respective contrast ratio

plots, or the fco vector.

which are used to form our 171-D fco vector. An example

is shown in Figure 8(c).

2.5. Haze

Cloudy weather may come with haze. Haze priors have

been well studied in computer vision: the dark channel prior

presented in [6] is effective. Similarly, we compute the dark

channel as

J k(x) = min
r,g,b

{ min
y∈Ω(x)

{J c(y)}}, (5)

where J c is a color channel and Ω(x) is a local patch (with

8 × 8) centered at x. Most haze-free regions have a low

intensity in the dark channel. We measure the haze level

and set vha of a given image as the median value of its dark

channel.

We define the fha component with the consideration that

haze becomes thicker when a region is distant from the

camera. These regions commonly exist at the top of an

outdoor image. We consider haze location by a spatial

pyramid scheme. As before, the input image is resized into

512 × 512. The dark channel in each image is uniformly

partitioned into 22, 42, and 82 non-overlapping regions to

obtain 84 sub-regions. We use the median value of dark

channel intensities in these regions to form the 84-D fha

vector.

3. Collaborative Learning with Homogeneous

Voters

Traditional classifiers such as SVM cannot achieve good

performance on our weather feature because they assume all

components to present simultaneously in all images, which

unfortunately may not be correct in many tasks. For exam-

ple, in our setting, outdoor images do not always contain the

sky region. Images lacking one or more weather cues would

significantly affect SVM’s performance in classification.

Our learning strategy is to partition training images into

disjoint clusters of homogeneous voters. Given a test image,

voters closer to it are given more weights for correctly

finding the weather label.
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(a)

(b)
Figure 9. Sample images found in two clusters of exis-

tence vector patterns. (a)“sky + shadow” cluster with center

{0.90, 0.87, 0.26, 0.11}. (b)“sky + haze” cluster with center

{0.94, 0.24, 0.27, 0.84}, where {vsk, vsh, vre, vha} is composed

of respective existence scores.

3.1. Voting Scheme

Our training outdoor images are first partitioned into

homogeneous clusters according to the existence vector of

each image as defined in Eq. (2). The partitioned sets

thus correspond to different weather cue patterns, such as

“reflection + shadow”, “sky + haze”, and “sky + reflection

+ shadow”. Images belonging to the same cluster/pattern

are said to be homogeneous.

In implementation, we partition the set of training im-

ages into M subsets {Ω1, . . . ,ΩM} based on existence

vectors using hierarchical clustering [3]. We set the cluster

error threshold to 0.5 in terms of Euclidean distance. M can

be found automatically. We denote the set of cluster center

vectors as {ê1, . . . , êM}. Figure 9 shows sample images of

two converged clusters and their cluster centers.

In the testing phase, given a weather feature x with

existence vector e, we rely on training data whose existence

vectors are similar to e. Following this idea, our classifier is

implemented using a weighted voting scheme, expressed as

h(x, e) = sign[

M∑

i=1

s(êi, e)ĥi(x)], (6)

where sign [·] is the function outputting 1 (resp. −1) for

non-negative (resp. negative) input, s(êi, e) is a similarity

function under parameter σ:

s(êi, e) =
exp(−

‖êi−e‖2

2

2σ2 )
∑M

i exp(−
‖êi−e‖2

2

2σ2 )
, (7)

and ĥi(·) (defined shortly) is the homogeneous voter trained

using the data in Ωi. Our classifier Eq. (6) gives a larger

weight to the homogeneous voter whose existence vector

pattern is similar to that of the testing data.

3.2. Collaborative Learning

For the ith training image, we denote the weather feature

by xi, and the weather label by yi ∈ {−1, +1}, where −1
and +1 correspond respectively to “cloudy” and “sunny”.

For each homogeneous voter, we model ĥi(·) as

ĥi(x) = sign(
∑

j=1

ωj,ix(j) + bi), (8)

where x(j) is the jth element of vector x. If each ho-

mogeneous voter works independently without information

sharing, the classifier in Eq. (8) can be modeled as a

standard SVM [1], expressed as

min
ωj,i,bi,ζi,k

p∑

j=1

ω2
j,i + C

∑

k∈Ωi

ζi,k

s.t. yk(

p∑

j=1

ωj,ixk(j) + bi) ≥ 1 − ζi,k,

ζi,k ≥ 0, ∀ k ∈ Ωi,

(9)

where p = 621 is the dimension of weather features and C
is a constant.

In our framework, we do not train each ĥi(x) indepen-

dently because learning voters that way could lead to a

large bias. Our voters work collaboratively to determine the

classification result and we optimize them all together in a

unified framework.

By removing sign from ĥi(x), we make the system

linear, which updates Eq. (6) into

h(x, e) = sign [

M∑

i=1

s(êi, e)(

p∑

j=1

ωj,ixk(j) + bi)]. (10)

This change is reasonable because a voter should not be

restricted to output binary values.

We follow the soft margin method in SVM to learn

h(x, e), and rewrite the model as

min
ωj,i,bi,ξt,ζi,k

M∑

i=1

p∑

j=1

ω2
j,i + C1

M∑

i=1

∑

k∈Ωi

ζi,k + C2

N∑

t=1

ξt

s.t. yk(

p∑

j=1

ωj,ixk(j) + bi) ≥ 1 − ζi,k, (11)

ζi,k ≥ 0, ∀ k ∈ Ωi, ∀i = 1, . . . , M

yt[

M∑

i

s(êi, et)(

p∑

j=1

ωj,ixt(j) + bi)] ≥ 1 − ξt (12)

ξt ≥ 0, ∀ i = 1, . . . , M, ∀ t = 1, . . . , N

(13)
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where N is the number of training data, and C1 and C2

are constants. Eq. (13) can be solved using Lagrange

multipliers following the method of [1].

Analysis The voter collaboration is characterized by

Eq. (12), which forces all voters to work together for

classification. Effectiveness of each voter is governed by

Eq. (11). It guarantees that each voter is learned from its

corresponding homogeneous data. Eqs. (11) and (12) can

accomplish decent classification performance.

σ Selection We solve Eq. (13) using different σs for s(·) in

Eq. (7). In the final stage, we pick the σ with the minimum

energy for the objective function Eq. (13).

4. Experiments

We create a new weather dataset that contains 10K

images for training and testing. The dataset and our

executable that implements the above collaborative learning

will be made publicly available. In this section, we first

describe how this dataset was constructed, and then report

the performance of individual weather cues in the two-

class weather labeling problem. Finally, we show results

of collaborative learning with homogeneous voters.

4.1. Weather Image Dataset

Our new weather dataset contains sunny and cloudy

images obtained from three sources: Sun Dataset [20], La-

belme Dataset [17] and Flickr. The minimum and maximum

dimensions of the images are respectively 600 and 1500.

To avoid bias, the helpers to collect and label images are

unaware of the purpose or methods used in our experiments.

They work with their own common sense. They collected

14,000 outdoor images in which sunny and cloudy images

are roughly 50% each. The helpers contribute the same

number of images each.

Very similar images are rejected using the following

scheme. We compute the color histogram distance for all

image pairs, and manually reject those, which are identical

or highly similar. As a result, 1,121 sunny images and 812

cloudy images are rejected. Next, we ask two helpers to

independently check the remaining images (5,879 sunny

and 6,188 cloudy). Images labeled as ambiguous weather

condition by either or both of them are discarded. After

this round, 5,467 sunny images and 5,612 cloudy images

survive. Finally, we ask the third helper to pick 5,000 sunny

and 5,000 cloudy images in the final dataset. Consequently,

the 10,000 images in our dataset are unambiguous.

4.2. Classification Results

With the weather dataset constructed, we perform train-

ing and classification. We adopt cross validation where in

each round, 80% of the data are selected randomly as the

training set, with the remaining 20% belong to the testing

set. We execute 5 rounds and report the mean and variance

of the classification accuracy. On two-class labeling, even

random guess can reach 50% accuracy. We normalize

accuracy for better expressing the results. It is expressed

as max{(a − 0.5)/(1 − 0.5), 0}, where a is the accuracy

obtained traditionally. This normalized accuracy ranges in

[0, 1] and random guess generally gets zero.

4.2.1 Individual Cues and Scores

We use SVM to evaluate each individual weather cue used

in Eq. (1). Table 1 tabulates the classification results.

Intriguingly, Table 1 indicates that sky is the most important

weather cue among the five. We believe this is due to

the fact that sky detection is relatively easier and more

stable. The majority of failure cases are images without

a prominent sky region. In addition, reflection and shadow

classifiers also work well. The performance of the contrast

classifier on the other hand depends on the complexity of

the scene.

We note that the haze cue is weaker in comparison to

sky and contrast cue. We believe it is useful and the

relatively low classification rate is mainly due to the fact

that many images in our dataset simply do not exhibit

detectable hazy phenomenon. To confirm this, we select

415 images with haze vha score larger than 0.7 and 415

sunny images. The haze classifier performance is improved

up to 84.2% (normalized accuracy) when applied to these

830 images. We also found that the haze cue can help

identify sunny images as well in classification, since many

sunny images have vivid color thus exhibiting low dark-

channel intensities.

Next, we evaluate individual existence scores, which are

used to form Eq. (2). For each weather cue, we select

s percent images with the highest existence score in the

dataset and apply SVM classification on this image subset.

Figure 10 shows the performance curves with varying s
of each individual classifier. The plot indicates that our

existence score design is effective – a weather cue gets more

useful with a higher existence score.

4.2.2 The Proposed Learning Framework

We report our overall classification results and compare

them with several methods.

Comparison with Baseline Systems The first baseline is

to implement SVM directly on the 621-D weather feature.

We test both the linear and non-linear versions with differ-

ent kernels and report the results with the best performance.

The second baseline is the traditional Adaboost, which

combines several classifiers to build a stronger classifier.

We take each feature bin as a weak classifier. Another

two baseline methods based on dictionary learning [14] are

typical image classification methods, namely LLC [19] and

ScSPM [22]. Table 2 tabulates the classification results.

Figure 11 shows a few examples, where we test 5 different

6



Sky Shadow Reflection Contrast Haze

normalized accuracy 39.3 ± 2.1 28.2 ± 2.4 23.0 ± 2.6 35.5 ± 2.2 30.2 ± 1.7

Table 1. Classification results (mean ± variance) using individual weather cues.

SVM Adaboost LLC [19] ScSPM [22] Ours

Normalized accuracy 41.2 ± 2.2 36.4 ± 2.3 0.3 ± 0.1 0.2 ± 0.1 53.1 ± 2.2

Table 2. Classification statistics (mean ± variance) of different classification methods.
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(a) (b) (c) (d)
Figure 10. (a)–(d) are respectively the performance curves of sky, shadow, reflection, and haze classifiers. The x-axis is the respective

percentage of selected images set (with highest existence score) in the dataset. The y-axis is the respective labeling accuracy (in %).

σ values in Eq. (13), i.e., {0.5, 0.1, 0.01, 0.05, 0.001}, and

select the best result with the lowest energy in Eq. (13).

Comparison with Related Methods We resort to other

weather-related methods for comparison. The first related

work is of Lalonde et al. [9]. Note that system is not

designed for weather classification. Just one of the com-

ponents, i.e., sun visibility prediction, can be regarded as a

coarse weather estimator. We implement this component

and test it on our dataset. Another two vehicle-based

weather classifiers [21, 16] were also compared. Table 3

tabulates the classification statistics.

More Analysis For traditional image classification meth-

ods LLC [19] and ScSPM [22], the normalized accuracies

are close to 0. This is because these methods rely on scene

structure and do not consider illumination information.

SVM and Adaboost do not yield significant improvement

over single weather classifiers, such as those of sky or

shadow (c.f. Tables 1 and 2). We also find that the use

of kernel SVM yields similar performance.

For the method of [9], the assumption that an outdoor

scene is composed of ground, sky, and vertical surfaces

may not be satisfied (see a few “exceptions” in Figure 11).

Further, there is no consideration of the inhomogeneity of

weather cues across images. For the work of [21, 16],

the weather estimators are specially designed for driver

assistance. They rely on vehicle-mounted image priors,

which cannot properly deal with general natural images.

5. Conclusion and Future Work

We have presented a learning-based approach for classi-

fying two types of weather. This apparently simple two-

class weather labeling problem is not trivial at all given

the great variety of outdoor images. The feature cues we

used resonate well with our own common sense in judging

weather conditions. Because not all of the feature cues are

always available in images. The key to our computational

framework is a collaborative learning strategy where only

voters closer to the testing image information/structure are

given more weight in classification. Our experimental

results proved that this is a fairly effective and inspiring

strategy that could be used in many computer vision tasks.

Our work is the first significant attempt in tapping into

weather labeling given single images. While it shows

promises, the problem is far from solved. Our framework

is scalable to include more useful weather cues, and we

expect better performance in the future with advances in

shadow and haze detection. Two failure cases are shown

in Figure 12. For (a), we check the extracted low-level

features and conclude that our learning method is negatively

impacted by the detected shadow and contrast cues. Our

current approach is limited in labeling two weather types.

More research needs to be engaged in generalizing it to

labeling more weather types. We hope that this paper

will spark interest and subsequent work along this line of

research. Executable and the weather dataset are available

at the project website.
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