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Abstract

A 2-coloring of a hypergraph is a mapping from its vertex set to a set of two colors such
that no edge is monochromatic. Let H = H(k, n, p) be a random k-uniform hypergraph on a
vertex set V of cardinality n, where each k-subset of V is an edge of H with probability p,
independently of all other k-subsets. Let m = p

(
n
k

)
denote the expected number of edges in H.

Let us say that a sequence of events En holds with high probability (w.h.p.) if limn→∞ Pr[En] = 1.
It is easy to show that if m = c2kn then w.h.p. H is not 2-colorable for c > ln 2

2 . We prove
that there exists a constant c > 0 such that if m = (c2k/k)n, then w.h.p. H is 2-colorable.

1 Introduction

For an integer k ≥ 2, a k-uniform hypergraph H is an ordered pair H = (V,E), where V is a finite
non-empty set, called the set of vertices of H, and E is a family of distinct k-subsets of V , called
the edges of H. For general hypergraph terminology and background we refer the reader to [3]. A
2-coloring of a hypergraph H = (V,E) is a partition of its vertex set V into two (color) classes, R
and B (for Red and Blue, say), so that no edge in E is monochromatic. A hypergraph is 2-colorable
if it admits a 2-coloring.

Hypergraph 2-colorability, sometimes also called “Property B”, has been studied for about forty
years (see, e.g. [7, 8, 2, 14]). For k = 2, i.e. for graphs, the problem is well understood, since graph
2-colorability is equivalent to the graph having no odd cycle. For k ≥ 3, though, much less is known
and deciding the 2-colorability of k-uniform hypergraphs is NP-complete for every fixed k ≥ 3 [12].

In this paper we discuss 2-colorability of random k-uniform hypergraphs for k ≥ 3. (For the
evolution of odd cycles in random graphs see [9]). Let H(k, n, p) be a random k-uniform hypergraph
on n labeled vertices V = {1, . . . , n}, where each k-subset of V is chosen to be an edge of H
independently and with probability p = p(n). We will study asymptotic properties of H(k, n, p),
i.e. we will consider k ≥ 3 to be arbitrary but fixed, while n, the number of vertices, tends to
infinity. We will say that a hypergraph property A holds with high probability (w.h.p.) in H(k, n, p)
if limn→∞ Pr[H(k, n, p) has A] = 1. The main question in this setting is:

As p is increased, when does H(k, n, p) stop being w.h.p. 2-colorable?

As it will be convenient to discuss the answer to this question in terms of the expected number
of edges in H(k, n, p), we denote m = p

(
n
k

)
.
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Alon and Spencer considered the above question in [1]. They noted that by considering the
expected number of 2-colorings of H(k, n, p) it is easy to show that if m = c2kn, where c > ln 2

2 ,
then w.h.p. H(k, n, p) is not 2-colorable. Their main contribution was providing a lower bound on
the expected number of edges necessary for H(k, n, p) not to be 2-colorable w.h.p. In particular,
by applying the Lovász Local Lemma, they were able to show that if m = (c2k/k2)n then w.h.p.
H(k, n, p) is 2-colorable, for some small constant c > 0. Thus, the gap between the upper and the
lower bounds of [1] is of order k2.

It is interesting to compare the 2-colorability of random k-uniform hypergraphs with the sat-
isfiability problem for random k-SAT formulas. For a set of n Boolean variables, let Ck denote
the set of all 2k

(
n
k

)
possible disjunctions of k distinct, non-complementary literals (k-clauses) on

those variables. A random k-SAT formula, F (k, n,m), with m clauses over n variables is formed by
selecting uniformly at random m clauses from Ck and taking their conjunction. The question now is
“as m is increased when does F (n, k,m) stop being satisfiable w.h.p. ?” Again, by considering the
expected number of solutions (here, satisfying assignments), it is easy to show if m = c2kn, where
c > ln 2, then w.h.p. F (k, n,m) is unsatisfiable. In the opposite direction, Chao and Franco [5]
proved that, for k ≥ 4, a random k-SAT formula with m = c(2k/k)n clauses is w.h.p. satisfiable,
if c < 1/4. Chvátal and Reed [6] extended the result of [5] to all k ≥ 2 (and simplified it), while
Frieze and Suen [11], inter alia, improved the constant to c < 1.

The similarity between the two problems is quite apparent, though probably cannot be trans-
lated into a formal statement. This similarity stimulated Alon and Spencer [1] to try and derive
a result for random hypergraph 2-colorability analogous to the random k-SAT result of [6]. While
their result [1], as mentioned above, falls short of that goal, the authors proposed a randomized
2-coloring algorithm, similar to the one used by Chvátal and Reed [6], and conjectured that w.h.p.
it 2-colors H(k, n, p), as long as m = c(2k/k)n, for some absolute constant c > 0. If true, that
would reduce the gap between the upper and lower bounds for random hypergraph 2-colorability
to a factor of k (from k2).

In this paper we introduce a deterministic algorithm which is similar to the one proposed by
Alon and Spencer, except for one crucial difference that simplifies the analysis greatly. We prove
that our algorithm w.h.p. finds a proper 2-coloring of H(k, n, p) if m = c(2k/k)n, for an absolute
constant c > 0.

Theorem 1 There exists a deterministic linear time algorithm which w.h.p. 2-colors H(k, n, p) if
the edge probability p = p(n) satisfies

p

(
n

k

)
= c

2k

k
n ,

where c ≤ 1/50. For k ≥ 40, we can replace 1/50 with 1/10.

Let us note that a recent result of Friedgut [10] can be used to show that for each k ≥ 3, there
exists a function rk(n) such that if m = (rk(n) − ε)n then w.h.p. H(k, n, p) is 2-colorable, whilst
if m = (rk(n) + ε)n then w.h.p. H(k, n, p) is not 2-colorable. Naturally, c2k

k < rk(n) < c′2k, for
some absolute constants c, c′ > 0. It is widely believed that one can replace rk(n) by a constant rk.
Closing the asymptotic gap in the order of rk(n) is a challenging open problem in that direction.

The rest of the paper is organized as follows. In Section 2 we present our algorithm, analyze its
performance on H(k, n, p) and prove Theorem 1. Section 3 is devoted to a concluding discussion.
As noted before, throughout the paper we assume n to be large enough whenever needed, while
keeping in mind that k is fixed. Also, for the sake of clarity of presentation we routinely omit floor
and ceiling signs.
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2 Proof of the main result

In this section we first present a deterministic algorithm A for 2-coloring k-uniform hypergraphs
when k ≥ 6. We show that for such k, algorithm A 2-colors H(k, n, p) w.h.p. for p(n) as in
Theorem 1. We treat the (easy) case 3 ≤ k ≤ 5 separately at the end of this section.

2.1 Algorithm description

As stated above, we assume that k ≥ 6. An input of the algorithm is a k-uniform hypergraph
H = (V,E) with V = {1, . . . , n}. To describe the algorithm it will be convenient to fix in advance
an ordering on the vertices of V , say, the natural ordering 1, . . . , n. This ordering induces the
corresponding lexicographic order on the subsets of V . Thus, for example, {1, 2} < {1, 2, 3} < {3}.
Also, for the sake of presentation, we assume, for now, that the number of vertices n is even.

The algorithm proceeds in rounds, t = 0, 1, . . ., coloring two vertices in each round. Given a
partial coloring of the vertices of V , we say that a k-subset of V is i-monochromatic if precisely i
of its vertices have been colored and all i of them have received the same color.

ALGORITHM A

(1) If there are (k − 3)- or (k − 2)-monochromatic edges
then

let x < y be the smallest uncolored vertices in the smallest such edge,
else

let x < y be the smallest uncolored vertices.

(2) Color x Red; color y Blue.

Before proceeding to the analysis of the performance of A on H(k, n, p), we wish to briefly
compare it with algorithms for random k-SAT suggested in [5, 6, 11]. All these algorithms set
the value of one variable at a time, giving priority to variables that appear in clauses that are
yet unsatisfied and have few remaining unset variables. While the algorithms differ in the exact
rule for choosing which variable to set among those appearing in “short” clauses, their asymptotic
performance is within a constant factor. Similarly, we will also give priority to vertices participating
in short edges, where short now means an edge many of whose vertices have already been colored,
all in the same color. Those edges are clearly the most dangerous, and it is thus quite natural to
try to eliminate them first. However, in contrast with the algorithms for k-SAT, our algorithm
A colors two vertices at each round. There are two advantages to this strategy. First, an edge
containing both vertices x, y, colored at the current round, is not dangerous anymore, as x and y
get different colors. Secondly, we are able to keep track of the number of vertices colored Red and
Blue so far – after 2t vertices have been colored, exactly t of them are Red and the remaining t are
blue. Put differently, in order to successfully color a short edge we do not need to know the color
of its already colored vertices. This feature will be especially helpful in the analysis of the behavior
of A on random hypergraphs.

2.2 Proof of Theorem 1

We will prove the statement in Theorem 1 for even values of n, with a slightly larger c′ (namely, c′ =
1.01/50). For odd n, the result then follows by considering H(k, n+ 1, p), where p

(
n
k

)
= c(2k/k)n.

We need to show that w.h.p. in H(k, n, p), the 2-coloring resulting from applying algorithm A
contains no monochromatic edge. We will prove a slightly stronger claim.
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Claim 1 With probability 1 − O(n−1/2) no edge becomes (k − 1)-monochromatic during the algo-
rithm’s execution.

To see why Claim 1 implies Theorem 1, note that if an edge has two of its vertices colored in
the same round then it cannot be monochromatic. Thus, for an edge to become monochromatic
it must at some point be (k − 1)-monochromatic (and, in general, to become i-monochromatic an
edge must first be (i− 1)-monochromatic).

Proof of Claim 1. As often happens in the analysis of deterministic algorithms on random
structures, it will be convenient to assume that the choice of the random hypergraph is made in
parallel with its coloring, rather than assuming that a member of H(k, n, p) is chosen before the
execution of A begins.

For a family E0 of distinct k-subsets of V , exposing the edges from E0 amounts to deciding for
each k-tuple e ∈ E0, whether e ∈ E(H(k, n, p)) independently and with probability p(n). Thus, if
the family of all k-subsets of V is represented as a union of pairwise disjoint families {Ei}, exposing
the families Ei in some order generates a random hypergraph H(k, n, p).

Now let us describe how the edges of H(k, n, p) are exposed as Algorithm A proceeds.

EXPOSURE PROCEDURE

1. For 0 ≤ t ≤ n/2− 1 repeat:

Suppose we are in round t of Algorithm A, and are about to color vertex x in Red and vertex
y in Blue. Let Rt−1 be the set of vertices colored Red and Bt−1 be the set of vertices colored
Blue, in rounds 0, . . . , t− 1.

Expose all edges, having k−4 vertices in Rt−1, containing x and having three vertices outside
Rt−1 ∪Bt−1 ∪ {x, y}.
Expose all edges, having k−4 vertices in Bt−1, containing y and having three vertices outside
Rt−1 ∪Bt−1 ∪ {x, y}.

2. After all vertices from V have been colored, expose any yet unexposed edges.

It is easy to see that each k-subset of V is exposed exactly once during the above exposure
procedure. Hence its output is distributed according to H(k, n, p). It is important to observe that
in part 2 of the above exposure procedure all exposed edges have at most k − 4 vertices of one
color. In order for an edge of H to become (k − 1)-monochromatic, it should first become (k − 3)-
monochromatic, and therefore it could only have been exposed during part 1 of the above exposure
procedure. Therefore, to prove Claim 1, it is enough to restrict our attention to this first part,
performed along with the execution of the algorithm.

For each edge e ∈ E(H), exposed in round t of the algorithm, let e′ be the triple of its uncolored
vertices at the end of round t. We denote

F (t) = {e′ ⊂ e : e ∈ E(H) and e is exposed in round t} .

(F (t) is a set, not a multiset, i.e. we treat multiple copies of a triple as one.) We will refer to triples
from F (t) as t-triples and it will be notationally convenient to define F (t) = ∅ for t ≥ n/2.

For the purpose of the analysis, we group rounds into phases. We use ti and t̂i to denote the
first and the last round of the ith phase, respectively, and the phase itself is defined as follows.
The ith phase consists of the sequence of rounds ti, ti + 1, . . . , t̂i, if the number of (k − 3)- and
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(k − 2)- monochromatic edges is zero at the beginning of round ti and round t̂i + 1, but remains
positive during the rounds ti + 1 through t̂i. In particular, at the beginning of a new phase there
are no (k − 3)- or (k − 2)-monochromatic edges, and during a phase there is at least one such
monochromatic edge. It will be notationally convenient to consider round n/2− 1 as the beginning
of a last, trivial phase. Notice that precisely 2ti vertices are colored just before phase i starts and
2(t̂i + 1) vertices are colored after phase i ends. For phase i, we denote

Fi =
t̂i⋃
r=ti

F (r) .

Since there are no (k−3)-monochromatic edges of H right before phase i starts, we observe that
if an edge e becomes (k − 1)-monochromatic during phase i, then e must (a) have been exposed
during phase i, and (b) if w, z are its two vertices colored during phase i, Fi must contain two
distinct triples corresponding to edges ew, ez (different from e) containing w, z, respectively. As
there at most n/2 phases, to prove Claim 1 it suffices to prove the following lemma.

Lemma 1

Pr[ Fi contains distinct triples e1, e2, e3 so that e1 ∩ e2 6= ∅, e1 ∩ e3 6= ∅] = O(n−3/2) . (1)

Proof. We first note that conditional on Rt, Bt, each triple from V \ (Rt ∪ Bt) appears in F (t)

independently of all other such triples and with probability

q(t) := 1− (1− p)2( t
k−4) .

In order to eliminate dependencies between the appearance of distinct triples in Fi, we will condition
on Rti and Bti . As our argument will work for any given Rti and Bti , Lemma 1 will follow.

For ti ≤ t ≤ t̂i, it will be convenient to define a superset F (t)
i of F (t) in which every triple in

V \ (Rti ∪Bti ) appears independently and with probability q(t). To form F
(t)
i we will add to F (t)

each triple in V \ (Rti ∪ Bti ) but not in V \ (Rt ∪ Bt) with probability q(t), independently of all
other such triples. Also, we will introduce an auxiliary set

F ′i =
ti+log2 n⋃
r=ti

F
(r)
i .

Note now that each triple from V \ (Rti ∪Bti) appears in F ′i independently and with probability

1−
ti+log2 n∏
t=ti

(1− q(t)) ≤ 1− (1− q(ti + log2 n))log2 n ,

as q(t) is increasing in t. Moreover, Fi is a subset of F ′i unless t̂i > ti + log2 n.
Letting

qi := 1− (1− q(ti + log2 n))log2 n

F ′i is a random set of triples from V \ (Rti ∪ Bti), with each triple appearing independently and
with probability at most qi. Thus, recalling that Fi is a subset of F ′i unless t̂i > ti + log2 n, we see
that the probability in (1) is bounded by the sum of

Pr[ F ′i contains three distinct edges e1, e2, e3 so that e1 ∩ e2 6= ∅, e1 ∩ e3 6= ∅ ] (2)
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and
Pr[ t̂i > ti + log2 n ] . (3)

Since (1− a)b ≥ 1− ab for all a > 0 and any nonnegative integer b, we have

qi ≤ 2p
(
ti + log2 n

k − 4

)
log2 n

≤ 2
c2kn
k

(n− k)!k!
n!

(ti + log2 n)k−4

(k − 4)!
log2 n

≤ 33ck3 log2 n

n3

(
2(ti + log2 n)

n

)k−4

. (4)

Now, as k ≥ 4 is fixed, the probability in (2) is readily bounded from above by(
n− 2ti

3

)(
3
(
n− 2ti − 1

2

))2

q3
i = O((n− 2ti)7q3

i ) = O(k2(log n)6/n2)) = n−2+o(1) . (5)

(We used that for any a, b > 0 and any nonnegative integers i, j, (a− b)ibj ≤ ai+j/
(
i+j
i

)
.)

For the probability in (3) we observe that in any round t with ti + 1 ≤ t ≤ t̂i, at least one
(k − 3)- or (k − 2)-monochromatic edge is 2-colored. Thus the number of such edges after round t
is at most ∣∣∣∣∣

t⋃
r=ti

F (r)

∣∣∣∣∣− (t− ti) ,

which must be positive for t ≤ t̂i. In particular, if t̂i > ti + log2 n, then |F ′i | ≥ log2 n. Note now
that |F ′i | is dominated by a binomial random variable Bin

((n−2ti
3

)
, qi

)
. Letting 2ti/n = α, we get

(
n− 2ti

3

)
qi ≤

(n− 2ti)3

6
33ck3 log2 n

n3

(
2(ti + log2 n)

n

)k−4

≤ 17ck3

3
(1− α)3αk−4 log2 n

≤ 17ck3

3

(
1− k − 4

k − 1

)3(k − 4
k − 1

)k−4

log2 n

≤ 0.9 log2 n ,

for c ≤ 1.01/50 and k ≥ 6, and for c ≥ 1.01/10 and k ≥ 40. Thus, by considering the Chernoff
bound for the tail of the Binomial random variable, we see that the probability in (3) is at most
1/n2, concluding the proof of the lemma. 2

To conclude the proof of Theorem 1 we will present a deterministic algorithm which w.h.p.
2-colors H(k, n, p) if m = cn, for c < 1/6. Postponing that proof for a moment, we observe that
for 3 ≤ k ≤ 5, 101

5000
2k

k < 1
6 , and thus along with bound for k ≥ 6 above we get Theorem 1.

Let a component of a hypergraph be “bad” if it contains more than one cycle, or more than
two edges sharing more than one vertex. Recall now that for all k ≥ 2, if c < 1

k(k−1) then w.h.p.
there are no bad components in H(k, n, p) [4]. Our deterministic algorithm for 3 ≤ k ≤ 5 is
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as follows: if H contains a bad component then exit, reporting failure. Otherwise, to color a
component, repeatedly remove edges containing vertices of degree 1. Let e1, . . . , eq be the removed
edges, in order of removal. Since k ≥ 3 and the component is not bad, it is not hard to see that
this procedure removes all the edges. Now, we add the edges back to H in reverse order, coloring
vertices as follows: while adding back an edge ei ∈ E(H), if ei contains two uncolored vertices, color
them using distinct colors. Otherwise, take a vertex of current degree 1 in ei and use it to make
the edge bichromatic. By the ordering of the edges, one of the above two cases always happens.
Finally, all uncolored vertices, which are exactly the isolated vertices of H, are colored arbitrarily.

3 Concluding remarks

• It is natural to wonder if Algorithm A in fact performs significantly better than what we have
demonstrated. However, one can show that for larger values of c (e.g., c = 1), there exists
a round t∗ such that w.h.p. the number of (k − 2)-monochromatic edges at the beginning of
round t∗ is greater than (n − 2t∗). As a result, w.h.p. the graph induced by the uncolored
vertices of these edges contains an odd cycle and hence the algorithm fails. Thus, our analysis
of Algorithm A is tight up to the value of the constant c.

• Our algorithm A suggests the following algorithm for r-coloring H(k, n, p) for any fixed r ≥ 2
and k ≥ 3.

ALGORITHM Ar

(1) If there are (k − r − 1)- or (k − r)-monochromatic edges
then

let x1 < x2 < · · · < xr be the smallest uncolored vertices in the smallest such edge,
else

let x1 < x2 < · · · < xr be the smallest uncolored vertices.

(2) Color xi with color i, for i = 1, . . . , r.

Thus, Algorithm A is A2. Again, the key property is that at the end of every round an equal
number of vertices have been assigned each color. An analysis similar to that of A, shows
that the above algorithm w.h.p. r-colors a random k-uniform hypergraph H(k, n, p) if the
edge probability p = p(n) satisfies

p

(
n

k

)
= c

rk

k
n ,

where c < c∗ = c∗(r). (For example, taking c∗(r) = (r + 1)!/(r + 1)2(r+1) suffices).

• Finally, we remark that using a non-rigorous technique of statistical physics, namely the
replica method, in [13] it is suggested that the threshold for the satisfiability of random k-
SAT formulas is at the number of clauses m = c2kn (in fact with c = ln 2). We feel that
improving asymptotically the easy upper bound or the existing lower bound for either the
satisfiability problem or the 2-colorability problem would represent significant progress on
this topic.
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[8] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and finite sets, (A. Hajnal et al., eds.), North Holland, Amsterdam, 1975,
609–628.

[9] P. Flajolet, D. Knuth and B. Pittel, The first cycles in an evolving graph, Discrete Math. 75
(1989), 167–215.

[10] E. Friedgut, Necessary and sufficient conditions for sharp thresholds of graph properties, and
the k-SAT problem, J. Amer. Math. Soc. 12 (1999), 1017–1054.

[11] A. Frieze, S. Suen, Analysis of two simple heuristics on a random instance of k-SAT, J.
Algorithms 20 (1996), 312–355.

[12] L. Lovász , Coverings and colorings of hypergraphs, in: Proc. 4th S. E. Conf. on Combinatorics,
Graph Theory and Computing, 1973, Utilitas Math., 3–12.

[13] R. Monasson and R. Zecchina, Entropy of the K-satisfiability problem, Phys. Rev. Lett. 76
(1996), 3881–3885.

[14] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph two-
coloring, Proceedings of the 39th IEEE FOCS, IEEE (1998), 684–693.

8


