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Abstract

Life times of load sharing parallel systems have been considered in the
statistical literature at least since Daniels (1945). The main characteristic
of such a two component system is that after the failure of one component
the surviving component has to shoulder extra load and hence is prone to
failure at an earlier time than what is expected under the original model. In
other situations, the failure of one component may release extra resources
to the other, thus delaying the system failure. Gross et al (1971) observed
that similar considerations affect the functioning of a two organ system. In
this paper we first consider several observations schemes and identifiability
issues under them. Then we construct a general semiparametric bivariate
family of distributions which explicitly models this phenomenon through
proportional conditional hazards. McCool (2006) has suggested a test for
the hypothesis that the failures take place according to the original model
against the alternative hypothesis that the second failure takes place earlier
than warranted within the Weibull model. We propose nonparametric tests
for the same problem which may be used for any continuous distribution
for the component life times. We obtain estimates of the power of the test
and observe that it is quite high even for moderately distant alternatives.
The tests are applied to several real data sets to illustrate their use.

Key words: Bivariate distributions, censoring, conditional distribution,
early failures, order statistics, proportional hazards, semiparametric family,
sharing resources.

1 Introduction, literature survey and summary

A two component parallel system operates as long as at least one of the
components is functioning. Let us denote the life of the components 1 and
2 by random variables U1 and U2, respectively. Then the life of the system
is given by the random variable Y = max(U1, U2). Because of the nature
of the system, it continues to function even after the failure of one of the
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components. However, failure of one component can possibly put additional
load on the surviving component and hence affect its functioning and hence
the functioning of the system. This may result in stochastic reduction of
the residual life time.

Gross et al (1971) observed that two organ subsystems in human body
typically show this pattern. If one organ fails, the surviving organ is usually
subject to higher failure rate. If a patient gets his kidney removed due to to
some illness, then the second kidney shows a higher failure rate. However,
if a kidney is removed because of an accident, then the second kidney
may not exhibit an increased failure rate. The authors develop a survival
distribution for such two organ systems . They assume that if one organ
fails, then the other organ has a higher failure rate. However, both failure
rates are assumed to be constant in time. The parameters of the proposed
distribution are estimated iteratively.

The earliest work on load sharing models is due to Daniels (1945)and
Rosen (1964). They observed that yarns and cables in a bundle fail only
when the last fibre (or wire) in the bundle breaks. A bundle of fibres can be
considered as a parallel system subject to a constant tensile load. After one
fibre breaks yarn bundles or untwisted cables tend to spread the stress load
uniformly on the remaining unbroken fibres. This is the equal load share
rule under which the load of the failed component is distributed equally
among the remaining working components.

Coleman (1958) found the mean time to ultimate failure of a bundle
of parallel fibres when the number of fibers becomes large. Birnbaum and
Saunders (1958) derived the lifetime distributions of the materials. Phoenix
(1978) showed that the system failure is asymptotically normally distrib-
uted as the number of components become large. A more general monotone
load sharing rule assumes that the load on any individual component is
nondecreasing as other items fail.

Apart from textile industry such model arises in manufacturing where a
part can be considered failed only when the entire set of welded joints that
holds the part together fails. However, the failure of one or two joints can
increase the stress on remaining joints.

Kim and Kvam (2004) observed that such models also arise in sampling
techniques. Suppose the total resourses allocated toward finding a finite set
of items is fixed. Once one item is detected, resources can be redistributed
to finding remaining items. This is a load sharing model. If the items are
identical then an equal load share rule is the right one for studying system
dependence.
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Lynch (1999) characterised some relationships between the failure rate
and the load share rule and Durham and Lynch (2000) studied relationships
for some specified load-share rules.

Kim and Kvam (2004) consider a k component parallel system. Ini-
tially the components have identical distribution with constant failure rate
θ. After the failure of the first component the modified failure rate of
k − 1 components changes to γ1θ, for some γ1 > 0, and so on. They
find maximum likelihood estimators of the k parameters θ, γ1, γ2, . . . , γk−1.
They consider the estimation of parameters under monotone load sharing
1 ≤ γ1 ≤ γ2 ≤ . . . ≤ γk−1. They also derived a likelihood ratio test for
testing equality of γ′s against the alternative that they are monotone.

Kvam and Pena (2005) discuss load sharing models which are special
cases of dynamic models where performance of the system changes as
components fail or their performance deteriorates. They consider a k-
component parallel system under an equal load share model. When the
first component fails the failure rate of remaining components changes from
r(t) to γ1r(t) and so on. They find an estimator of the component baseline
cumulative hazard function R = −log(1 − F ) and discuss its asymptotic
distribution.

McCool (2006) modelled the time to failure as a two parameter Weibull
distribution. He proposed a test to test the hypothesis that the failure of
the first component in a parallel system shortens the life of the remaining
components of the same system. We look at a similar testing problem
without making any assumption on the distribution of component lifetimes.

In all above examples failure of first component adversely affects the
system performance. On the other side the detection of a bug in a soft-
ware can help in the detection of other bugs. Once a critical fault in the
software has been detected it can help in finding other bugs wich had ear-
lier been undetected. Drummond et al (2000) carried out a study in a
vertebrate species showing that selective deaths due to food shortage re-
sult in surviving offsprings receiving an increased share of an undiminished
food supply. They observed littermates of the domestic rabbit Oryctolagus
cuniculus and found that after individual pups died, the total daily milk
weight obtained by the litter continued to be same. Hence the surviving
pups consumed more milk and showed greater growth. This necessitates
considering the other one sided test also.

We restrict ourselves to two component systems and study their life-
lengths, identifiablity issues and bounds under various observations schemes
in section 2. In section 3 we propose a conditional failure rate model which
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explicitly uses the concept of additional load on the surviving component
after the failure of one. We also discuss the popular Gumbel (1960) and
Freund (1961) models from this point of view. Section 4 provides a test
for the null hypothesis that the two components fail without any addi-
tional load on the surviving component against the alternative that there
is such an additional load. In section 5 we extend the test to the case of
right censored data. Section 6 includes a simulation study and in section
7 the tests are illustrated on real data. The last section has comments and
conclusions.

2 Bounds under various observation schemes

In this section we look at various sampling schemes that arise with load
sharing and discuss corresponding identifiability issues. If the component
lifelengths are not identifiable, we propose bounds which can be estimated
from the corresponding data.

2.1 Components are independent and identically distributed -
observe both order statistics

Suppose that the component lifetimes U1, U2 are continuous, positive val-
ued, independent random variables with a common distribution function
F (x), survival function F̄ (x), density function f(x), failure rate function
rF (x) = f(x)

F̄ (x) . Suppose that the lifetime of the component which fails first

is given by X = min(U1, U2) and the lifetime of the component which fails
second, which is the same as the system lifelength, is Y = max(U1, U2).
Because U1, U2 are i.i.d random variables, it is easy to see that the joint
density of the two ordered failure times X, Y is given by

g(x, y) = 2 f(x)f(y), 0 < x < y < ∞,

= 0, otherwise.

The marginal distribution of the minimum X and the maximum Y , respec-
tively are given by

G(x) = 1− (1− F (x))2, H(x) = [F (x)]2,

and the density functions by

g(x) = 2f(x)(1− F (x), h(x) = 2f(x)F (x).

Hence the marginal distribution of U1 can be identified from the distri-
bution of either of the order statistics .
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2.2 Components are dependent - observe order statistics

Next suppose that the component lifetimes are no longer independent, as
in the case of a pair of lungs or a pair of kidneys. Let the joint distribution
function of component lifelengths (U1, U2) be given by F (x, y) and joint pdf
by f(x, y). Its joint survival is given by

F̄ (x, y) = 1− F1(x)− F2(y) + F (x, y). (1)

As before X = min(U1, U2) and Y = max(U1, U2)
Then, the joint distribution function of (X, Y ) is given by

G(x, y) = F (x, y) + F (y, x)− F (min(x, y), min(x, y)), 0 < x < y < ∞.

(2)
And the joint density function of (X, Y ) is given by

g(x, y) = f(x, y) + f(y, x), 0 < x < y < ∞. (3)

We have identifiability only along the diagonal (x, x) .
Then the survival function of the first failure X is given by

Ḡ(x) = P [X > x] = P [U1, U2 > x] = F̄ (x, x) = 1−F1(x)−F2(x)+F (x, x).
(4)

The distribution function of the system lifelength Y is given by

H(x) = P [U1, U2 ≤ x] = F (x, x). (5)

Let g(x) and h(x) be the corresponding density functions.
When the component lifetimes are not independent, we cannot iden-

tify the joint distribution F (x, y) from the joint distribution of the order
statistics (X,Y ). However, we have the following bounds.

Theorem 1:

G(min(x, y), min(x, y)) ≤ F (x, y) ≤ G(min(x, y), max(x, y)) ∀x, y (6)

Proof : We can write

F (x, y) = G(x, y)P (X1 ≤ X2) + G(y, x)P (X2 ≤ X1).

Therefore

min{G(x, y), G(y, x)} ≤ F (x, y) ≤ max{G(x, y), G(y, x)}.

Separately considering x < y and y < x leads to the inequality given above.
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Note that if F (x, y) is exchangeable then F (x, y) = F (y, x),

F (x, y) =
1

2
[G(x, y) + G(min(x, y), min(x, y)),

and

f(x, y) =
1

2
g(x, y).

Thus, when F (x, y) is exchangeable, then it is identifiable on the basis of
joint distribution G(x, y), not otherwise. Independence of U1, U2 is neither
sufficient nor necessary for identifiability.

2.3 Components are dependent - observe the maximum and its
identifier

The third possible sampling scheme is the following. Suppose that the
system life Y and the label of the component whose failure coincided with
the system failure are observable. That is, we observe (Y, δ), where δ = 1
if Y = U1 and δ = 2 if Y = U2. Basu and Ghosh (1981) called it the
complementary risks data and discussed identifiability issues associated
with it. The joint distribution function of (Y, δ), is given by the following
pair of sub-distribution functions H(t, 1) = P (Y ≤ t, δ = 1) and H(t, 2) =
P (Y ≤ t, δ = 2). The joint distribution of (U1, U2) given by F (x, y) is
not identifiable under this sampling scheme. However we note that the
following bounds hold.

H(min(x, y), 1) + H(min(x, y), 2) ≤ F (x, y) ≤ H(x, 1) + H(y, 2). (7)

In case only the maximum Y is available and the markers given by δ are
not known, then we have

H(min(x, y)) ≤ F (x, y) ≤ H(max(x, y)). (8)

These results are analogous to those obtained by Peterson (1976) for
series systems. Using the bounds in (6), (7) and (8) one can obtain conser-
vative confidence bounds for F (x, y) following the approach in Deshpande
and Karia (1995). As suggested by them one needs to obtain the lower con-
fidence limit (band) for the lower bound and upper confidence limit (band)
for the upper bound. These limits (bands) can be based on consistent esti-
mators of the respective bounds together with the asymptotic distributions
of these estimators. The bivariate and the univariate empirical distribution
function may be used as an estimators for G(x, y) and H(x), respectively
and the empirical sub-distribution functions for H(x, 1) and H(y, 2).
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3 A Model for load sharing

X, Y are the minimum and the maximum of U1, U2 which are i.i.d with
distribution function F (x). One can obtain the conditional density of Y

given X = x as

hY |X=x(y) = f(y)/[1− F (x)], 0 < x < y < ∞.

Therefore, the joint density of X and Y can be equivalently defined by the
pair consisting of the marginal density of X and conditional density of Y

given X, that is, by

{2f(x)(1− F (x)), f(y)/[1− F (x)] }.

Then the failure rate of the conditional distribution of Y given X is

rY |X=x(y) =
f(y)

(1− F (x))

1− F (x)

1− F (y)
=

f(y)

1− F (y)
= rF (y), 0 < x < y < ∞.

That is if we have a parallel system based on two independent and
identically distributed components, then the failure rate of the system given
the failure of the first component is the same as the failure rate of the
original component. That is, the system failure rate is not affected by the
failure of the first component.

Next consider the experimental situation where initially the components
are independent and identically distributed but the first failure shifts the
load to the surviving components. In such a case we expect that the con-
ditional failure rate gets affected and we suggest a proportional hazards
model as follows

r∆,Y |X=x(y) = ∆rF (y), 0 < x < y < ∞, ∆ ≥ 1. (9)

∆ = 1 gives the independence of component lives and the fact that the
first failure shifts an extra load on the surviving component can be modeled
by taking ∆ > 1.

Under this set up, the pair of marginal density functions of X and the
conditional density of Y given X = x is

{2f(x)(1− F (x)), ∆f(y)
(1− F (y))∆−1

(1− F (x))∆ }, 0 < x < y < ∞, 1 ≤ ∆ < ∞,

and the joint density function of the ordered component lives is

g∆(x, y) = 2∆f(x)f(y)
(1− F (y))∆−1

(1− F (x))∆−1 , 0 < x < y < ∞, 1 ≤ ∆ < ∞.

(10)
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h∆(y) =
2∆f(y)[F̄ (y)∆−1 − F̄ (y)]

2−∆
, ∆ 6= 2

−4F̄ (y)logF̄ (y)f(y), ∆ = 2, y > 0.

It is interesting to note that the unordered random variables corresponding
to the joint density function g∆(x, y) are neither independent nor identically
distributed.

As an illustration suppose that U1, U2 are i.i.d exponential random vari-
ables with failure rate λ. Then the joint density function of X, Y under
the proposed model is given by

g∆(x, y) = 2∆λ2exp− [λ(x + y)]exp− [λ(∆− 1)(y − x)], 0 < x < y < ∞.

(11)
The marginal density of the first component X and the system failure time
Y is

g(x) = 2exp− [2x], x > 0,

h(y) =
2λ∆[exp− [λ∆y]− exp− [2λy]]

2−∆
, ∆ 6= 2

4λ2yexp− [2λy], ∆ = 2, y > 0.

The conditional density of Y given X = x is

hY |X=x(y) = ∆exp− [∆(y − x)], 0 < x < y < ∞.

(10) gives us a new bivariate model which brings in the effect of load
sharing. One could possibly obtain more models by starting with i.i.d
Weibull and other distributions for the U1, U2. Further we may bring in
the effect of loadsharing by a nonproportional conditional hazard rate as
well. This opens up a rich class of bivariate models.

As mentioned earlier the original lifetimes U1, U2 could be dependent.
We would like to compare the joint density of the minimum and maximum
proposed in (10) with those arising in the case when the original lifetimes
follow bivariate distribution due to Gumbel (1960) and Freund (1961). We
look at the conditional distributions and the conditional failure rates.

The conditional density function of Y given X = x is

h(Y |X=x)(y) =
g(x, y)

g(x)
=

f(x, y) + f(y, x)

−d/dx(F̄ (x, x))
, x < y. (12)

Its conditional distribution function is

H(Y |X=x)(y) =

∫ y
x g(x, u)du

g(x)
, x < y. (13)

8



The conditional survival function is

Ḡ(Y |X=x)(y) = 1−
∫ y
x g(x, u)du

g(x)
, x < y. (14)

So that the conditional failure rate of the system given the first failure is

rY |X(y) =
f(x, y) + f(y, x)

g(x)− ∫ y
x [f(x, u) + f(u, x)]du

, x < y. (15)

And the system failure rate is

rY (x) =
d/dx(F (x, x))

1− F (x, x)
, x > 0. (16)

Now we work out these expressions for Gumbel’s bivariate exponential
given below.

F (x, y) = 1− e−x − e−y + e−x−y−δxy, x, y > 0, 0 ≤ δ ≤ 1.

Note that U1 and U2 are independent if δ = 0. That essentially reduces
to the case of i.i.d. exponentials random variables discussed earlier.

f(x, y) = [(1 + δy)(1 + δy)− δ]e−x−y−δxy, x, y > 0, 0 ≤ δ ≤ 1.

(17)

Hence the joint pdf of (X, Y ) is given by

g(x, y) = 2f(x, y), x < y.

Survival function and density function of the time to first failure X is

Ḡ(x) = e−2x−δx2

,

g(x) = (2 + 2δx)e−2x−δx2

.

(18)

Notice that the time to first failure has the linear failure rate.
And the distribution function and density function of the system failure

Y is
H(x) = 1− 2e−x + e−2x−δx2

,

and
h(x) = 2e−x − (2 + 2δx)e−2x−δx2

, x > 0.

The conditional density and distribution of Y given X = x are given as
follows

hY |X=x(y) =
[(1 + δy)(1 + δy)− δ]e−x−y−δxy]

(1 + δx)e−2x−δx2 , x < y,
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HY |X=x(y) =
e−x−y−δxy − e−2x−δx2 − δye−x−y−δxy + δxe−2x−δx2

2(1 + δx)e−2x−δx2 , x < y.

And the conditional failure rate of Y given X = x for x < y is

rY |X=x(y) =
[(1 + δy)(1 + δy)− δ]e−x−y−δxy]

2(1 + δx)e−2x−δx2 − e−x−y−δxy + e−2x−δx2 + δye−x−y−δxy − δxe−2x−δx2 .

Finally the failure rate of Y is

rY (x) =
2e−x − (2 + 2δx)e−2x−δx2

2e−x − e−2x−δx2 , x > 0.

Note that U1, U2 have failure rate 1.

As another example we consider Freund’s distribution. The motivation
of the model was to start with independent exponentials and consider the
modifications in case there is load sharing. Note that the authors were not
looking at the joint distribution of the minimum and the maximum which
is of interest to us. The joint density function of U1, U2 is given by

f(x, y) =

 αβ′exp[−β′y − (α + β − β′)x] 0 < x < y

βα′exp[−α′x− (α + β − α′)y] 0 < y < x.

Then, the distribution of the system failure X is given by

F (x, x) =
α

α + β − β′
(1− exp[−β′x]) +

β

α + β − α′
(1− exp[−α′x])

− αβ′

(α + β)(α + β − β′)
(1− exp[−(α + β)x])

− βα′

(α + β)(α + β − α′)
(1− exp[−(α + β)x]).

The density of the maximum is

gY (x) =
αβ′

α + β − β′
exp[−β′x] +

βα′

α + β − α′
exp[−α′x], x > 0.

And the density of the minimum is

gx(x) = (α + β)exp[−(α + β)x], x > 0.

Hence the minimum is exponential with failure rate α + β.

The joint density of the two order staistics (X, Y ) is given by

g(x, y) = αβ′exp[−β′y−(α+β−β′)x]+βα′exp[−α′y−(α+β−α′)x], 0 < x < y.
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After simple but lengthy calculations, the conditional failure rate of the
maximum, given X = x is

rY |X=x(y) =
αβ′exp[−β′(y − x)] + βα′exp− [α′(y − x)]

αexp[−β′(y − x)] + βexp[−α′(y − x)]
, x < y.

Since we are looking at the case when U1, U2 are identically distributed
but are not independent, we take α = β, α′ = β′. It is interesting to note
that under this assumption, rY |X=x(y) = α′. This is not equal to the failure
rate of any component of the system.

Hence if the component lifelengths are identical, the conditional failure
rate of the system given the first failure is a constant. That is, the condi-
tional distribution of Y |X = x is exponential with failure rate α′. Observe
that in this case the distribution of the minimum is exponential with failure
rate 2α.

In none of these cases can we write r∆,Y |X(y) = ∆rF (y), 0 < x < y <

∞, ∆ ≥ 1. Hence the joint density function of the order statistics given
by (10) appears to be a more meaningful way of looking at load sharing
instead of the joint distribution of order staistics arising out of Gumbel and
bivariate distributions since it takes care of the load sharing mechanism and
proposes a way to deal with it.

It is interesting to observe the following special case. Suppose UI , U2 are
independent but not identically distributed with density functions f1(x)
and f2(x), respectively.

Then joint density of of minimum and maximum is

g(x, y) = f1(x)f2(y) + f1(y)f2(x), x < y. (19)

The density of the minimum X is

g(x) = f1(x)F̄2(x) + F̄1(x)f2(x), x > 0. (20)

Hence conditional failure rate of maximum given minimum is

rY |X=x(y) =
f1(x)f2(y) + f1(y)f2(x)

f1(x)F̄2(y) + F̄1(y)f2(x)
, x < y. (21)

Suppose U1 has exponential distribution with failure rate 1 and U2 has
exponential with failure rate λ > 1 . Then conditional failure rate of
maximum given minimum is

rY |X=x(y) =
λe−xe−λy + λe−λxe−y

e−xe−λy + λe−λxe−y
, x < y. (22)
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Then for λ > 1 we have

1 ≤ rY |X=x(y) ≤ λ. (23)

In general one can show that if rU1
(y) ≤ rU2

(y), then

rU1
(y) =

f1(y)

F̄1(y)
≤ rY |X=x(y) ≤ f2(y)

F̄2(y)
= rU2

(y). (24)

4 A Test

Our next question is whether the first failure affects the failure of the
system or not. Hence we wish to test the null hypothesis H0 that the
first failure does not affect the system lifelength against the alternative
H1 that the first failure stochastically reduces the system lifelength. Or
equivalently, one may say that under H0 first and second failure times are
from the order statistics distribution based on i.i.d random variables and
under H1 the second failure occurs earlier than what is predicted by the
order statistics distribution based on i.i.d random variables. Thus under
the alternative the distribution function of system life Y given X = x is
decreasing in x.

Suppose the data consists of n independent pairs of ordered component
lifetimes (Xi, Yi), i = 1, 2, ..., n. Trivially, Xi < Yi, i = 1, 2, . . . , n. Consider
the following U-statistics

U(X1, Y1, . . . , Xn, Yn) =
1(
n
2

) ∑
i<j

1

2
[h(Xi, Yj) + h(Xj, Yi)]. (25)

where h(Xi, Yj) = I(Xi < Yj). Then, it is easy to see that E(U) =∫∞
0 G(x)dH(x). Under H0 it is equal to 5

6 and under the model (10), it
is less than 5

6 for ∆ > 1, leading to consistency of the tests. Under H0, we
have

V ar(U) =
1

9n(n− 1)
+

4(n− 2)

90 n(n− 1).

¿From the limiting theorem of U-statistics (Serfling (1980)) it follows
that √

(n)(U − 5/6)√
2/45

d→ N(0, 1).

Small values of the statistic are significant. It is interesting to note that
under the set up when component lifetimes are independent, the null mean
and variance are distribution free.

12



Let Rj be the rank of Yj in the combined arrangement of all the minimum
and maximum. Then, we can express the U-statistics as function of the
ranks as follows, n

2

U =
1

2

n∑
j=1

Rj −
n(n + 3)

4
. (26)

5 The Censored Case

In almost all survival studies complete data is not available due to presence
of a censoring mechanism. However the censoring can occur in several ways.
The monitoring starts after the first failure has already occured (that is,
one kidney has already failed). Here the minimum X is left censored by the
age at which the monitoring begins and the maximum is observed without
censoring. It is also possible that the first failure X is observed but the
maximum is right censored by death due to other causes. In the extreme
case it is possible that the minimum X is left censored and the maximum
Y is right censored. We will only look at the right censoring case.

5.1 Right Censoring

Suppose that U1 and U2 are independent and identically distributed random
variables. Let C, with distribution function KR(t), denote the random
variable which censors Y . It acts independent of the pair (X, Y ). Based
on a random sample from this set up we consider a kernel

hC(Xi, Yi, Xj, Yj) =
1

2
[I(Xi < min(Yj, Cj)) + I(Xj < min(Yi, Ci))]. (27)

Let UCR be the U-statistic estimator of the kernel hC(Xi, Yi, Xj, Yj).
Assume that the distribution of CR satisfies the Koziol-Green model

with KR(x) = [F (x)]θ θ 6= 2.
Note that θ = 2 gives the distribution function of Y , for θ > 2, we have

KR(x) > H(x), that is, the censoring random variable is stochastically
smaller than Y and this indicates heavy censoring. The reverse is true if
θ < 2.

Under this set up we have

E[UC ] =
∫ ∞

0
(1− F 2(x))(1− F θ(x))2F̄ (x)f(x)dx

= 2[
5

12
− 1

θ + 1
+

1

θ + 2
+

1

θ + 3
− 1

θ + 4
]. (28)
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E(UC) depends on unknown θ. However, note that P [Y < C] = θ
θ+2 . One

can easily replace the unknown θ by its consistent estimator 2A
1−A , where A

is the proportion of Y observations that are uncensored. Let us call this
Ê(UC ].

The asymptotic variance of UC is a lengthy (there are around 50 terms)
expression involving θ and hence is not being reported. It can be estimated
consistently by replacing θ by its consisitent estimator.

We can also estimate the asymptotic variance σ2
C as follows.

σ2
C =

1

4
[E[H̄(X)K̄(X)]2 + E[G(min(Y,C))]2

+2E[(H̄(X)K̄(X))G(min(Y,C))]]− E2[UC ]. (29)

Then

E[H̄(X)K̄(X)]2 =
∫

H̄2(x)K̄2(x)dG(x)

= P (Min(Y2, C2) > X1, Min(Y3, C3) > X1) (A1 say),

(30)

E[G(min(Y,C))]2 =
∫

G2(min(y, c))dH(y)dK(c)

= P [X2 < min(Y1, C1), X3 < min(Y1, C1)] (A2 say),

(31)

E[H̄(X)K̄(X)G(min(Y, C))]

=
∫

H̄(x)K̄(x)G(min(y, c))g(x, y)k(c)dxdydc

= P [Min(Y2, C2) > X1, X3 < min(Y1, C1), Y1 > X1] (A3 say).

(32)

Probability expressions given in A1, A2, A3 can be estimated unbiasedly by
respective indicator functions. One can look at symmetric versions of these
indicator functions and define corresponding U-statistics. Thus, we have
U-statistics estimator for the asymptotic variance. Using the results of

U-statistics we have
√

n(UC−Ê(UC ]
2σ̂C

has limiting normal distribution.

6 Simulations

We carried out a simulation study to look at the power of the test and also
the level attained. First we draw random samples of X, Y with sample size
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n = 50, 100, 200 from the joint pdf given by (10). Let F (x) = 1 − e−x.
The procedure was repeated 1000 times. Table 1 gives the power. The
values below the line look at ∆ < 1 and hence the rejection was for large
values. This essentially takes care of the case when the system performance
improves after first failure.

¿From Table 1 we see that the distribution is slightly skew for small
sample values since the expectation of the statistic is 5/6 under the null
hypothesis, while the range is [0,1]. This results in slow convergence to .05,
the asymptotic level for the case ∆ = 1. Otherwise the power inreases with
increase in sample size and as ∆ moves away from 1.

Next we drew random samples from i.i.d exponentials with sample size
n = 50, 100, 200. Under the alternative the components continue to be
independent but not identically distributed. In this case if we are looking
for departures from the i.i.d. structure, E(U) > 5/6. Hence we reject for
large values. Table 2 reports the power when the experiment is repeated
1000 times.

When λ1 = λ2, both components are independent and identically dis-
tributed and hence components are i.i.d. Otherwise they are independent
but not identically distributed. For all sample sizes the exact level attained
is close to .05. Unequal vaues of λ denote departure from i.i.d. set up. The
higher the difference between the two values of λ, the higher is the power.
Similarly, the power increases with the increase in sample size.

Finally, we generate random samples from bivariate Gumbel distribution
(1960). The joint survival distribution of the components is given by

F̄ (x, y) = exp[−λ1x− λ2y − λ3xy], x, y > 0, (33)

λ1, λ2 > 0, 0 < λ3 < λ1λ2. When λ3 = 0, the components are independent
and and have exponenential marginals. When λ1 = λ2, the two components
are identically distributed . Hence the case λ1 = λ2, λ3 = 0 correspond to
the i.i.d set up and all other values indicate departure from the i.i.d set up.
Here again the rejection is for large values of the statistic.
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Table 1: Power when sample from joint distribution of X, Y

n ∆ power

50 1.0 0.061
100 1.0 0.052
200 1.0 0.044

50 1.10 0.098
100 1.10 0.119
200 1.10 0.192
50 1.20 0.191
100 1.20 0.251
200 1.20 0.395
50 1.30 0.267
100 1.30 0.412
200 1.30 0.619
50 1.40 0.391
100 1.40 0.573
200 1.40 0.830
50 1.50 0.466
100 1.50 0.733
200 1.50 0.929

50 0.90 0.118
100 0.90 0.124
200 0.90 0.184
50 0.80 0.193
200 0.80 0.507
50 0.70 0.348
100 0.70 0.562
200 0.70 0.830
100 0.60 0.821
200 0.60 0.967
50 0.50 0.768
100 0.50 0.954
200 0.50 1.000
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Table 2: Power when sample from independent exponentials

n λ1 λ2 power

50 1 1 0.049
100 1 1 0.044
200 1 1 0.049

50 1 2 0.133
100 1 2 0.182
200 1 2 0.311
50 1 3 0.359
100 1 3 0.583
200 1 3 0.860
50 1 4 0.626
100 1 4 0.875
200 1 4 0.990
50 2 4 0.133
100 2 4 0.182
200 2 4 0.311
50 4 2 0.140
100 4 2 0.191
200 4 2 0.306
50 3 1 0.349
100 3 1 0.721
100 3 1 0.830
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Table 3: Power when sample from bivariate Gumbel

n λ1 λ2 λ3 power

50 1 1 0 0.049
100 1 1 0 0.055
200 1 1 0 0.048

50 1 2 0 0.146
100 1 2 0 0.197
200 1 2 0 0.305

50 1 1 0 1 0.104
100 1 1 0.1 0.150
200 1 1 0.1 0.217
50 1 2 0.1 0.189
100 1 2 0.1 0.325
200 1 2 0.1 0.503

50 1 1 0.2 0.209
100 1 1 0.2 0.303
200 1 1 0.2 0.502
50 1 2 0.2 0.251
100 1 2 0.2 0.437
200 1 2 0.2 0.720

7 Examples

The following situations are examples of load sharing in biological and other
disciplines.

Example 1: Mantel, Bohidar and Ciminera (1977) report data on 50
male and 50 female litters, each of three rats. One rat in each litter was
drug-treated and the other two served as control animals. The records are
either on the week of tumor appearance or the week of death. To test
whether the death of a littermate affects the lifetime of the surviving ani-
mal, we use the test in Section 4 for the two control animals. We delete the
litters with tumor deaths and also the litters in which both the control an-
imals were sacrificed or died at the end of 104 weeks, the time at which the
study was ended. Thus we have 48 male litters and 22 female litters. The
values of the test statistic for the male litters is 0.044, and for the female
litters is 2.504. In case of the male litters, the null hypothesis H0 that the
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first death does not affect the second death is not rejected , whereas in case
of the female litters, it is rejected even at 1% level of significance in favor
of H ′

1 : death of a littermate increases the residual life of the surviving mate.

The above example indicates that in litter-matched case control sudies,
the lifetimes of the littermates may have to be treated as bivariate data as
in Hougaard (2000).

Example 2: We consider data from an article of Kvam and Peña (2003)
on three star players in a basketball team. The data are from the Basketball
Association franchise Boston Celtics obtined during the second half of the
2001-2002 season. The data, given in Table 4, consist of the game times
for each player’s second personal foul for the games in the season in which
all three players started the game and committed at least two fouls by the
end. Kvam and Peña conjecture that once a player commits two fouls (and
is likely to be out of the game for a period of time), the foul rate of the
other star players will change. Either the foul rate might decrease if all
the players decide to play conservatively or might increase if the other star
players have to shoulder the responsibility on defense and thus are more
prone to foul. They consider that the three star players compose a system
and define a component failure as the event when a player commits two
fouls. Thus the failure time of a player is same as the time-until-second-foul
for the player.

Here we consider that the system comprises of two star players and
obtain the value of the test statistic of Section 4 for the three possible
combinations.

The value of the test statistic for players I and II is -0.332 and for players
II and III, the value is 0.299. Thus in both these cases there is no significant
evidence against H0 at 1% level of significance. Whereas for players I and
III, the value of the test statistic is -1.461 , which is significant only at 10%
level in favour of H1. We may conclude that two fouls of players I and
III affect each other moderately and after one commits two fouls the other
player is quite likely to commit his second foul sooner than he would have
committed otherwise.

Example 3: For the ball bearings data given in McCool (2006), the
value of the test statistic is -2.324. Thus we reject H0 in favour of H1 :
failure of one ball bearing increases the load on the other ball bearings.
However the data are available for six systems only.
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Table 4: Time until second personal foul in 28 basketball games

Game Player Player Player Game Player Player Player
I II III I II III

1 21.02 30.22 43.43 15 42.06 23.21 45.36
2 24.25 45.54 17.19 16 28.51 33.59 16.2
3 6.555 19.47 23.28 17 34.56 32.53 40.44
4 15.35 16.37 25.4 18 40.33 15.35 28.33
5 39.08 30.32 43.53 19 27.56 46.21 28.05
6 16.2 4.16 39.52 20 9.54 36.21 28.12
7 34.59 46.44 16.33 21 27.09 11.11 23.33
8 19.1 38.4 20.17 22 40.36 33.21 17.04
9 28.22 37.43 25.41 23 41.44 36.28 19.13
10 32 45.52 39.11 24 32.23 8.17 41.27
11 11.25 19.09 11.59 25 7.53 37.31 13.43
12 17.39 25.43 22.51 26 28.34 35.58 41.48
13 28.47 31.15 2.41 27 26.32 28.02 29.33
14 23.42 31.28 40.03 28 30.47 40.4 42.13

8 Conclusions

Model proposed in (10) incorporates the changes in the performance of a
two component system due to the failure of the first component. These
models, for various choices of F , give us families of bivariate distributions
which incorporate load sharing ideas better than the existing bivariate mod-
els as those due to Gumbel and Freund. One could also look at nonpropor-
tional models. We are looking at nonparametric estimation of the hazard
rates of the proposed model in the presence of covariates.

On failure of one component, the surviving component may either have
to undergo extra stress, leading to stochastically shorter residual lifetimes,
or have access to extra resources, leading to longer residual lifetimes than
what is warranted under independence. The extra load on the surviving
components is observed in most mechanical systems and also in organic
systems such as the two kidneys. On the other hand if two foraging animals
have access to a fixed stock of food, then the death of one will make all the
remaining food available to the surviving animal therby reducing the load.

Besides one could look at testing problem in context of a k component
system where the failure of a subset of size k1 (say) random units affects
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the lifetime of remaining (k − k1) units. Then there is the possibility of
constructing Kolmogrov-Smirnov type tests in these situations. All these
problems are being considered and further work will be reported when
completed.
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