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Abstract

The primary motivation of this paper is to extend the application of the

reproducing-kernel method (RKM) and the residual power series method (RPSM) to

conduct a numerical investigation for a class of boundary value problems of fractional

order 2α, 0 < α ≤ 1, concerned with obstacle, contact and unilateral problems. The

RKM involves a variety of uses for emerging mathematical problems in the sciences,

both for integer and non-integer (arbitrary) orders. The RPSM is combining the

generalized Taylor series formula with the residual error functions. The fractional

derivative is described in the Caputo sense. The representation of the analytical

solution for the generalized fractional obstacle system is given by RKM with

accurately computable structures in reproducing-kernel spaces. While the

methodology of RPSM is based on the construction of a fractional power series

expansion in rapidly convergent form and apparent sequences of solution without

any restriction hypotheses. The recurrence form of the approximate function is

selected by a well-posed truncated series that is proved to converge uniformly to the

analytical solution. A comparative study was conducted between the obtained results

by the RKM, RPSM and exact solution at different values of α. The numerical results

confirm both the obtained theoretical predictions and the efficiency of the proposed

methods to obtain the approximate solutions.

Keywords: Reproducing-kernel method; Residual power series method; Inner

product spaces; Obstacle problems; Caputo-fractional derivative

1 Introduction

The concept of variational inequality problems (VIPs) has become an influential mathe-

matical methodology for qualitatively analyzing free boundary, equilibrium, optimization,

complementarity, obstacle, unilateral, and environmental network issues in numerous dis-

ciplines including economics, finance, management, mechanics, elasticity and engineer-

ing [1–3]. This concept has been generalized and improved as an interesting branch in ap-

plied mathematics, which was formulated and investigated as special cases of equilibrium

analysis. In 1966, Hartman and Stampacchia introduced the theory of VIP for studying a

class of partial differential equations with applications that were derived mainly fromme-

chanics. Later, Kikuchi andOden [3] have shown that the equilibrium problems for elastic

objects touching a rigid base can be handled in the context of the theory of VIP. The obsta-

cle model is essential in the development of the VIPs theory that arises in a variety of pure

and differential applied sciences. Anyhow, scholars have considered the following obsta-
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cle system with second-order derivatives by utilizing other numerical methods, including

finite difference, spline, and collocation methods [4–7]:

u′′(x) =

⎧

⎨

⎩

f (x), x ∈ [a, c]∪ [d,b],

g(x)u(x) + f (x) + r, x ∈ [c,d],
(1.1)

with boundary conditions

u(a) = µ1, u(b) = µ2, (1.2)

and with the assumptions that the required solution u(x) for boundary value problems

(BVPs) (1.1) and (1.2) is unique smooth function and its first derivative satisfies the conti-

nuity conditions at internal points c and d. Moreover, the functions g(x) and f (x) are given

analytical real-valued functions on [c,d] and on [a,b], respectively, where a < c < d < b.

The parameters µ1,µ2 and r are real finite constants. These kinds of BVPs arise in the

study of obstacle, moving, unilateral, and free BVPs that have many powerful applications

in the field of mathematics [5–8].

Many obstacle problems of integer order have been studied and solved using several

numerical approaches such as variation of parameters, collocation, finite difference, spline

and residual power series techniques. For instance, the collocation technique was applied

in [4] for solving the obstacle BVPs (1.1) and (1.2) utilizing B-cubic splines basis functions

that yields approximate solution of first-order accuracy. Later, similar results were drawn

to obstacle BVPs (1.1) and (1.2) utilizing finite difference and spline methods [4, 7]. While

the Numerov technique was modified and employed in solving the obstacle system by Al-

Said and Noor [9]. Further, the quadratic and cubic splines techniques were implemented

and analyzed by Al-Said [8] to produce a smooth approximate solution of the obstacle

BVPs (1.1) and (1.2) over the domain [a,b]. Also, quartic-spline functions were presented

to get some consistent relations that utilized in developing a numeric approach in finding

smooth approximate solutions for the proposed obstacle system [10].

Furthermore, it is very difficult to achieve an analytic solution for obstacle BVPs (1.1)

and (1.2) for arbitrary choices of the functions f (x) and g(x), so numerical methods are

commonly resorted to for obtaining an approximate solution to such obstacles. For in-

stance, the author in [11] applied a classical Rayleigh–Ritz method in solving special case

of obstacle BVPs (1.1) and (1.2) in the form

u′′(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x ∈ [0, π
4
],

u(x) – 1, x ∈ [π
4
, 3π

4
],

0, x ∈ [ 3π
4
,π ],

(1.3)

in which f (x) = 0, g(x) = 1, the parameter r = –1 and with the BCs u(0) = 0,u(π ) = 0,

whereas u(i)(x), i = 0, 1, is continuous function at the internal points π
4
and 3π

4
.

However, in the last few decades, fractional calculus has attracted the attention of many

researchers for its considerable importance in many applications in fluid dynamics, vis-

coelasticity, physics, entropy theory and engineering. Therefore, many boundary differ-

ential equations and initial differential equations of integer order were generalized to
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fractional order and several powerful methods were modified to approximate their so-

lutions. The Adomian decomposition method [12], the variational iteration method [13],

the differential transformation method [14], the finite difference method [15], the homo-

topy analysis method [16], and the homotopy perturbation method [17] are some of these

methods. Also,MOL-GPS and thetamethods have been applied for solving Burgers equa-

tion [18], and fractional telegraph differential equation [19], respectively. For using Riesz

Riemann–Liouville, Riesz–Caputo, and other fractional concepts, we refer to [20, 21].

This paper aims to generalize the classical obstacle system described in (1.1) and (1.2)

of integer order into the following obstacle system of the fractional order α under certain

assumptions:

D2α
a u(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (x), a≤ x < c,

g(x)u(x) + f (x) + r, c≤ x < d,

f (x), d ≤ x≤ b,

(1.4)

with the boundary conditions

u(a) = µ1, u(b) = µ2, (1.5)

where 0 < α ≤ 1,D2α
a is the Caputo-fractional derivative, µ1,µ2 ∈ R, the parameter r is

real finite constant, g(x) is an analytical continuous function on [c,d], f (x) is a continuous

on [a,b], the function u(x) is unknown smooth to be obtained such that u(i)(x), i = 0, 1, is

continuous function at internal points c and d of [a,b].

In this aspect, the reproducing-kernel method (RKM) is applied for finding smooth ap-

proximations to the solution of the modified obstacle system of fractional order (1.4) and

(1.5), and its derivative. However, many definitions in the literature have been proposed

for the derivatives of arbitrary order because all the utilized concepts do not preserve

the classical integer-order derivative properties. For the concept of fractional derivative,

we adopt the definition of the Caputo-fractional derivative due to the derivative of any

constant function in the Caputo sense is equal to zero and are no initial conditions of

fractional order are needed according to the proposed fractional models. However, the

Caputo-fractional derivative of order n – 1 < α < n,n ∈N, is defined for u ∈ Cn(0,∞) by

Dα
au(x) =

1

Γ (n – α)

∫ x

a

u(n)(ξ )

(x – ξ )α–n+1
dξ , x > a, (1.6)

and Dα
au(x) = u(n)(x) for α = n ∈N.

The reproducing-kernel approach has been developed as an efficacious numeric-

analytic method in treating different type of ordinary and partial differential, integral,

integrodifferential equations with singularity, fuzziness, nonlocal, and non-classical con-

straint conditions [22–27]. Recently, the RKMhas been improved and successfully applied

in obtaining approximations of solutions for many initial and boundary problems that ap-

pear in natural sciences and engineering. The RKM was successfully used for solving the

Thomas–Fermi equation [28], the Poisson–Boltzmann equation for semiconductor de-

vices [29], variable-order fractional differential equations [30] and second-order partial

differential equations [31] and others [32–34]. Moreover, Cui and Lin [24] have efficiently
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solved obstacle third-order BVP using RKM. It should be noted here that the obstacle sys-

tem of fractional order has not been solved using RKM before. The RPSM is an analytical

as well as an approximate method for handling several kinds of FDEs. This method has

been applied effectively to construct a fractional power series solution for numerous linear

and nonlinear equations without linearization, perturbation, or discretization [35]. The

FRPSmethod is basically utilized for the residual functions and the generalized Taylor ex-

pansion by selecting a proper initial guess approximation to introduce a suitable analytical

solution.

The present analysis extends the application of the RKM and RPSM for finding approx-

imate solutions of fractional obstacle system in the Caputo sense. The structure of the

present article is organized as follows. In Sect. 2, some necessary definitions and math-

ematical preliminaries are introduced, including several reproducing-kernel spaces re-

quired in establishing the results of our analysis and the generalized Taylor’s expansion.

In Sect. 3, short description of the RK and RPS techniques for solving fractional obstacle

system (1.4) and (1.5) is given. In Sect. 4, numerical application is presented to show the

capability and validity of the kernel method. This analysis ends with Sect. 5 with some

conclusions.

2 Basic concepts and fundamentals

In this section, we have given some basic definitions and theorems regarding the

reproducing-kernel spaces and the generalized power series representations. For more

details about these definitions and properties, one can refer to [22–27]. Throughout

the current paper, L2[a,b] stands for the set of all square integrable functions on [a,b]

while AC[a,b] stands for the set of all absolutely continuous functions on [a,b] such that

AC[a,b] = {u : [a,b]→R : u is absolutely continuous on [a,b]}.

Definition 2.1 For a universal setΛ, the functionψ :Λ×Λ →R is called a reproducing-

kernel function to Hilbert space H if and only if

(a) For each τ in Λ, we have ψ(·, τ ) ∈ H ,

(b) For each τ in Λ and any function φ in H , we have 〈φ(·),ψ(·, τ )〉H = φ(τ ).

The last condition indicates that function’s value φ at any τ in Λis reproduced through

the inner product for φ and ψ(·, τ ), where the function ψ is called the reproducing-kernel

function of H that possesses some important properties such as being unique, conjugate

symmetric and positive-definite.

Consequently, two RKHSs are introduced as follows.

Definition 2.2 The function spaceW1[a,b] is given by

W1[a,b] =
{

u : [a,b]→ R : u ∈ AC[a,b], and u′ ∈ L2[a,b]
}

.

The inner product for ϕ,ϑ ∈W1[a,b] is given by 〈ϕ,ϑ〉W1 =
∫ b

a
(ϕ′(ξ )ϑ ′(ξ )+ϕ(ξ )ϑ(ξ ))dξ ,

and the norm of ϕ is ‖ϕ‖W1 =
√

〈ϕ(ξ ),ϕ(ξ )〉W1 .

Theorem2.1 The reproducing-kernel function Tx(v) of the completeHilbert spaceW1[a,b]

can be obtained by

Tx(v) =
1

2

(

sinh(b – a)
)–1(

cosh(x + v – a – b) + cosh
(

|x – v| + a – b
))

.
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Definition 2.3 The function spaceW2[a,b] is defined by

W2[a,b] =
{

u : u′,u′′ ∈ AC[a,b],u′′′ ∈ L2[a,b],u(a) = 0,u(b) = 0
}

.

An inner product for ϕ,ϑ ∈ W2[a,b] and the norm can be equipped, respectively, as

follows:

〈ϕ,ϑ〉W2 = ϕ′(a)ϑ ′(a) +

∫ b

a

ϕ′′′(ξ )ϑ ′′′(ξ )dξ ,

and ‖ϕ‖W2 =
√

〈ϕ(ξ ),ϕ(ξ )〉W2 .

The unique representation to reproducing-kernel function Qx(v) within the space

W2[a,b] can be formulated as in the following theorem.

Theorem 2.2 The function Qx(v) is the reproducing kernel of the complete Hilbert space

W2[a,b] that can be written in the following form:

Qx(v) =

⎧

⎨

⎩

h(x, v), v ≤ x;

h(v,x) v > x,
(2.1)

where h(x, v) for v≤ x is given by

h(x, v) =
1

120(a – b)2
(a – v)(–4a4(b – x)(b – v) – 6b3x2v

+ a3(b – x)(b – v)(6b + 7x + 3v) + x2v
(

x3 + v3 – 120
)

– 3a2(b – v)
(

xv(v – 3x) + 2b2(2x + v) – b
(

4x2 – xv + v2
))

– 5bx
(

x3v – 24v + x
(

v3 – 24
))

+ b2
(

10x3v – v4 + 5x
(

v3 – 24
))

+ a
(

6b3x(x + 2v) – b2
(

10x3 + 12x2v + 15xv2 + v3 – 120
)

+ x
(

xv3 – x4 – 2v
(

–60 + v3
))

+ b
(

5x4 + 15x2v2 – 120x + 2v
(

–60 + v3
)))

). (2.2)

Proof To construct Qx(v), let u(x) ∈ W2[a,b]. Then, 〈u(v),Qx(v)〉W2 = u′(a)Q′
x(a) +

∫ b

a
u′′′(ξ )Q′′′

x (ξ )dξ . By doing integrations by parts for
∫ b

a
u′′′(ξ )Q′′′

x (ξ )dξ , we obtain 〈u(v),

Qx(v)〉W2 = u′(a)[Q′
x(a) + Q

(4)
x (a)] – u′′(a)Q

(3)
x (a) + u′′(b)Q

(3)
x (b) – u′(b)Q

(4)
x (b) –

∫ b

a
u(ξ )Q

(6)
x (ξ )dξ .

Since Qx(v) is reproducing-kernel function in W2[a,b],Qx(v) should satisfy the homo-

geneous boundary conditions (1.5) as follows:

Qx(a) =Qx(b) = 0. (2.3)

Also, ifQx(v) is the solution of the following generalized differential equation:

Q(6)
x (ξ ) = –δ(ξ – x), (2.4)
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then the characteristic equation is λ6 = 0 whose characteristic value is λ = 0 with six mul-

tiple roots. Hence, the general solution of (2.4) at ξ �= x can be given by

Qx(v) =

⎧

⎨

⎩

∑5
j=0 cj(x)v

j, v ≤ x;
∑5

j=0 dj(x)v
j, v > x,

(2.5)

where the coefficients cj(x) and dj(x) for j = 0, 1, . . . , 5, can be determined by solving the

following differential equations via Mathematica software package 7.0:

Q′
x(a) +Q(4)

x (a) = 0, Q(3)
x (a) = 0, Q(3)

x (b) = 0, Q(4)
x (b) = 0, (2.6)

Q(k)
x

(

v+
)

=Q(k)
x

(

v–
)

, k = 0, 1, . . . , 4, (2.7)

Q(5)
x

(

v+
)

–Q(5)
x

(

v–
)

= –1. (2.8)

�

Definition 2.4 ([35]) A power series (PS) expansion at x = x0 of the following form:

∞
∑

i=0

ai(x – x0)
iα = a0 + a1(x – x0)

α + a1(x – x0)
2α + · · ·

for n – 1 < α ≤ n, n ∈N and x ≤ x0, is called the fractional-power series (FPS).

Theorem 2.3 ([35]) Suppose that u(x) has a FPS representation at x = x0 of the form

u(x) =

∞
∑

i=0

ai(x – x0)
iα .

If u(x) ∈ C[x0,x0 + R), and Diαu(x) ∈ C(x0,x0 + R), for i = 0, 1, 2, . . . , then coefficients ai

will be in the form ai =
D

iα
0 u(x0)

Γ (nα+1)
, where R is radius of convergence, and Diα =Dα·Dα · · ·Dα

(i-times).

3 The application of fractional RKM and RPSM

In this section, the iterative reproducing-kernel method will be executed to handle the

fractional obstacle system in the complete Hilbert space W2[a,b] and the procedure of

the RPSM is presented. Meanwhile, description of the modified RKM, solution formula

and error analysis are introducing in the same Hilbert space.

To illustrate the basic ideas of the RKM, consider the following linear differential opera-

torP :W2[a,b]→W1[a,b] such thatPu(ξ ) =D2α
a u(ξ ) for each ξ ∈ [a,b] and u ∈W2[a,b].

Subsequently, obstacle BVPs (1.4) and (1.5) can be given equivalently by

Pu(x) = S
(

x,u(x)
)

, x ∈ [a,b],

u(a) = u(b) = 0,
(3.1)

after homogenizing the boundary conditions. In which, S(x,u(x)) = f (x) for each x ∈

[a, c]∪ [d,b] and S(x,u(x)) = g(x)u(x)+ f (x)+ r for each x ∈ [c,d], and S(x,u(x)) ∈W1[a,b].

It turns out that the differential operatorP is bounded, that is, ‖Pu‖W1 ≤ c0‖u‖W2 , c0 > 0.
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For a countable dense {xi}
∞
i=1 subset of the compact interval [a,b], the characteristic or-

thogonal functions are constructed by letting wi(x) = Txi (x) and ψi(x) = P∗ϕi(x), where

P∗ is the conjugate operator of P , and ψi(x) ∈ W2[a,b]. Consequently, the characteris-

tic orthonormal functions {ψ i(x)}
∞
i=1 of W2[a,b] will be found by utilizing the modified

Gram–Schmidt procedure to {ψi(x)}
∞
i=1 such that

ψ i(x) =

i
∑

k=1

σikψk(x) (i = 1, 2, . . . ), (3.2)

where the coefficients σik are given by

σ11 =
1

‖ψ1‖
, σii =

1
√

‖ψi‖2 –
∑i–1

n=1(〈ψi,ψn〉W2 )
2

,

σik =
–

∑i–1
k=n〈ψi,ψn〉W2σjk

√

‖ψi‖2 –
∑i–1

n=1(〈ψi,ψn〉W2 )
2

.

Theorem 3.1 Let {xi}
∞
i=1 be a dense subset of [a,b], then the system {ψ i(x)}

∞
i=1 will be a

complete normal basis to W2[a,b] with ψi(x) = PvQx(v)|v=xi , where the subscript v by the

operator P indicate that P employ directly to the function of v.

Proof For fixed u(x) in W2[a,b], it follows that 〈u(x),ψi(x)〉 = 0, i ∈ N, which mean that

〈u(x),P∗wi(x)〉W2 = 〈Pu(x),wi(x)〉W1 = (Pu)(xi) = 0. But{xi}
∞
i=1 is dense on the compact in-

terval [a,b] that leads to (Pu)(x) = 0. SinceP is invertible operator, u(x) ≡ 0. Further and in

terms of the reproducing property, it follows thatψi(x) = (P∗wi)(x) = 〈P∗wi(v),Qx(v)〉W2 =

〈wi(v),PvQx(v)〉W2 =PvQx(v)|v=xi . �

Theorem 3.2 Let u(x) be a unique solution of Eq. (3.1), then u(x) has the following form:

u(x) =

∞
∑

i=1

i
∑

k=1

σikS
(

xk ,u(xk)
)

ψi(x), (3.3)

for a dense subset, {xi}
∞
i=1, of [a,b].

Proof It is worth mentioning that {ψ i(x)}
∞
i=1 is complete normal set for W2[a,b]. So, the

solution u(x) will be written in terms of ψ i(x) by u(x) =
∑∞

i=1〈u(x),ψ i(x)〉ψ i(x). Using the

reproducing property 〈u(x),wi(x)〉 = ui(x) for each u(x) ∈W2[a,b], it follows that

u(x) =

∞
∑

i=1

i
∑

k=1

σik

〈

u(x),P∗wi(x)
〉

ψi(x) =

∞
∑

i=1

i
∑

k=1

σik

〈

Pu(x),wi(x)
〉

ψi(x)

=

∞
∑

i=1

i
∑

k=1

σik

〈

S
(

xk ,u(xk)
)

,wk(x)
〉

ψi(x) =

∞
∑

i=1

i
∑

k=1

σikS
(

xk ,u(xk)
)

ψi(x).
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A representation of the nth approximation un(x) of u(x) can be obtained directly by

truncating the series representation of Eq. (3.3) as follows:

un(x) =

n
∑

i=1

i
∑

k=1

σikS
(

xk ,u(xk)
)

ψi(x). (3.4)

�

Theorem 3.3 Let rn(x) be the actual error between the analytical, u(x), and the approx-

imate, un(x) solutions. Then, rn(x) be a monotonic decreasing function within ‖·‖W2 and

‖rn(x)‖W2 approaches 0.

Proof From Theorem 3.2, the proof of monotone decreasing of rn(x) is straightfor-

ward as follows: ‖rn(x)‖
2
W2

= ‖u(x) – un(x)‖
2
W2

= ‖
∑∞

i=n+1

∑i
k=1 σikS(xk ,u(xk))ψi(x)‖

2
W2

=
∑∞

i=n+1(
∑i

k=1 σikS(xk ,u(xk)))
2 =

∑∞
i=n+1 E

2
i ,Ei =

∑i
k=1 σikS(xk ,u(xk)).

Consequently, {rn(x)} is monotone decreasing function in the spaceW2[a,b]. Also, since

the series
∑∞

i=1 Eiψ i(x) is convergent, then ‖rn(x)‖W2 → 0. �

Corollary 3.1 For u(x) ∈W2[a,b], the approximation u
(i)
n (x), i = 0, 1, 2, are uniformly con-

verging to analytic solution u(i)(x), i = 0, 1, 2, as soon as n→ ∞.

Proof Let x lies in the compact interval [a,b], then

∣

∣u(i)n (x) – u(i)(x)
∣

∣ =
∣

∣

〈

un(x) – u(x),Q(i)
x (x)

〉

W2

∣

∣

≤
∥

∥Q(i)
x (x)

∥

∥

W2

∥

∥un(x) – u(x)
∥

∥

W2

≤Mi

∥

∥un(x) – u(x)
∥

∥

W2
, Mi > 0, i = 0, 1, 2.

Hence, when as limn→∞ ‖un(x) – u(x)‖W2 = 0, the approximation u
(i)
n (x),n = 0, 1, 2, will

be converging to analytical solutions u(x) and its derivative, respectively, uniformly.

Now, to apply the fractional RPS technique, there are three cases to obtain the approxi-

mate solution, un(x), for the obstacle BVPs (1.4) and (1.5) depending on the corresponding

intervals. These cases are as follows:

• Case one, the RPS solution, u1(x), on [a, c] can be presented as follows:

Let D2α
a u1(x) = f (x) on [a, c] and let the solution, u1(x), has the following FPS expansion

about the initial point a:

u1(x) =

∞
∑

n=0

cn(x – a)nα , (3.5)

and the kth truncated series

u1,k(x) =

k
∑

n=0

cn(x – a)nα . (3.6)

Here u1(x) satisfies the initial condition u1(a) = µ1 = c0. Thus, u1,k(x) can be written as

u1,k(x) = µ1 + c1(x – a)α +

k
∑

n=2

cn(x – a)nα . (3.7)
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According to the RPS method, the kth-residual error function, Res
k
u1
(x), can be defined

by

Res
k
u1
(x) =D2α

a u1,k(x) – f (x), (3.8)

where the residual error function, Resu1 (x), can be given as follows:

Resu1 (x) = lim
k→∞

Res
k
u1
(x).

Consequently, we need tominimizeRes
k
u1
(x) andutilize the relationD

(k–2)α
a Res

k
u1
(x)|x=a =

0,k = 2, 3, . . . , to determine the unknown coefficients cn,n = 2, 3, . . . ,k, of Eq. (3.7). At this

point, we note that the value of c1 = A will be determined later by using the continuity

conditions of Eq. (1.4).

However, to illustrate the main steps of the RPS algorithm in finding the unknown co-

efficients cn,n = 2, 3, . . . ,k, let k = 2 and substitute the approximation u1,2(x) = µ1 + A(x –

a)α + c2(x – a)2α into the kth-residual error function, Res
2
u1
(x), such that

Res
2
u1
(x) =D2α

a u1,2(x) – f (x) =D2α
a

(

µ1 +A(x – a)α + c2(x – a)2α
)

– f (x)

= c2Γ (2α + 1) – f (x),

and then, by D
(k–2)α
a Res

k
u1
(x)|x=a = 0,k = 2, we obtain c2Γ (2α + 1) – f (a) = 0, that is, c2 =

f (a)
Γ (2α+1)

. Therefore, u1,2(x) = µ1 +A(x – a)α + f (a)
Γ (2α+1)

(x – a)2α .

Likewise, to find the unknown coefficient c3, substitute the third truncated series

u1,3(x) = µ1 +A(x – a)α + f (a)
Γ (2α+1)

(x – a)2α + c3(x – a)3α into Res
3
u1
(x) such that

Res
3
u1
(x) =D2α

a u1,3(x) – f (x)

=D2α
a

(

µ1 +A(x – a)α +
f (a)

Γ (2α + 1)
(x – a)2α + c3(x – a)3α

)

– f (x)

= f (a) + c3
Γ (3α + 1)

Γ (α + 1)
(x – a)α – f (x),

and then, by using Dα
a Res

3
u1
(x)|x=a = 0, we obtain c3Γ (3α + 1) – Dα

a f (a) = 0, that is, c3 =
Dα
a f (a)

Γ (3α+1)
. Therefore, u1,3(x) = µ1 +A(x – a)α + f (a)

Γ (2α+1)
(x – a)2α +

Dα
a f (a)

Γ (3α+1)
(x – a)3α .

Now, to find the unknown coefficient c4, substitute the fourth truncated series u1,4(x) =

µ1 +A(x – a)α + f (a)
Γ (2α+1)

(x – a)2α +
Dα
a f (a)

Γ (3α+1)
(x – a)3α + c4(x – a)4α into Res

4
u1
(x) such that

Res
4
u1
(x) =D2α

a u1,4(x) – f (x)

=D2α
a

(

µ1 +A(x – a)α +
f (a)

Γ (2α + 1)
(x – a)2α

+
Dα

a f (a)

Γ (3α + 1)
(x – a)3α + c4(x – a)4α

)

– f (x)

= f (a) +
Dα

a f (a)

Γ (α + 1)
(x – a)α + c4

Γ (4α + 1)

Γ (2α + 1)
(x – a)2α – f (x),
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and then, by using D2α
a Res

4
u1
(x)|x=a = 0, we obtain c4Γ (4α + 1) –D2α

a f (a) = 0, that is, c4 =
D2α
a f (a)

Γ (4α+1)
. Therefore, the fourth RPS-approximation is given by

u1,4(x) = µ1 +A(x – a)α +

4
∑

n=2

D
(n–2)α
a f (a)

Γ (nα + 1)
(x – a)nα . (3.9)

• Case two, the RPS solution, u2(x), on [c,d] can be presented as follows:

Let D2α
a u2(x) = g(x)u2(x) + f (x) + r on [c,d] and let the solution, u2(x), has the kth trun-

cated series expansion about the initial point c in the form

u2,k(x) =

k
∑

n=0

cn(x – c)nα . (3.10)

Here there is no condition at the initial point c. Then, u2,k(x) can be written as

u2,k(x) = c0 + c1(x – c)α +

k
∑

n=2

cn(x – c)nα . (3.11)

According to the RPS method, the kth-residual error function, Res
k
u2
(x), can be defined

by

Res
k
u2
(x) =D2α

a u2,k(x) – g(x)u2,k(x) – f (x) – r. (3.12)

Consequently, to obtain the unknown coefficients cn,n = 2, 3, . . . ,k, of Eq. (3.11), we need

to minimize Res
k
u2
(x) and utilize the relation D

(k–2)α
a Res

k
u2
(x)|x=c = 0,k = 2, 3, . . . . In this

point, the values of c0 = B and c1 = C will be determined later by using the continuity con-

ditions of Eq. (1.4). Now, to apply the RPS algorithm in finding the coefficient c2, substitute

u2,2(x) = B +C(x – c)α + c2(x – c)2α into Res
2
u2
(x) such that

Res
2
u2
(x) =D2α

a u2,2(x) – g(x)u2,2(x) – f (x) – r

=D2α
a

(

B +C(x – c)α + c2(x – c)2α
)

– g(x)
(

B +C(x – c)α + c2(x – c)2α
)

– f (x) – r

= b2Γ (2α + 1) – g(x)
(

B +C(x – c)α + c2(x – c)2α
)

– f (x) – r,

and then, by using Res
2
u2
(x)|x=c = 0, we obtain c2Γ (2α + 1) – Bg(c) – f (c) – r = 0, that is,

c2 =
Bg(c)+f (c)+r

Γ (2α+1)
. Therefore, the second approximation is

u2,2(x) = B +C(x – c)α +
Bg(c) + f (c) + r

Γ (2α + 1)
(x – c)2α .

Again, the third approximation has the form

u2,3(x) = B +C(x – c)α +
Bg(c) + f (c) + r

Γ (2α + 1)
(x – c)2α + c3(x – c)3α .
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Thus, to obtain the value of c3, substitute u2,3(x) into Res
3
u2
(x) such that

Res
3
u2
(x) =D2α

a u2,3(x) – g(x)u2,3(x) – f (x) – r

=D2α
a

(

B +C(x – c)α +
Bg(c) + f (c) + r

Γ (2α + 1)
(x – c)2α + c3(x – c)3α

)

– g(x)

(

B +C(x – c)α +
Bg(c) + f (c) + r

Γ (2α + 1)
(x – c)2α + c3(x – c)3α

)

– f (x) – r

=
(

Bg(c) + f (c) + r
)

+ c3
Γ (3α + 1)

Γ (α + 1)
(x – c)α

– g(x)

(

B +C(x – c)α +
Bg(c) + f (c) + r

Γ (2α + 1)
(x – c)2α + c3(x – c)3α

)

– f (x) – r,

and then, by using Dα
a Res

3
u2
(x)|x=c = 0, we obtain c3Γ (3α + 1) – BDα

ag(c) – CDα
a (g(x)(x –

c)α)|x=c –
Bg(c)+f (c)+r

Γ (2α+1)
Dα

a (g(x)(x – c)2α)|x=c – c3D
α
a (g(x)(x – c)3α)|x=c – Dα

a f (c) = 0, that is, c3 =
ψ(c)

Γ (3α+1)
, ψ(c) = BDα

ag(c) +CD
α
a (g(x)(x– c)

α)|x=c +D
α
a f (c). Therefore, u2,3(x) = B+C(x– c)α +

Bg(c)+f (c)+r
Γ (2α+1)

(x– c)2α + ψ(c)
Γ (3α+1)

(x– c)3α . Similarly, the fourth approximation u2,4(x) can be ob-

tained.

• Case three, the RPS solution, u3(x), on [d,b] can be presented as follows:

Let D2α
a u3(x) = f (x) on [c,d] and let the solution, u3(x), have the kth truncated series

expansion at b in the form

u3,k(x) =

k
∑

n=0

cn(x – b)nα . (3.13)

Here u3(x) satisfies the condition u3(b) = µ2 = a0. Thus, u3,k(x) can be written as

u3,k(x) = µ2 + c1(x – b)α +

k
∑

n=2

cn(x – b)nα . (3.14)

According to the RPS method, the kth-residual error function, Res
k
u3
(x), can be defined

by

Res
k
u3
(x) =D2α

a u3,k(x) – f (x). (3.15)

However, to obtain the unknown coefficients cn,n = 2, 3, . . . ,k, of Eq. (3.14), we need to

minimize Res
k
u3
(x) and utilize the relationD

(k–2)α
a Res

k
u3
(x)|x=b = 0,k = 2, 3, . . . . At this point

we note the value of c1 = D will be determined later by using the continuity conditions

of Eq. (1.4). Thus, to apply the FRPS algorithm in finding the coefficients a2, substitute

u3,2(x) = µ2 +D(x – b)α + c2(x – b)2α into Res
2
u3
(x) such that

Res
2
u3
(x) =D2α

a u3,2(x) – f (x) =D2α
a

(

µ2 +D(x – b)α + c2(x – b)2α
)

– f (x)

= c2Γ (2α + 1) – f (x),
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and then, by using Res
2
u3
(x)|x=b = 0, we obtain c2Γ (2α + 1) – f (b) = 0, that is, c2 =

f (b)
Γ (2α+1)

.

Therefore, the second approximation is

u3,2(x) = µ2 +D(x – b)α +
f (b)

Γ (2α + 1)
(x – b)2α .

In the same manner, substitute the third truncated series u3,3(x) = µ2 + D(x – b)α +
f (b)

Γ (2α+1)
(x – b)2α + c3(x – b)3α into Res

3
u3
(x) such that

Res
3
u3
(x) =D2α

a u1,3(x) – f (x)

=D2α
a

(

µ2 +D(x – b)α +
f (b)

Γ (2α + 1)
(x – b)2α + c3(x – b)3α

)

– f (x)

= f (b) + c3
Γ (3α + 1)

Γ (α + 1)
(x – b)α – f (x),

and then, by using Dα
a Res

3
u3
(x)|x=b = 0, we obtain c3Γ (3α + 1) – Dα

a f (b) = 0, that is, c3 =
Dα
a f (b)

Γ (3α+1)
. Therefore, u3,3(x) = µ2 +D(x – b)α +

f (b)
Γ (2α+1)

(x – b)2α +
Dα
a f (b)

Γ (3α+1)
(x – b)3α . Hence, the

fourth RPS-approximation on [d,b] is given by

u3,4(x) = µ2 +D(x – b)α +

4
∑

n=2

D
(n–2)α
a f (b)

Γ (nα + 1)
(x – b)nα . (3.16)

Moreover, the same routine can be repeated until an arbitrary order k, so the unknown

coefficients cn,n = 4, 5, 6, . . . ,k, can be obtained. Furthermore, the values of the parameters

A,B,C, and D can be found by utilizing the continuity conditions of Eq. (1.4) and solving

the obtained system of algebraic equations,

u1,k(c) = u2,k(c), u2,k(d) = u3,k(d),

Dα
au1,k(c) =Dα

au2,k(c), Dα
au2,k(d) =Dα

au3,k(d).
(3.17)

Therefore, the kth approximate solution on [a,b] can be finally given by

uk(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u1,k(x), a ≤ x≤ c,

u2,k(x), c≤ x ≤ d,

u3,k(x), d ≤ x≤ b.

(3.18)

Hence, the kth RPS-approximate solution is completely constructed for the BVPs (1.4)

and (1.5). �

4 Numerical outcomes

To test simplicity, applicability and accuracy of the proposed RK and RPS algorithms, the

numerical experiment is presented in this section. The methodology is directly employed

without using discretization, transformation, and restrictive assumptions. The appropri-

ateness and effectiveness of the proposed methods are evident when we compare it with

each other for different values of α. Numerical comparison between the RKM, RPSM and
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other well-known methods are also presented for α = 1. The motivation of the current

section is to obtain the RK-solution and RPS-solution for the obstacle BVP (1.4) and (1.5).

Consider the integer-order obstacle BVP in normal form [36]

–u′′(x)≥ f (x), u(x) ≥ ψ(x),

[

u′′(x) + f (x)
][

u(x) –ψ(x)
]

= 0, x ∈ [a,b],

u(a) = u(b) = 0,

(4.1)

where f (x) is an analytical function, ψ(x) is an obstacle term, and u(x) is an unknown

function, which can be converted to the following equivalent form:

u′′(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (x), x ∈ [a, c],

u(x) + f (x) – 1, x ∈ [c,d],

f (x), x ∈ [d,b],

(4.2)

subject to the BCs u(a) = u(b) = 0, by setting a = 0, c = (3a+ b)/4,d = (a+ 3b)/4, and b = π ,

in which u(x) and u′(x) are continuous at the internal points x = 3a+b
4

and x = a+3b
4

.

Without loss of generality, we consider the following fractional obstacle BVP to develop

the approximate solution of the obstacle BVP (4.2) by utilizing the Caputo-fractional op-

erator D2α
a with α ∈ (0, 1]:

(

D2α
a u

)

(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x ∈ [0, π
4
],

u(x) – 1, x ∈ [π
4
, 3π

4
],

0, x ∈ [ 3π
4
,π ],

u(0) = u(π ) = 0.

(4.3)

The exact solution when α = 1 is given by

u(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

4x
π+4 coth( π

4 )
, x ∈ [0, π

4
],

1 –
4 cosh( π

2 –x)

π sinh( π
4 )+4 cosh( π

4 )
, x ∈ [π

4
, 3π

4
],

4(π–x)
π+4 coth( π

4 )
, x ∈ [ 3π

4
,π ].

To achieve our goal by using the RKM, divide the interval [0,π ] into n equal subintervals

utilizing the standard grid points xi = ih, i = 0, 1, . . . ,n,x0 = 0,xn = π , and the step size h =

π/n, n ∈N. Using the RK algorithm, a numerical comparison of the obtained results with

the exact solution to some selected grid points for n = 10, h = π/10 and the fractional order

α = 1 are shown in Table 1. Meanwhile Table 2 is allocated for maximum absolute errors

associated with u′
n(x) for different values of n using the RKM.

To show the powerful features of the proposedmethods, numerical comparison between

our computed results with variety values of h and the corresponding experimental results

obtained by themethods presented in [4–11] is given inTable 3. Anyway, numerical results

at some values of the fractional order α such that α ∈ {1, 0.8, 0.6} are also given in Table 4

to justify the advantages of the proposed methods.
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Table 1 Numerical results of BVP (4.3) at α = 1 using RKM

xi Exact solution Approximation |u(x) – u10(x)|

π /10 0.135983977 0.13533462 6.494× 10–4

π /5 0.271967954 0.27065256 1.315× 10–3

3π /10 0.400072208 0.39882699 1.245× 10–3

2π /5 0.476916995 0.47644324 4.738× 10–4

π /2 0.501709552 0.50192359 2.140× 10–4

3π /5 0.476916995 0.47780544 8.884× 10–4

7π /10 0.400072208 0.40168706 1.615× 10–3

4π /5 0.271967954 0.27361739 1.649× 10–3

9π /10 0.135983977 0.13681750 8.335× 10–4

Table 2 The maximum absolute error |u′(xi) – u
′
n(xi)| at α = 1 using RKM

xi n = 20 n = 40 n = 100 n = 200

π /4 0.0000 0.0000 0.0000 0.0000

π /3 1.249× 10–4 2.164× 10–5 2.516× 10–6 5.486× 10–7

π /2 5.703× 10–5 8.945× 10–6 8.858× 10–7 1.744× 10–7

2π /3 2.544× 10–5 9.454× 10–6 1.902× 10–6 5.118× 10–7

3π /4 9.562× 10–5 2.732× 10–5 4.726× 10–6 1.212× 10–6

Table 3 Numerical comparison via maximum absolute error at α = 2

h
π
20

π
40

π
80

RKM 2.07× 10–6 1.06× 10–6 5.37× 10–6

RPSM 7.35× 10–7 92.4× 10–5 1.66× 10–5

Spline [5] 6.43× 10–4 1.83× 10–4 4.87× 10–5

Cubic splines [11] 1.26× 10–3 3.29× 10–4 8.43× 10–5

Spline [6] 1.94× 10–3 4.99× 10–4 1.27× 10–4

Spline [10] 2.20× 10–3 5.87× 10–4 1.51× 10–4

Finite difference [7] 2.50× 10–2 1.29× 10–2 6.58× 10–3

Cubic splines [4] 1.40× 10–2 7.71× 10–3 4.04× 10–3

Table 4 Numerical results of BVP (4.3) for different values of α

xi Approximation RKM solution RPSM solution

α = 1 α = 0.8 α = 0.6 α = 0.8 α = 0.6

π /10 0.1353346202 0.227355418 0.294857345 0.144088806 0.152676695

π /5 0.2706525605 0.641687896 0.913634455 0.278361226 0.284904787

3π /10 0.3988269892 1.189220758 1.763838308 0.402107443 0.403056686

2π /5 0.4764432429 1.762740706 2.685475497 0.480094928 0.477335183

π /2 0.5019235931 2.273677267 3.523536976 0.520431513 0.517187458

3π /5 0.4778054404 2.609863040 4.085579443 0.537613446 0.535307921

7π /10 0.4016870606 2.608549642 4.108581183 0.548667613 0.544985720

4π /5 0.2736173911 2.140881895 3.391789601 0.320958940 0.367743677

9π /10 0.1368175023 1.206815918 1.916014914 0.197961504 0.256800410

Figure 1 shows the relevant behavior of the RK approximate solution for α = 1 over the

interval [0,π ]. On the other hand, the maximum absolute errors are presented in Fig. 2,

while the approximate solutions un(x) of BVP (4.3) at different values of the fractional

order α with α = 1,α = 0.8 and α = 0.6 over the interval [0,π ] are shown in Fig. 3. These

figures clearly indicate the convergence of approximate solutions to the exact solution. All

necessary computations and graphical analyses were carried out by using Mathematica

10.
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Figure 1 The RK approximate solutions of BVP (4.3) at α = 1

Figure 2 Absolute errors of the obstacle BVP (4.3) at α = 1

Figure 3 The RKHS solutions of BVP (4.3) for different values of α

5 Conclusion

The main goal of this analysis is to implement reliable numeric-analytic techniques that

depend on the use of reproducing-kernel theory and the generalized Taylor expansion

for the solution of BVPs of fractional order associated with obstacle in the Caputo sense.

This goal has been achieved by improving the RK and RPS algorithms to handle such class

of obstacle problems. A numerical investigation has been presented to demonstrate the
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approximate solution of a well-known example in the literature. The solution behavior

of approximation of some values of the fractional order α is shown quantitatively and

graphically. Anyway, results acquired explicitly show the full reliability and regularity of

the proposedmethods. The applications of BVPs fractional orderwith theRiesz derivative,

which is a two-sided space-fractional derivative, should be investigated for future work.
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