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Abstract—Practical applications call for efficient model selec-
tion criteria for multiclass support vector machine (SVM)
classification. To solve this problem, this paper develops two model
selection criteria by combining or redefining the radius–margin
bound used in binary SVMs. The combination is justified by
linking the test error rate of a multiclass SVM with that of a set of
binary SVMs. The redefinition, which is relatively heuristic, is in-
spired by the conceptual relationship between the radius–margin
bound and the class separability measure. Hence, the two criteria
are developed from the perspective of model selection rather than
a generalization of the radius–margin bound for multiclass SVMs.
As demonstrated by extensive experimental study, the minimiza-
tion of these two criteria achieves good model selection on most
data sets. Compared with the k-fold cross validation which is
often regarded as a benchmark, these two criteria give rise to
comparable performance with much less computational overhead,
particularly when a large number of model parameters are to be
optimized.

Index Terms—Class separability measure, model selection, mul-
ticlass classification, multiclass support vector machines (SVMs),
radius–margin bound.

I. INTRODUCTION

IN RECENT years, multiclass support vector machines

(SVMs) have attracted much attention due to the demands

for multicategory classification in many practical applications

and the success of SVMs in binary classification. The methods

realizing the multiclass SVMs roughly fall into three categories,

namely, the methods using the strategies of one-versus-all [1]

or one-versus-one [2], [3], the methods based on the error-

correcting output codes (ECOC) approach [4], [5], and those

using the single-machine approach [6]–[8]. Comparative stud-

ies of these methods can be found in [1] and [9]. The one-

versus-one- and one-versus-all-based methods are often

recommended for practical use because of lower computational

cost or conceptual simplicity.
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Similar to binary SVMs, multiclass SVMs also require model

selection to achieve good classification performance. Overcom-

plex models will overfit training data, whereas oversimple mod-

els cannot effectively represent the intrinsic data structure. Both

will result in poor classification performance when the classi-

fiers are put into use. Just as its binary counterpart, the model

selection of multiclass SVMs is used to select the parameters of

a kernel function and the regularization parameter that balances

training error and machine complexity. Very often, a single

model parameter set is uniformly used across all the involved

classifiers (for example, the binary SVM classifiers in the

one-versus-one- or one-versus-all-based methods), rather than

using different parameter sets in different binary classifiers.

This is favored because of the following: 1) Much less model

parameters need to be determined, particularly when the kernel

function has multiple parameters; 2) past studies show little

difference on classification performance [10], [11]; and 3) the

risk of overfitting is reduced by using a simpler model. Hence,

the focus of this paper is on the model selection for multiclass

SVMs by finding the best single model parameter set.

In most of the existing work, the model selection for multi-

class SVMs uses an exhaustive grid-based search method. The

criterion is the k-fold or leave-one-out cross-validation error

rate. Although straightforward, the model selection process in

this way can become unbearably time consuming because for

multiclass SVMs, we are often required to solve larger scale

optimization problems. A few methods have been proposed

to speed up this process. In [12], generalized approximate

cross validation, which is an estimator of the leave-one-out test

error rate, is extended to the multiclass setting to tune model

parameters. In [13], an error bound for a multiclass SVM using

the ECOC approach is developed and applied to the model

selection. The grid search is still needed to find the best param-

eter set. These methods soon become intractable when three

or more model parameters are to be tuned. A genetic algorithm

has been used to search the model parameter space for model

selection [14], [15]. Again, the selection process becomes very

slow when the number of model parameters is large.

Practical applications of multiclass SVMs call for efficient

model selection criteria, which should be able to handle more

model parameters without leading to unacceptable computation

cost. In recent years, model selection for binary SVMs has been

well studied, and many selection criteria and methods have been

developed [16]–[18]. Our proposed approach in this paper is to

develop new criteria based on the principles of the successful

criteria in binary SVMs for the multiclass setting. In the model

selection for binary SVMs, a class of methods use nonlinear

optimization techniques to maximize or minimize a certain
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criterion to obtain an optimal model parameter set [19], [20].

They can achieve much more efficient model selection than

the straightforward grid search. A significant progress along

this direction is the method of minimizing the radius–margin

bound of a binary SVM classifier [16], [21]. Chapelle et al.

determine the derivatives of this bound with respect to model

parameters, making iterative gradient-based optimization tech-

niques applicable. The optimal model parameter set can be

efficiently found after a number of iterations. This method not

only significantly shortens the model selection process but can

also optimize multiple model parameters simultaneously. It is

much desired if such a criterion could also be extended to the

multiclass setting. However, such a theoretical generalization

of this bound is not that straightforward because this bound

is rooted in the theoretical basis of binary SVMs. In [22],

a theoretical generalization of this bound was reported but

without further experimental investigation.

Although an error bound can certainly be used as a model

selection criterion, it is unnecessary for a model selection

criterion to be a valid error bound. As pointed out in [16],

when model selection is of concern, whether the minimum (or

maximum) of a criterion aligns well with lower test error rates

is more important. Hence, instead of aiming to derive an error

bound for a multiclass SVM, our paper focuses on developing

practical and efficient model selection criteria by observing

the principle of such criteria in a binary setting. In detail, the

radius–margin bound for binary SVMs is exploited in the fol-

lowing two ways: 1) by linking the test error rates from binary

and multiclass SVM classifiers, the first criterion is developed

based on the pairwise combination of the radius–margin bounds

of a set of binary SVMs for model selection; and 2) inspired

by the relationship between the radius–margin bound and the

class separability measure, the second criterion defines a new

radius and margin to accommodate multiple classes. As shown

later, both criteria inherit the elegant properties of the orig-

inal radius–margin bound. Their derivatives with respect to

model parameters can also be analytically computed, and thus,

gradient-based optimization techniques are still applicable. The

two criteria allow for efficient optimization for several hundreds

of model parameters simultaneously. As before, the optimized

kernel parameters can be used to identify more discrimina-

tive features, which can be used to perform feature selec-

tion in a multiclass scenario. To evaluate the model selection

performance of the two criteria, extensive experiments were

conducted on a variety of benchmark data sets with different

numbers of model parameters. Although the two criteria are

developed for a multiclass SVM classifier using the one-versus-

one classification strategy, the model parameters selected by

them are also tested on the classifiers using other classification

strategies, including the one-versus-all, ECOC, and the single-

machine approach. The experimental results demonstrate the

simplicity, effectiveness, and efficiency of the two criteria for

model selection in multiclass SVMs.

The rest of this paper is organized as follows. In Section II,

the radius–margin bound is briefly introduced. To stay in focus,

the details of binary and multiclass SVMs are omitted, and

readers are referred to the papers cited earlier. Sections III

and IV present the two model selection criteria in detail. In

Section V, computational issue is discussed. Section VI

presents experimental results, and the concluding remarks are

drawn in Section VII.

II. RADIUS-MARGIN BOUND FOR BINARY SVMS

Let D denote a set of l training samples and D =
{(x1, y1), . . . , (xl, yl)} ∈ (Rd × Y)l, where R

d denotes a
d-dimensional input space, Y denotes the label set of x, and
y is {±1} in binary classification. A kernel is defined as
kθ(xi,xj) = 〈φ(xi), φ(xj)〉, where φ(·) is a possibly nonlin-
ear mapping from R

d to a feature space F , and θ denotes the
kernel parameter set. For nonseparable data, a regularization
parameter C will be used, and the model parameter set becomes
{θ, C}.

Let L(D) be the number of errors in a leave-one-out pro-

cedure performed on D. The radius–margin bound is an upper

bound of L(D). For a hard margin binary SVM, it is shown in

[16] that

L(D) ≤ 4R2

γ2
= 4R2‖w‖2 (1)

where R is the radius of the smallest sphere enclosing the

l training samples in F , γ is the margin, w is the normal

vector of the optimal separating hyperplane, and γ = 1/‖w‖.

For nonseparable data, an L2-norm soft margin SVM will be

used, and the aforementioned result still holds. This is because

an L2-norm soft margin can be shown as a hard margin with

a slightly modified kernel function k̃(xi,xj) [16], [23]. The

relationship between k̃ and k is k̃(xi,xj) = k(xi,xj) + (1/C)

if i = j and k̃(xi,xj) = k(xi,xj) otherwise, where C is the

regularization parameter mentioned earlier. This is also adopted

in this paper. The squared radius R2 is expressed as R2 =
min‖φ(xi)−ĉ‖2≤R̂2(R̂2), where φ(xi) (i = 1, . . . , l) is the image

of xi in F , R̂ is the radius of a sphere enclosing all the φ(xi),
and ĉ is the center of this sphere. This leads to a quadratic

optimization problem, and it can be obtained that

R2 = max
β∈Rl

⎡
⎣

l∑

i=1

βik(xi,xi) −
l∑

i,j=1

βiβjk(xi,xj)

⎤
⎦

subject to :

l∑

i=1

βi = 1; βi ≥ 0 (i = 1, 2, . . . , l) (2)

where βi is the ith Lagrange multiplier and the center of the

sphere is represented as ĉ =
∑l

i=1 βiφ(xi). As for ‖w‖2, it can
be obtained once the SVM optimization problem is solved. In
detail

1

2
‖w‖2 = max

α∈Rl

⎡
⎣

∑l

i=1
αi −

1

2

l∑

i,j=1

αiαjyiyjk(xi,xj)

⎤
⎦

subject to :
l∑

i=1

αiyi = 0; αi ≥ 0 (i = 1, 2, . . . , l) (3)

where αi is the ith Lagrange multiplier. The derivatives of R2

and ‖w‖2 with respect to the model parameters are given in
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[16]. Let θt(θt ∈ θ) be the tth model parameter

∂R2

∂θt

=

l∑

i=1

β⋆
i

∂k(xi,xi)

∂θt

−
l∑

i,j=1

β⋆
i β⋆

j

∂k(xi,xj)

∂θt

(4)

where β⋆
i (i = 1, 2, . . . , l) is the solution of (2). The derivative

of ‖w‖2 with respect to θt is given as

∂‖w‖2

∂θt

= (−1) ·
l∑

i,j=1

α⋆
i α

⋆
jyiyj

∂k(xi,xj)

∂θt

(5)

where α⋆
i (i = 1, 2, . . . , l) is the solution of (3). This way, the

derivative of the radius–margin bound with respect to θt is

∂
(
R2‖w‖2

)

∂θt

= ‖w‖2 ∂R2

∂θt

+ R2 ∂‖w‖2

∂θt

. (6)

The model selection with the radius–margin bound is briefly
described as follows.

1) Set θr to an initial value θ0.
2) Based on the current θr, optimize for α and β based on

(3) and (2), respectively, and denote the optimal solutions
by α⋆

r and β⋆
r .

3) Once α⋆
r and β⋆

r are obtained, the derivative in (6) can
be explicitly computed for a given θr. Thus, a gradient-
based search method can be used to minimize R2‖w‖2

with respect to θr. The minimizer is denoted by θr+1.
4) Stop if a given stopping criterion is satisfied and θr+1 is

the selected model. Otherwise, let θr ←− θr+1 and go to
Step 2).

As demonstrated, the radius–margin bound is rooted in the
theoretical basis of binary SVMs, and it cannot be directly used
in model selection for multiclass SVMs. In the rest of this paper,
two criteria are developed based on this bound to deal with
model selection in multiclass SVMs.

III. MODEL SELECTION CRITERION I

Let D and Dt denote the training and test data sets, re-
spectively. E(Dt) denotes the number of misclassified samples
obtained by applying a multiclass SVM classifier to Dt. The
classifier and the test set are assumed to be fixed but unknown.
For a c-class problem

E(Dt) =
c∑

i=1

c∑

j=1,j 	=i

Eij(Dt). (7)

Eij(Dt) denotes the number of samples misclassified from
class i to class j,1 and it is expressed as

Eij(Dt) =
∣∣{x|x ∈ Dt, y

0(x) = i, ym(x) = j
}∣∣ (8)

1Without loss of generality, the cost of misclassification is considered as
identical among the classes in (7). The case having different misclassification
costs will be discussed at the end of Section IV.

where | · | denotes the size of a set.2 A sample x in Dt will
be counted into Eij(Dt) if and only if its true label y0 is i,
whereas the label ym predicted by a multiclass SVM classifier
is j. Considering that both true and predicted labels are unique
for each sample,3 a misclassified sample will not be counted
into two different Eij’s. Hence, there is no overlapping among
these Eij’s.

Let us focus on the one-versus-one strategy with the max

wins classification rule [9]. It is commonly used to solve mul-

ticlass SVM problems. With this strategy, a set of c(c − 1)/2
pairwise binary SVM classifiers are constructed. Let SVMij

denote the binary SVM classifier trained with the samples from

classes i and j. The E′
ij(Dt) is the number of test samples

which belong to class i but are misclassified to class j when

SVMij is applied to classes i and j. For the convenience of

notation, the label predicted by SVMij is written as i or j
although it is +1 or −1 in general. The E′

ij(Dt) is formally

expressed as

E′
ij(Dt) =

∣∣{x|x ∈ Dt, y
0(x) = i, yb

ij(x) = j
}∣∣ (9)

where yb
ij(x) stands for the label predicted by the binary SVM

classifier, SVMij . The total number of errors made by the c(c −
1)/2 binary SVM classifiers is

E′(Dt) =
∑

1≤i,j≤c,i	=j

E ′
ij(Dt). (10)

The following proves that E(Dt) is upper bounded by

E ′(Dt). Under the rule of max wins [9], the label of a test

sample x is decided by

ym(x) = arg max
i=1,...,c

Si(x) = arg max
i=1,...,c

⎛
⎝

c∑

j=1,j 	=i

sign [〈wij , φ(x)〉 + bij ]

⎞
⎠ (11)

where 〈wij , φ(x)〉 + bij is positive if x is classified to class i.
The sign(a) denotes the sign function, and it is +1 for a > 0, 0
for a = 0, and −1 otherwise. The summation over the (c − 1)
sign functions is a score, and it is denoted by Si(x) for class i.
The sample x is assigned to the class having the highest score.

This rule immediately leads to the following three results.

1) ∀x ∈ Dt, there must be Si(x) ≤ (c − 1)(i = 1, . . . , c),
and the equality is achieved if and only if all the (c −
1) binary SVM classifiers SVMij (j = 1, . . . , c, j 	= i)
classify x to class i.

2) If Si(x) < Sj(x), there must be Si(x) < (c − 1). Refer-

ring to result 1), this indicates that at least one of the

(c − 1) binary SVM classifiers does not classify x to

class i.

2Please note that according to the definition of Dt, “x ∈ Dt” in (8) should
be written as “(x, y0(x)) ∈ Dt.” However, the former is used in this paper for
the convenience of notation.

3In multilabel classification, the true and predicted labels may not be unique
for a sample. This paper confines itself to multiclass problems.
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3) If Si(x) = Sj(x), then both of them must be smaller than

(c − 1). This is because the binary SVMij cannot classify

x to both classes i and j simultaneously.

Assume that a multiclass SVM misclassifies a test sample

xt(xt ∈ Dt). That is, the true label y0(xt) is i, whereas the

predicted label ym(xt) is j. This contributes one count to

Eij(Dt) based on (8). By referring to (11), this means that

Sj(xt) is the highest score, and hence, Si(xt) ≤ Sj(xt). By

applying results 2) and 3), it is obtained that Si(xt) < (c − 1),
indicating that at least one of the (c − 1) binary SVMs has mis-

classified the sample xt. This contributes one count to E ′
ik(Dt);

however, please note that k is not necessary to be exactly the j
in Eij(Dt). Therefore, for any test sample misclassified by a

multiclass SVM, it must have been misclassified by at least one

binary SVM classifier. Summing Eij and E ′
ik over i and j (or

k) gives rise to

∑

1≤i,j≤c,i	=j

Eij ≤
∑

1≤i,k≤c,i	=k

E ′
ik⇐⇒E(Dt)≤E ′(Dt). (12)

This proves that E(Dt) is upper bounded by E ′(Dt). Mean-

while, it is worth mentioning that Eij(Dt) ≤ E ′
ij(Dt) is not

necessary to be true.

The aforementioned result suggests that to reduce the value

of E(Dt), we could seek to minimize its upper bound E′(Dt).
This leads to one model selection criterion as follows. As

known from (1) in Section II, the test error (E′
ij + E ′

ji) can

be estimated through the leave-one-out error of SVMij , which

is denoted by Lij , that satisfies

Lij ≤ 4R2
ij‖wij‖2. (13)

Thus, the E ′(Dt) can be estimated by
∑

1≤i<j≤c Lij , and it

satisfies

∑

1≤i<j≤c

Lij ≤
∑

1≤i<j≤c

4R2
ij‖wij‖2. (14)

To minimize E′(Dt) (or more precisely, to minimize its esti-

mate), the right side has to be minimized.

Based on the aforementioned analysis, the∑
1≤i<j≤c R2

ij‖wij‖2 is defined as a model selection criterion

for multiclass SVMs. It is a pairwise combination of the

radius–margin bounds of the binary SVM classifiers. The

optimal model parameter set is obtained by

θ∗ = arg min
θ∈Θ

⎛
⎝

∑

1≤i<j≤c

R2
ij‖wij‖2

⎞
⎠ . (15)

The derivative of this criterion with respect to the tth model

parameter θt is

∂

∂θt

⎛
⎝

∑

1≤i<j≤c

R2
ij‖wij‖2

⎞
⎠

=
∑

1≤i<j≤c

(
‖wij‖2

∂R2
ij

∂θt

+R2
ij

∂‖wij‖2

∂θt

)
. (16)

The calculation of ∂R2
ij/∂θt and ∂‖wij‖2/∂θt follows (4) and

(5). As in a binary classification, the optimal model parameter

set θ∗ can be found by using gradient-based optimization

techniques.

Before ending this section, it is interesting to look into the

relationship between the proposed model selection criterion

and the radius–margin bound generalized for multiclass SVMs

in [22]. In that work, the multiclass SVM is solved by the

single-machine approach. With the notations in this paper, the

generalized bound in [22] can be expressed as

L(D) ≤ (4K/c)

⎛
⎝R2

∑

1≤i<j≤c

‖wi − wj‖2

⎞
⎠

� (4K/c)

⎛
⎝R2

∑

1≤i<j≤c

‖w̃ij‖2

⎞
⎠ (17)

where K is a constant and c is the number of classes. In [22], R
denotes the radius of the smallest sphere enclosing the support

vectors only. In this paper, R is changed to enclose all the

training samples. Note that such a change will not affect the

“≤” in (17) because the new R is an upper bound of the original

one. The work in [22] adopts the multiclass SVMs proposed by

[6]. There, the (wi − wj) can be understood as a w̃ij , which

is a normal vector of an SVM hyperplane separating classes i
and j. For the proposed Criterion I in (15), Rij is the radius of

the smallest sphere enclosing the training samples from classes

i and j, and therefore, R2
ij ≤ R2. Replacing all R2

ij in (15) with

R2 and moving R2 out of the summation sign turn Criterion I

to (R2
∑

1≤i<j≤c ‖wij‖2). If the constant (4K/c) is ignored,

the proposed Criterion I and the generalized bound in [22]

will share similar structures. Surely, from the perspective of

generalizing a bound in a strict theoretical sense, the approach

in [22] is more suitable.

IV. MODEL SELECTION CRITERION II

Class separability is a concept widely used in pattern recog-

nition [24]–[26]. The scatter-matrix-based measure is often

favored, thanks to its simplicity and applicability to both binary

and multiclass problems. They are defined as

SW =

c∑

i=1

[
∑

x∈Di

(x − mi)(x − mi)
⊤
]

SB =
c∑

i=1

ni(mi − m)(mi − m)⊤

ST =
c∑

i=1

[
∑

x∈Di

(x − m)(x − m)⊤
]

= SW + SB . (18)

c is the number of classes, Di is the set of training samples from

class i, and ni is the size of Di. mi and m are the class and

total means, respectively. Many combinations of two of SW ,

SB , and ST can be used as a class separability measure. The

commonly used ones include tr(SB)/tr(SW ) and |SB |/|SW |,
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where tr(A) and |A| denote the trace and determinant of a

square matrix A, respectively. Other combinations can be found

in [26].

In our previous work [27], we restrict to binary classification

and preliminarily discuss the relationship between the scatter-

matrix-based class separability measure and the radius–margin

bound. Now, this discussion is extended to a multiclass case

and is used to develop the second model selection criterion.

To do so, the following first extends the class separability to

a kernel-induced feature space F . Considering that the high

dimensionality of F can easily make the scatter matrices sin-

gular and their determinants zero, the trace-based measure is

used instead. In the following, the superscript φ is used to

distinguish the variables in F from those in R
d. Recall that Di

denotes the training samples from the ith class. D is defined as

the union of Di (i = 1, 2, . . . , c), which is expressed as D =
∪c

i=1Di. KA,B is a kernel matrix where {KA,B}ij = k(xi,xj),
with the constraints of xi ∈ A and xj ∈ B. Sum(·) denotes

the summation of all the elements in a matrix. The traces are

obtained as

tr
(
S

φ
B

)
=

c∑

i=1

Sum(KDi,Di
)

ni

− Sum(KD,D)

n
(19)

tr
(
S

φ
W

)
= tr(KD,D) −

c∑

i=1

Sum(KDi,Di
)

ni

(20)

tr
(
S

φ
T

)
= tr(KD,D) − Sum(KD,D)

n
. (21)

To facilitate analysis, the class separability measure in F is

defined as tr(Sφ
B)/tr(Sφ

T ) instead of tr(Sφ
B)/tr(Sφ

W ). Note

that they are essentially identical because tr(Sφ
T ) = tr(Sφ

B) +

tr(Sφ
W ).

Recall that n1 and n2 are the sizes of D1 and D2, respec-

tively. The relationship between tr(Sφ
B) and the squared margin

γ2 can be proven as (the proof is omitted)

γ2 ≤ 1

4 −
(

n1+n2

n1n2

)
tr

(
S

φ
B

) =
1

4 −
∥∥∥mφ

1 − m
φ
2

∥∥∥
2 . (22)

This result indicates that 1/(4 − ‖mφ
1 − m

φ
2‖2) is an upper

bound of γ2. The equality in “≤” is achieved if and only if

the solution of the problem in (3), denoted by α⋆
i , is 1/n1

for xi ∈ D1 and 1/n2 for xi ∈ D2. Considering that such a

solution seldom occurs in practice, 1/(4 − ‖mφ
1 − m

φ
2‖2) is

a strict upper bound in general. Recall that when minimizing

the radius–margin bound for the model selection, γ2 is to be

maximized. Based on (22), to allow γ2 to be maximized, its

upper bound needs to be adequately large, and it will prevent γ2

from being increased otherwise. This, in turn, requires ‖mφ
1 −

m
φ
2‖2 to be adequately large. Meanwhile, decreasing the value

of ‖mφ
1 − m

φ
2‖2 will reduce the upper bound value, forcing γ2

to be kept small. Please note that although a larger (or smaller)

‖mφ
1 − m

φ
2‖2 does not necessarily lead to a larger (or smaller)

γ2, their values are often strongly positively correlated to each

other in practice, which can be seen from the results comparing

the values of −tr(Sφ
B) and ‖w‖2 in our previous work [27].

A similar result can be proven for the squared radius R2 as

R2 ≥ 1

(n1 + n2)
tr

(
S

φ
T

)
. (23)

It shows that tr(Sφ
T )/(n1 + n2) is a lower bound of

R2. The equality in “≥” is achieved if and only if

the solution of the problem in (2), denoted by β⋆
i , is 1/(n1 +

n2) for all the training samples. Again, such a solution is rare

in practice, and this is a strict lower bound in general. When

minimizing the radius–margin bound for the model selection,

R2 is to be minimized. Based on (23), this needs tr(Sφ
T ) to

be adequately small to avoid hindering the decrease of R2. In

addition, it can be seen from [27] that the values of tr(Sφ
T ) and

R2 are often strongly positively correlated.

Conceptually speaking, ‖mφ
1 − m

φ
2‖2 and γ2 reflect the

similar property of data separation, whereas tr(Sφ
T ) and R2

measure the similar property of data scattering. Inspired

by the aforementioned results, this paper transplants the

radius–margin bound to a multiclass scenario by mimicking the

class separability measure. At the same time, please note that

this new model selection criterion will still be based on R and

‖w‖ rather than the traces of the scatter matrices.

In a multiclass case, tr(Sφ
T )/(n1 + n2) measures the average

of the squared scattering radius of the training samples in F .

Considering the analogy between tr(Sφ
T )/(n1 + n2) and R2 in

a binary classification, the new criterion redefines R2 as the

radius of the smallest sphere enclosing all the training samples

from the c classes

R2
c = min

‖φ(x)−ĉ‖2≤R̂2

(R̂2) ∀x ∈ D. (24)

For tr(Sφ
B), it can be shown that in the case of c classes

tr
(
S

φ
B

)
=

∑
1≤i<j≤c ninj

∥∥∥mφ
i − m

φ
j

∥∥∥
2

n2
. (25)

By noting the analogy between ‖mφ
1 − m

φ
2‖2 and γ2 in a

binary classification, the margin in the new criterion is re-

defined as

γ2 =

∑
1≤i<j≤c ninjγ

2
ij

n2
=

∑

1≤i<j≤c

PiPj‖wij‖−2 (26)

where γij is the margin of the binary SVM classifier trained

with the training samples of classes i and j, and Pi = ni/n,

which is the prior probability of class i estimated from the

training samples. The redefined margin is a weighted average of

those from the pairwise binary SVM classifiers, and the weight

is the product of the prior probabilities of the two involved

classes. This implies that the margins between the classes

dominating the training and test sets need to be emphasized.

Otherwise, the number of misclassified samples will be high.

This agrees with the intuition. In this way, the second model
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TABLE I
COMPARISON OF COMPUTATIONAL LOAD

selection criterion is obtained, and the optimal model parameter

set is given by

θ∗ = arg min
θ∈Θ

(
R2

c

γ2

)
. (27)

The derivative of this criterion with respect to the tth model

parameter θt is

∂

∂θt

(
R2

c

γ2

)
=

1

γ4

(
γ2 ∂R2

c

∂θt

− R2
c

∂γ2

∂θt

)
(28)

where

∂γ2

∂θt

= −

⎛
⎝

∑

1≤i<j≤c

PiPj‖wij‖−4 ∂‖wij‖2

∂θt

⎞
⎠ . (29)

Again, the minimization of this bound can be achieved by
using the gradient-based optimization techniques. Compared
with Criterion I, this criterion is more heuristic and is farther
from being interpreted as a bound of generalization error.

Finally, please note that these two criteria can be conve-
niently extended to handle the case where the misclassification
costs between different classes are different. The first crite-
rion is currently a pairwise combination of the radius–margin
bounds with equal weights. When different misclassification
costs are defined, a weighted combination can be applied in-
stead. A larger weight will be assigned if the misclassification
cost among a certain pair of classes is higher. For the second
criterion, the weighting can be applied to the pairwise combi-
nation of margins. In the terminology of class separability, this
means that two classes with higher misclassification cost will
be pushed farther away from each other to reduce the potential
misclassification chances.

V. COMPUTATIONAL ISSUE

Both criteria have continuous first- and second-order deriv-
atives with respect to the model parameters as long as the
employed kernel function has. The minimization of them can
be efficiently solved by using gradient-based optimization tech-
niques. For example, the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton method [28] is often favored because it
commonly takes a smaller number of iterations before conver-
gence. At each iteration, the computational load is largely due
to the evaluation of the objective function. Let QP(n) denote
a quadratic programming problem with n training samples.
Let s be the number of values tried for each model parameter

in an exhaustive grid-based search method. |θ| is the number
of model parameters to be optimized, and k is the number
of folds of cross validation. Besides these, e stands for the
number of function evaluations in an optimization process. The
computational loads of the model selection methods reviewed
in Section I are listed in Table I. Following [16], the measure in
terms of the total number of QP problems to be solved is used.4

As shown in Table I, for a multiclass SVM classifier using
the one-versus-all strategy, training this classifier results in the
computational cost of c · QP(n). For that using the one-versus-
one strategy, this result becomes

∑
1≤i<j≤c QP(ni + nj). Cal-

culating R2
c and R2

ij (or ‖wij‖2) in the proposed criteria
involves one QP(n) and one QP(ni + nj), respectively. From
this table, it is found that the computational load of grid-based
search methods increases rapidly with the increasing value of
s, |θ|, or k. They quickly become intractable when |θ| is larger
than three. In contrast, the proposed criteria have a much lower
computational load, thanks to the applicability of gradient-
based optimization techniques. As shown in the experimental
study, the minimization of them can be accomplished in a few
iterations with a number of function evaluations, even if |θ| is as
large as several hundreds. Compared with the existing methods,
the proposed criteria can save considerable computational cost,
and the more the model parameters, the more the savings
will be.

VI. EXPERIMENTAL RESULT

This experiment evaluates the effectiveness of the proposed

criteria for the model selection of multiclass SVMs. Two

forms of the Gaussian radial basis function (GRBF) ker-

nel are used. One is the spherical GRBF kernel k(x,y) =
exp(−(‖x − y‖2/2σ2)), where σ is the kernel parameter

known as the Gaussian width. In this case, the model param-

eter set is θ={C, σ}, and C is the regularization parameter.

The other is the ellipsoidal GRBF kernel that assigns different

σ’s to each feature dimension. It is expressed as k(x,y) =

exp(−∑d
i=1((xi − yi)

2/2σ2
i )), where σi is the Gaussian

width for the ith dimension. At this time, θ expands to

{C, σ1, σ2, . . . , σd}. In this experiment, the two kernels are

used to evaluate the performance of the proposed criteria in

4The computational load is also affected by the dimensionality of data and
the computation of a kernel function. They are considered as constants for a
given multiclass SVM classification problem.
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TABLE II
ATTRIBUTES OF THE MULTICLASS BENCHMARK DATA SETS

dealing with small- and large-sized model parameter sets, re-

spectively.

The BFGS quasi-Newton method is employed to minimize

the two criteria to find the optimal model parameter set. To

avoid the constraints of C > 0 and σ > 0, the transforms of

μ = − ln(C) and ν = ln(g) = ln(1/2σ2) are applied, where

ln(·) denotes the natural logarithm. μ and ν (or ν1, . . . , νd when

an ellipsoidal GRBF kernel is used) are optimized instead.

Thus, the minimization of the criteria becomes an uncon-

strained optimization problem. The initial values of μ and ν
are set as μ0 = 0 (or, equally, C = 1) and ν0 = − ln(2d) (or,

equally, σ =
√

d), where d is the dimension of the feature

vector. Note that for a data set, the feature components along

each dimension have been linearly scaled to [−1, +1] by

using the training samples. The feature components of the test

samples will be scaled with the same scaling parameters when

doing classification.

Following the work in [21], two stop criteria are used, and

the optimization will terminate when either of them is satisfied.

Let θt and θt+1 denote the model parameters obtained in the

tth and (t + 1)th iterations, respectively. f(θt) and f(θt+1)
are the corresponding values of the objective function. The

first stop criterion is |f(θt+1) − f(θt)| ≤ ǫf(θt), where ǫ is a

small positive number which is set as 10−5 in this experiment.

With this stop criterion, the optimization will terminate if the

difference of the function values in two consecutive iterations

is less than a predefined tolerance. The second stop criterion is

specifically designed for the minimization of the radius–margin

bound in [21]. At each iteration of the BFGS quasi-Newton

algorithm, a line search is carried out to find the starting point

and direction for the next iteration. However, as pointed out

in [21], too many line searches may be conducted at a single

iteration when the minimum of the bound is being approached.

The reason is that in practice, the derivatives computed based

on (4) and (5) may slightly deviate from their theoretical

values. When the minimum of the bound is being approached,

the derivatives will be small, and the impact of this deviation

will become significant. Due to the inaccurate derivative

information, an iteration may take many line searches to find a

solution. To deal with this, the second stop criterion terminates

the optimization if the number of line searches at an iteration

exceeds a predefined value, for example, ten.

Benchmark data sets from UCI Machine Learning Repos-

itory and Statlog Project are used, and they are listed in

Table II. d denotes the dimensionality, “#Class” is the number

of classes, and n is the size of a data set. For “DNA” and

“Satimage,” n and ntest are the sizes of the training and

test sets, respectively. The last column in Table II lists the

maximum, minimum, and average numbers of samples in each

class. Following the work in [16] and [29], for a data set without

predefined training/test sets, the whole data set is randomly split

as 100 pairs of training/test subsets (50%:50%), and the first

five training subsets are used for model selection. For “DNA”

and “Satimage,” the predefined training sets are randomly split

as five pairs of training/test subsets, and the five training subsets

are used for the model selection. This experiment uses a mixture

of codes in C and Matlab. The C version of LIBSVM [30]

is used to optimize R2 and ‖w‖2, as well as in training and

testing an SVM classifier. The BFGS quasi-Newton algorithm

is realized by using the Matlab function fminunc().
There are three parts in this experiment. First, the properties

of the proposed two criteria are demonstrated. Second, their

effectiveness for multiclass SVM model selection is evaluated

on the benchmark data sets. Finally, its application to feature

selection is briefly demonstrated through a toy problem and an

optical digit recognition task.

A. Properties of the Two Model Selection Criteria

1) Relation Between
∑

Eij ,
∑

E ′
ij , and Criterion I: As

defined earlier, Eij is the number of test samples misclassified

from class i to j when a multiclass SVM classifier is applied,

whereas E ′
ij is such a number when a binary SVM classifier

SVMij is used. In this paper, the minimization of
∑

Eij is

sought by minimizing its upper bound
∑

E ′
ij , and this gives

rise to Criterion I. In this experiment, with different pairs of

C and σ, the values of
∑

Eij ,
∑

E ′
ij , and Criterion I are cal-

culated and compared. The results on the “Wine” and “Vowel”

data sets are shown in Fig. 1. The axes are ln(C), ln(σ), and test

error, respectively. The curved surfaces of
∑

Eij and
∑

E ′
ij

are labeled by arrows. It can be seen from both subfigures that

the two surfaces show similar profiles with respect to ln(C)
and ln(σ), although their magnitudes are different when the

test error is large. To quantitatively measure the correlation

between them,
∑

Eij and
∑

E ′
ij are treated as two random

variables. The correlation coefficient ρ is calculated and listed

under each subfigure. The two variables are found to be strongly

positively correlated, indicating that a smaller
∑

E ′
ij generally

corresponds to a smaller
∑

Eij . Similar results are also ob-

served from other data sets. These results preliminarily show

that it is sensible to use
∑

E ′
ij to estimate

∑
Eij for the model

selection.

Now, the correspondence between the test error
∑

Eij and

Criterion I is further checked. The
∑

Eij and the criterion

values often do not have such a strong correlation as
∑

Eij

and
∑

E ′
ij do. This is because the radius–margin bound is not

a tight bound of test error in a binary classification [16]. Fig. 2

shows their correspondence on the data set of “Vowel.” Fig. 2(a)

and (b) show the values of
∑

Eij and Criterion I, respectively.

This is a top view, and the color bar on the right side indicates
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Fig. 1. Correspondence between
∑

E′

ij
and

∑
Eij (ρ is the correlation coefficient between them). (a) Wine, ρ = 0.998. (b) Vowel, ρ = 0.942.

Fig. 2. Correspondence between
∑

Eij and Criterion I. (a) Vowel,
∑

Eij . (b) Vowel, Criterion I.

the magnitude.
∑

Eij and Criterion I show similar contours,

and the region of smaller criterion values aligns well with that

of lower test error rates. Similar results are also seen from other

data sets. These observations suggest that it is possible to locate

the region of lower test error rates by minimizing Criterion I.

This will be further verified later by more experimental study.

On the other hand, one exceptional case is also found on

the data set of “Vehicle.” There, the region of lower criterion

values does not align with the area of lower test error rates.

Further investigation finds that the radius–margin bound on

classes 1 and 2 is too loose to reasonably reflect the value of

(E ′
12 + E ′

21).
2) Relationship Between the Class Separability Measure and

Criterion II: As mentioned before, there is some relationship

between the scatter-matrix-based class separability measure

and the radius–margin bound. Inspired by this, Criterion II is

developed. Although this relationship is not directly related

to the efficiency of this criterion, it is still demonstrated in

this experiment for the sake of integrity. After this, the cor-

respondence between
∑

Eij and Criterion II will be shown.

Fig. 3 shows the class separability and the radius–margin

bound calculated by using the first two classes of the “Wine”

data set. The results are shown in Fig. 3(a) and (b), respec-

tively. Along the axis showing the natural logarithm of σ, the

two surfaces reach lower values within their nearby locality.

Finally, the correspondence between
∑

Eij and Criterion II is

shown in Fig. 4.

B. Experimental Result on the Benchmark Data Sets

The benchmark data sets in Table II are used in this ex-

periment. They have different dimensionalities, unknown real

distributions, and different sample sizes. Some of them have

unbalanced classes, such as “Car,” “E.coli,” and “Yeast.” These

data sets form a good test bed for evaluating the two model

selection criteria. In this experiment, the model selection result

from the proposed criteria is compared with that using a five-

fold cross-validation approach [16], [29], which is regarded as

a benchmark here. In this approach, different pairs of {σ,C}
are evaluated via a 30 × 30 grid search on the top five training

subsets. For each training subset, the pair giving rise to the

minimal cross-validation error is selected, and five pairs of

{σ,C} are obtained in total. The median of the five σ values

is selected as the optimal σ, and the median of the five C values

is selected as the optimal C.

For Criteria I and II, the optimal σ and C are found by

using the BFGS quasi-Newton optimization method. To reflect

its computational load, the number of iterations and that of
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Fig. 3. Correlation between the class separability and the radius–margin bound. (a) Wine, inverse of separability. (b) Wine, bound value.

Fig. 4. Correspondence between
∑

Eij and Criterion II. (a) Vowel,
∑

Eij . (b) Vowel, Criterion II.

TABLE III
SIX TESTED MULTICLASS SVM METHODS

function evaluations are recorded. Afterward, a multiclass SVM

classifier with the optimized model parameters is created and

evaluated by using each of the 100 pairs of training and test

subsets, and the average test error rate is obtained. Six different

multiclass SVM methods listed in Table III are investigated.

This is to evaluate the efficiency of the proposed model se-

lection criteria for multiclass SVM methods using different

strategies and classification rules.

Table IV lists the results for the methods using the one-

versus-one and one-versus-all strategies. The spherical GRBF

kernel is employed. The columns are separated into three

groups, showing the results from the two criteria and the five-

fold cross validation, respectively. In the first two groups, t and

e denote the number of iterations and the number of function

evaluations, respectively. The “1vs1” and “1vsall” stand for the

average test error rates from the methods of one-versus-one

and one-versus-all, respectively. The numbers in the brackets

are the standard deviations, and the minimal test error rates are

highlighted in bold.

By comparing the test error rates, it is seen that for both

multiclass SVM methods, the proposed criteria give rise to

the classification performance comparable to that obtained by

using the five-fold cross validation. For Criterion I, it achieves

the minimal test error rate on “Wine,” “Zoo,” and “DNA.”

On “Iris,” “Car,” “Dermatology,” “E.coli,” and “Yeast,” the

test error rates are similar to those from the cross validation.

Criterion I produces slightly higher error rates on “Glass,”

“Vowel,” “Segment,” and “Satimage.” As for Criterion II, it is

comparable to the cross validation on “Iris,” “Wine,” “Glass,”

“Car,” “Zoo,” and “DNA.” On “Dermatology,” “E.coli,”

“Yeast,” “Segment,” and “Satimage,” the test error rates from

Criterion II are a bit higher. Comparison between the two

criteria shows that Criterion I leads to slightly better overall

classification performance. This can be seen from the data sets

of “Dermatology,” “E.coli,” “Yeast,” and “DNA.” For both

criteria, the test errors of the methods of “1vs1” and “1vsall”

are comparable on most data sets; however, on “Vowel” and
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TABLE IV
TEST ERRORS (SPHERICAL GRBF KERNEL, ONE-VERSUS-ONE, AND ONE-VERSUS-ALL)

“Segment,” the test error rates for the “1vsall” method are a

bit higher. On the other hand, a failure of the model selection

is also observed on “Vehicle,” where the obtained test error

rates are significantly higher than that from the five-fold cross

validation. This result can be expected from the discussion

given at the end of Section VI-A1.

From the values of t and e, it is known that the minimization

process is often accomplished in a few iterations with a small

number of function evaluations. For example, on “Iris,” when

Criterion I is used, the model selection on a training subset

completes in about seven iterations, including 26 function eval-

uations in total. Referring to Table I, this means that 156 (26 ×
2 × 3) QP problems are solved. However, for the five-fold

cross-validation method, it has to solve 2700 (30 × 30 × 3)
QP problems when the one-versus-one strategy is used. Even

if the grid number reduces to, for example, 10 × 10, by taking

larger steps or by using a “coarse-to-fine” search, this number

is still as high as 300.

The results for the classification methods of “dag,” “dense,”

“sparse,” and “single” are presented in Table V. The proposed

criteria still provide good classification performance on most

data sets except for “Vehicle.” In detail, Criterion I obtains min-

imal test error rates on “Wine” and “Zoo,” whereas the test error

rates on “Glass,” “Segment,” and “Satimage” are a little higher.

For Criterion II, the test error rates are generally comparable to

those of the five-fold cross validation except that some increases

are seen on “Dermatology,” “E.coli,” “Yeast,” “Segment,” and

“Satimage.” With respect to the test error rate obtained by the

five-fold cross validation, the maximum increase caused by

using Criterion I is 4.35% on “Satimage” and that caused by

using Criterion II is 3.89% on “Yeast.” Criterion I still shows

marginally better classification performance than Criterion II.

In addition, the test error rates listed in Tables IV and V

are compared across the six classification methods. No strong

evidence shows that Criteria I and II consistently perform better

or worse on a particular method.

In short, it is observed from Tables IV and V that both

criteria work well for the six classification methods. Although

differences are observed between the test error rates obtained by

the proposed criteria and those of the five-fold cross validation,

they are not significant, particularly when the standard devi-

ations are taken into account. Finally, to illustrate the details

in a practical optimization process, the evolution of the values

of Criterion I and the corresponding test error rate are shown

in Fig. 5. As shown, the test error rate quickly drops with the

decreasing criterion value.

The following part presents the experimental results when

the ellipsoidal GRBF kernel is employed. Considering that

different σ values are assigned to each dimension, the number

of model parameters increases to the feature dimensionality
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TABLE V
TEST ERRORS (SPHERICAL GRBF KERNEL, DAG, DENSE, SPARSE, AND SINGLE)

Fig. 5. Evolution of Criterion I and test error rate (Wine, spherical GRBF kernel). (a) Criterion value. (b) Test error rate.

plus one. In this case, even for the data represented by low-

dimensional feature vectors, model selection with the exhaus-

tive grid-based search methods becomes intractable.5 Both

5Considering that the five-fold cross-validation method is intractable for
the case of multiple model parameters, the test errors obtained by using the
spherical kernel have to be used in Table VI.

proposed criteria can still work well. As shown in Table VI,

the minimization process still finishes in a number of itera-

tions, although the number becomes larger due to more model

parameters to be optimized. Compared with the case using a

spherical kernel, lower test error rates are observed on “Iris,”

“Wine,” “Car,” “Zoo,” and “Segment.” This may be the benefit

of using an ellipsoidal kernel where feature components are
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TABLE VI
TEST ERRORS (ELLIPSOIDAL GRBF KERNEL, ONE-VERSUS-ONE, AND ONE-VERSUS-ALL)

combined in a weighted fashion. Similar test error rates are

obtained on “E.coli,” “Vowel,” and “DNA,” whereas higher

error rates are seen on “Satimage.” The model selection per-

formance of Criterion I is still better than that of Criterion II in

general.

On the other hand, a degraded performance is seen on

“Glass,” which is not as good as that obtained when a spherical

kernel is used. Through analysis, we believe that this is because

the number of training samples in some classes of “Glass” is so

small (e.g., there are 2–6 training samples only) that the model

selection process suffers from overfitting, i.e., when training

samples are scarce, the minimization of the criteria may fit

sample noise and fail to capture the real pattern there. In this

case, although the minimum has been achieved, the selected

model may not be good, and an SVM classifier using this model

will not attain satisfactory classification performance on the

test data. In addition, the model selection performance in this

case often becomes sensitive to the optimization setting.6 How

to effectively avoid overfitting is also an active research area,

and the regularization technique [31] seems to be a promising

solution.

6With another optimization setting, we obtain a lower test error rate
(33.96% ± 3.48%) on the “Glass” data set, which is comparable to that from
the five-fold cross validation. However, the original result is reported for the
sake of consistency of optimization settings for all the data sets.

Finally, Table VII presents the results from the “dag,”

“dense,” “sparse,” and “single” methods. Similarly, on the

data sets such as “Iris,” “Wine,” “Car,” and “Segment,” some

decreases on test error rates are observed, whereas on the other

data sets such as “Dermatology,” “Vowel,” and “Satimage,” the

test error rates increase a bit. Generally speaking, for the case

of using the ellipsoidal GRBF kernel, the proposed two criteria

still demonstrate good performance for model selection in

multiclass SVMs. There is no considerable scale performance

degradation when the number of model parameters significantly

increases, for example, to as high as 180 on “DNA.”

Before the end of this part, the model selection time taken by

the proposed criteria is compared with that taken by the five-

fold cross-validation approach. The comparison is carried out

on a Linux server with 3.0-GHz CPU and 1.0-GB memory.

In this experiment, the proposed criteria are computed and

optimized by using the code written in Matlab. It calls the

Linux binaries in LIBSVM to calculate R2 and ‖w‖2, and then

loads the results from the output files. This is not the most

efficient implementation in terms of computational time (for

example, less efficient than realizing all the steps with a single

C program). However, as shown in Table VIII, the two criteria

have been able to achieve faster model selection than the five-

fold cross-validation approach realized by using LIBSVM in

C. The model selection time for the ellipsoidal GRBF kernel is

longer because more kernel parameters have to be optimized.
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TABLE VII
TEST ERRORS (ELLIPSOIDAL GRBF KERNEL, DAG, DENSE, SPARSE, AND SINGLE)

TABLE VIII
COMPARISON OF THE MODEL SELECTION TIME (UNIT: SECONDS)

This is particularly true for the data sets with high-dimensional

input spaces. In addition, Criterion II generally costs less model

selection time than Criterion I. They use different ways to

evaluate the radius R (solving a single larger quadratic problem

versus solving multiple smaller ones). However, it is believed

that in practical applications, determining which criterion is

faster will depend on the code design. The evolution of Cri-

terion I and the corresponding test error rate is also shown in
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Fig. 6. Evolution of Criterion I and test error rate (Wine, ellipsoidal GRBF kernel). (a) Criterion value. (b) Test error rate.

Fig. 6. At the initial stage, the criterion value decreases, but

the test error rate increases. We believe that this is because the

criterion is not a tight estimation of the test error rate. When the

criterion value is relatively large, its decrease may not lead to an

immediate reduction on the test error rate. However, as shown

in Fig. 6, when the criterion value converges to its minimum, a

lower enough test error rate will be achieved.

C. Application to Feature Selection

The optimized model parameters can be used to identify fea-

tures important for classification.7 For example, when the ellip-

soidal GRBF kernel is used, the value of gi(gi = 1/(2σ2
i ), i =

1, 2, . . . , d) can reflect the importance of the ith feature, and

the larger the gi value, the more important this feature is.

This has been observed from the binary classification where

the radius–margin bound is applicable [16]. This experiment

will demonstrate that the proposed criteria well preserve this

property in multiclass classification. Two data sets are used.

One is a toy problem, and the other is the U.S. Postal Service

(USPS) data set on optical digit recognition.

1) Toy Data Set: This data set is created by following [16].

However, in this experiment it consists of multiple classes.

There are 52 features in total, and only the first two of them are

useful. The two features are shown in Fig. 7(a). There are three

concentric circles, forming a three-class classification prob-

lem. The remaining 50 features are randomly sampled from a

Gaussian distribution of N (0, 20). Three hundred samples are

generated in total. This experiment is to check whether the first

two features can be identified by using the proposed criteria,

i.e., being assigned larger g values. The toy data set is randomly

split into 100 pairs of training/test subsets, and Criterion II is

applied to each of the training subsets. Considering that the

three classes are completely nonlinearly separable, the initial

7Please note that the feature selection here is different from feature extraction
that considers the feature dependence and seeks the optimal combination of
features, for example, in the way of principal component analysis or linear dis-
criminant analysis. Here, features are treated individually, and those important
for classification are identified. As for the feature dependence, it is left to the
SVM classifier that can handle it automatically.

value of the regularization parameter C is set as a bit higher

value, e.g., 10.0. A promising result is obtained. The first two

features are correctly assigned higher g values on all the 100

trials. The g values averaged over the 100 trials are shown

in Fig. 7(b). As shown, the first two features can be easily

identified by sorting the g values. Once they are correctly

selected, the three circles can be classified without error. It

is assumed here that “only two features are really useful” is

known beforehand. In a general case, the top k features will

be selected, and some noisy features will be brought in if k is

larger than the number of useful features, for example, two for

this data set.

2) Optical Digit Recognition: The USPS data set contains

7291 training samples and 2007 test samples. They form ten

classes corresponding to digits from “0” to “9.” Each sample

is characterized by a 256-D feature vector. It is obtained by re-

shaping a 16 × 16 gray-level thumbnail image. Some examples

are shown in Fig. 8.

With the training data, the proposed criteria are minimized to

find the optimal model parameters. Afterward, the multiclass

SVMs with the optimized model parameters are created and

evaluated. The test error rates are listed in Table IX. The value

in the column of “Reported best” is the lowest test error rate

given in [32] when a spherical GRBF kernel is used (that

for an ellipsoidal GRBF kernel is left blank because the five-

fold cross-validation approach is intractable in this case). As

seen from this table, the multiclass SVMs with the optimized

model parameters give rise to the classification performance

comparable to the reported best. When the ellipsoidal kernel

is used, slightly increased test error rates are observed, but the

difference between our results and the reported best is still less

than 1%.

By reshaping the optimal value of g1, g2, . . . , g256 back into

a 16 × 16 matrix, the map of g values is shown in Fig. 9, where

each block corresponds to one of the 256 g’s and its magnitude

is reflected by the gray value. The blocks having larger g values

distribute at the central part of this map, whereas those having

lower values are mostly at the borders and corners. This result

implies that the pixels at the central part are more important

for classification. This result well matches the case of the
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Fig. 7. Results for the toy data set. (a) Distribution of the first two features. (b) Optimized value of g = 1/(2σ2) averaged on 100 trails.

Fig. 8. Thumbnail images of digits (USPS data set).

TABLE IX
TEST ERRORS OBTAINED WITH THE SELECTED MODEL PARAMETERS (THE USPS DATA SET)

Fig. 9. Map of optimized values of g (USPS data set). (a) Criterion I. (b) Criterion II.

thumbnail images in Fig. 8 that a digit is commonly displayed

at the central part of an image.8 To investigate the performance

of feature selection using these g values, the following experi-

ments are conducted. The 256 features are sorted according to

a descending order of the corresponding g values, and only the

top k features are used to train a multiclass SVM to perform

8This experiment was first presented in [16], where a binary classification
problem of discriminating two groups of digits (group I, “0”–“4”; group
II: “5”–“9”) is considered and the radius–margin bound is used. This paper
develops two model selection criteria and makes such a feature selection
applicable to the multiclass classification that discriminates each digit from
each other.

classification. For comparison, another three feature selection

methods named “Fisher criterion score,” “Pearson correlation

coefficient,” and “Kolmogorov–Smirnov test” in [16] are also

used and adapted to the multiclass case. The following two

points will be checked: 1) whether the test error rate rapidly

decreases with the increasing value of k, and 2) whether the

proposed criteria can produce feature selection performance

comparable to the other three methods. The result is shown in

Fig. 10, where the horizontal axis is the number of selected

features and the vertical one is the test error rate. It is seen

that the test error rate drops quickly with the increasing number

of selected features. Compared with the other three methods,
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Fig. 10. Feature selection result. Test error rate versus number of selected
features (USPS data set).

both criteria give better feature selection performance. By using

only the top 50 selected features, the test error rate of 0.07 has

been achieved (the lowest error rate is about 0.05 when all the

256 features are used). Many redundant features are recognized

by using the proposed criteria. The curves in Fig. 10 show the

change of test error rate with respect to the number of selected

features. In practical applications, a point on the curve can

be selected to balance between classification accuracy and the

number of features used in an SVM classifier.

D. Summary

Based on the aforementioned experimental results, the fol-

lowing summary can be made.

1) Both criteria demonstrate good model selection perfor-

mance on most of the data sets, giving rise to classifica-

tion accuracy comparable to that obtained by using the

five-fold cross-validation approach.

2) The two criteria work well with both spherical and ellip-

soidal GRBF kernels, and the latter verifies their ability

in handling a large number of model parameters. At the

same time, it is also observed that satisfactory model

selection may not be attained if training samples are

scarce. How to solve this problem is still an ongoing

research, and it is worth exploring in future work.

3) Six different kinds of multiclass SVM methods are in-

vestigated. Although the proposed criteria are developed

on the multiclass SVM using the one-versus-one strategy,

they help all the six multiclass SVM classifiers achieve

good enough classification performance. It seems that the

two criteria are promising to be generally used for model

selection of multiclass SVM methods.

4) Model parameters optimized by the two criteria are used

to do feature selection. Compared with the existing se-

lection criteria, they achieve comparable or even better

selection results. We believe that this property has wide

applications in real-world problems and that it is worth

further investigation.

5) The comparison of the two criteria finds that Criterion I

shows marginally better performance. Meanwhile, there

is a difference between their computational loads. To

compute the radius R2, Criterion I solves multiple smaller

scale QP problems, whereas Criterion II solves one larger

scale QP problem. When the number of classes is large,

model selection with the second criterion might be faster.

VII. CONCLUSION

This paper has proposed two criteria to perform model

selection in multiclass SVMs. They are realized by combining

or redefining the radius–margin bound of binary classification

to accommodate multiple classes. Both criteria are not the

radius–margin bound generalized for multiclass SVMs. Nev-

ertheless, they are simple and practical, and most importantly,

they demonstrate satisfactory performance in the task of model

selection for which they are proposed. These two criteria well

preserve the elegant properties of the radius–margin bound in

the model selection of binary SVMs. Their derivatives with

respect to model parameters are analytically calculated, and

thus, the gradient-based optimization technique is used to find

the best model efficiently. The two criteria handle hundreds of

model parameters well and save much computational cost than

the grid-based search methods. In addition, they do not need

to put a part of training samples aside for validation and make

full use of all the training samples available. In the application

to feature selection, the optimized model parameters success-

fully identify features important for classification. This is very

helpful for the reduction of system complexity and feature dis-

covery. Extensive experimental study on multiple benchmark

data sets and different multiclass SVM methods verify the

effectiveness of the proposed criteria and their applicability for

multiclass SVM model selection.
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