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Abstract

Let P (n,M) be a graph chosen uniformly at random from the family of all labeled

planar graphs with n vertices and M edges. In the paper we study the component structure

of P (n,M). Combining counting arguments with analytic techniques, we show that there

are two critical periods in the evolution of P (n,M). The first one, of width Θ(n2/3), is

analogous to the phase transition observed in the standard random graph models and takes

place for M = n/2 +O(n2/3), when the largest complex component is formed. Then, for

M = n + O(n3/5), when the complex components cover nearly all vertices, the second

critical period of width n3/5 occurs. Starting from that moment increasing of M mostly

affects the density of the complex components, not its size.

1 Introduction

Since the seminal work of Tutte [33] maps and graphs on 2-dimensional surfaces have become

widely studied combinatorial objects in discrete mathematics. The enumerative and structural

problems around maps, i.e. embedded graphs on a surface, are relatively well settled. Starting

from the number of planar maps computed by Tutte [34, 33], the number of rooted maps on

surfaces was found by Bender, Canfield, and Richmond [2] and other classes of maps were

extensively enumerated since then. Such enumeration results have been used to study typical
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properties of random maps on surfaces, e.g. the size of the largest components by Banderier et

al. [1].

Another important aspect of maps is that they allow nice bijections to the so-called well-

labeled trees. The bijection between planar maps and the well-labeled trees was first studied

amongst others by Schaeffer [31], which was extended by Bouttier, Di Francesco, and Guitter

[6] to maps on an orientable surface with positive genus. These bijections are the corner stone

of profound results on the topological structure of scaling limits of random maps by Chassaing

and Schaeffer [9], Le Gall [13], and Schramm [32].

On the other hand, analogous problems related graphs that are embeddable on a surface

are still wide open. The enumerative properties of random planar graphs have attracted much

attention since the work of McDiarmid, Steger, and Welsh [29] who studied random labeled

planar graphs with a given number of vertices.

Let pl(n) be the number of labeled planar graphs on n vertices. McDiarmid, Steger, and

Welsh [29] showed amongst other results that the quantity (pl(n)/n!)1/n converges to a limit

γ as n → ∞, which is called the growth constant. An upper bound γ ≤ 37.3, based on the

triangulations and probabilistic methods, was obtained by Osthus, Prömel, and Taraz [30]. A

lower bound γ ≥ 26.1 was given by Bender, Gao, and Wormald [3] who studied the number

of labeled 2-connected planar graphs through the singularity analysis of generating functions

arising from the decomposition of graphs along connectivity. Using a similar method Giménez

and Noy [16] proved that pl(n) ∼ c n−7/2 γn n!, where c, γ > 0 are explicitly computable

constants (e.g. γ ∼ 27.2). As for the number sg(n) of graphs embeddable on a surface with

positive genus, McDiarmid [27] showed that its growth constant is the same as that of planar

graphs while Chapuy et al. [8] found sg(n) for all orientable surfaces of positive genus g prov-

ing that sg(n) ∼ αg n
5(g−1)/2−1 γn n!, where αg > 0 and γ is the growth constant of the labeled

planar graphs. McDiarmid and Reed [28] studied various typical properties of random graphs

on surfaces, e.g. subgraph containment and maximum degree.

Frieze [12] asked about the asymptotic behavior of the number pl(n,M) of labeled planar

graphs on n vertices with M edges. Note first that if M ≤ an for some a < 1/2, then a typical

graph with n vertices and M edges is planar, i.e. pl(n,M) = (1 + o(1))
((n2)
M

)

(cf. [25] or [20])

Gerke et al. [14] proved the existence of its growth constant, in the sense that for pl(n, an) with

0 ≤ a ≤ 3, the quantity (pl(n, an)/n!)1/n converges to a limit γa as n → ∞. The asymptotic

formula for pl(n, an) was found by Giménez and Noy [16] who showed that for 1 < a < 3,

there are analytic constants ca, γa > 0 such that pl(n, an) ∼ ca n
−4 γna n!. In this paper we

deal with the case when a ∈ [1/2, 1). Note that for such a

pl(n,M) ≤
(
(

n
2

)

M

)

= n(1+o(1))M ,

i.e., γa = 0, and a ‘naive’ generating function approach does not lead to the asymptotic formula

for pl(n,M).
We use pl(n,M) to study the asymptotic behavior of the uniform random planar graph

P (n,M) by which we mean a graph chosen uniformly at random among all labeled planar

graphs with n vertices and M edges; thus, each of these graphs occurs as P (n,M) with prob-

ability 1/pl(n,M). From the results in [14, 16] it follows that if M/n is bounded away from
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both 1 and 3, then P (n,M) has a well ordered structure, for instance, it has a large compo-

nent of size n − O(1), and all planar graphs of finite size appear as its subgraphs. Thus, it

corresponds to late stages of the evolution of the standard uniform random graph G(n,M), the

graph chosen uniformly at random among all graphs with n vertices and M edges. Our goal is

to study the typical size and structure of components in P (n,M) in a more interesting range,

when M ≤ n. It turns out that, somewhat surprisingly, P (n,M) exhibits two critical ranges,

which occur at M = n/2 +O(n2/3) and M = n +O(n3/5).
The first critical period corresponds to a phase transition phenomenon observed in the

plethora of different random graph models. Let us recall some results on one of the most

widely used random graph model G(n,M). It follows from the papers of Erdős and Rényi

[11], Bollobás [5], Łuczak [21], Łuczak, Pittel, and Wierman [25], Janson et al. [19], and Jan-

son [18] (see also Janson, Łuczak, and Ruciński [20]) that the giant component (i.e. the unique

largest component) suddenly emerges at M = n/2 + O(n2/3), and nowadays this spectacular

phenomenon is well studied and understood. If M = n/2 + s and −n ≪ s ≪ −n2/3, then,

a.a.s. (i.e. with probability tending to 1 as n approaches ∞) G(n,M) consists of isolated trees

and unicyclic components, and the largest component is a tree of size (1 + o(1)) n2

2s2
log |s|3

n2 . On

the other hand, if n2/3 ≪ s ≪ n, then a.a.s. G(n,M) contains exactly one component with

more edges than vertices of size (4 + o(1))s, while all other components are of size o(n2/3).
Furthermore, if s ≫ n2/3, then a.a.s. G(n,M) contains a topological copy of K3,3 and thus it

is not planar, while, as we have mentioned, for s ≪ −n2/3, a.a.s. G(n,M) consists of isolated

trees and unicyclic components, so it is clearly planar.

Another random structure relevant to the behavior of P (n,M) is the uniform random forest

F (n,M) (i.e. a forest chosen uniformly at random among all labeled forest with n vertices and

M edges). Łuczak and Pittel [24] found that although the giant component in F (n,M) emerges

atM = n/2+O(n2/3), as forG(n,M), the critical behavior of these two models are somewhat

different. Let M = n/2 + s. If s ≪ −n2/3, then the structure of both F (n,M) and G(n,M)

are similar; in particular, the size of the largest tree in F (n,M) is a.a.s. (1 + o(1)) n2

2s2
log |s|3

n2 .

However in the supercritical phase, when s ≫ n2/3, the giant tree of F (n,M) is a.a.s. of size

(2 + o(1))s, which is roughly half of the size of the largest component of G(n,M), while the

second largest tree of F (n,M) is of size Θ(n2/3) which does not depend much on s provided

s ≪ n, i.e. it is by far larger than the second largest component of G(n,M) for m = n/2 + s,
which is of size Θ(n2/s2 log(s3/n2)).

In the paper we show that as far as M = n/2+s, where s≫ n2/3 and s/n is bounded away

from 1/2, the behavior of P (n,M) is similar to that of F (n,M). Namely, a.a.s. the size of the

largest complex component is of the order (2+ o(1))s, while the second largest component has

Θ(n2/3) vertices. However, unlike in the case of F (n,M) for which M ≤ n− 1, for P (n,M)
we may haveM = 3n−6, so the rate of growth of the size of complex components must change

at some point. We prove that it occurs when M = n + O(n3/5), more precisely, if M = n + t
and t≪ −n3/5, then the complex components of P (n,M) have a.a.s. n− (2+ o(1))|t| vertices

altogether, while for n3/5 ≪ t ≪ n2/3 they contain n − (α + o(1))(n/t)3/2 vertices for some

computable constant α > 0. Let us mention that the condition t ≪ n2/3 is a result of the proof

method we have used and most likely can be replaced by t≪ n. Furthermore, our method can
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say quite a lot about structure of the largest component very much in the spirit of Łuczak [22].

The rest of the paper is organized as follows. In the next section we describe the main

idea of our argument. Then, in Section 3 we present the first analytic ingredient of the proof:

counting specially weighted cubic planar multigraphs using generating functions. Here we

also describe how to use this result to bound the number of planar multigraphs with minimum

degree three. Then, in the next section, we estimate the number of planar graph with k vertices

and k + ℓ edges in which each component has more edges than vertices. Finally, in the main

chapter of this paper, we use a direct counting to study the number pl(n,M) and the asymptotic

properties of P (n,M) for different values of M .

2 Idea of the proof

As we have already mentioned most of results concerning the asymptotic behavior of pl(n,M)
is based on the generating function method. Thus, for a ∈ (0, 3), one can study the function

fa(x) =
∑

n

pl(n, an)

n!
xn

and deduce the asymptotic behavior of pl(n, an) from the behavior of fa(x) near its singulari-

ties. Note however that since

pl(n, an) ≤
(
(

n
2

)

an

)

≤ n(a+o(1))n ,

for a < 1, the coefficients in the expansion of fa(x) tend to zero too fast to be handled by

standard methods of generating function analysis. On the other hand, the condition that a

graph is planar is very hard to grasp by purely combinatorial means. Thus, in the paper we

use a combination of analytic and combinatorial tools. From a planar graph we extract its

kernel, which is its only part responsible for the planarity and is dense enough to be treated by

generating functions method. Then we use a technically involved but rather natural counting

argument to find asymptotic properties of P (n,M).
In order to make the above description precise, we introduce some definition. The excess

ex(G) of a graph G is the difference between the number of its edges and the number of its

vertices. We call components of a graph with positive excess, i.e. those which have at least

two cycles, complex components, and we say that the graph is complex if all its components

are complex. The core of a graph G, denoted core(G), is the maximal subgraph of G with

the minimum degree two. The kernel of G, denoted by ker(G), is obtained from the core by

removing all isolated cycles and replacing each path whose internal vertices are all of degree

two by an edge. Note that for a graph G the kernel is a multigraph which can have multiple

edges and loops. However, the excess of both core(G) and ker(G) are the same. Note also that

ker(G) has clearly the minimum degree three. If ker(G) is cubic, we say that G is clean. We

define the deficiency df(G) of G as the sum of degrees of vertices of ker(G) minus three times

the number of vertices of ker(G). Therefore, a graph is clean if and only if its deficiency is

zero.
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Our argument is based on a simple observation that G is planar if and only if ker(G) is

planar. We use analytic methods to count the number of possible candidates for the kernel, and

then follow purely combinatorial argument. To this end, in Section 3 we apply the singularity

analysis to extract the asymptotic number of possible clean kernels of the planar graphs (Theo-

rem 1). The proof is similar to that used in the case of counting cubic planar graphs presented

in Bodirsky et al. [4], but in order to find the number of all planar graphs, we need to count

cubic planar multigraphs with some special weight function dependent on the number of loops

and multiple edges of a multigraph. Then, we use a simple combinatorial idea to generalize our

estimates to the number of kernels with non-zero deficiency.

In the remaining part of our argument we follow an idea from Łuczak [22] (see also Janson,

Łuczak, and Ruciński [20]) and construct complex planar graphs G from their kernels. Thus,

we first choose the kernel, then put on its edges vertices of degree two obtaining the core of the

graph, and add to it a forest rooted on vertices of the core. This procedure lead to the estimate

given in Theorem 2. We also remark that such a typical complex planar graph on k vertices

consists of large component and, perhaps, some small components of combined excess O(1).
Finally, in the main part of the paper we count the number of planar graphs by split-

ting it into a complex planar graph, the number of which we have just found, and the part

which consists of isolated trees and unicyclic components, whose number is well known (see

Britikov [7]). We compute pl(n,M) for different values of M = M(n) ≤ n + o(n). At the

same time, we get information on the typical structure of P (n,M) such as the size of the largest

component, its excess, and core.

3 Cubic planar graphs

In this section we study the family of cubic planar weighted multigraphs, which plays a crucial

role in studying the kernel of a random planar graph. We then consider the family of ‘super-

cubic’ planar graphs that are planar weighted multigraphs with minimum degree at least three

and a positive deficiency, which is indeed the set of possible kernels of complex planar graphs.

3.1 Cubic planar weighted multigraphs

In this section we count the number of all labeled cubic planar weighted multigraphs, where

each multigraph with f1 loops, f2 double edges, and f3 triple edges gets weight 2−f1−f26−f3 .

For k = 0, 1, let g
(k)
n be the number of all labeled k-vertex connected cubic planar weighted

multigraphs on n vertices and G(k)(x) be the corresponding exponential generating function

defined by

G(k)(x) :=
∑

n≥0

g
(k)
n

n!
xn.

Note that g
(k)
n = 0 for odd n and also for n = 0 except that we set g

(0)
0 = 1 by convention. It is

well-known (e.g. [16, 17]) that

G(0)(x) = exp(G(1)(x)).
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The function G(1)(x) is defined by the following system of equations:

3x
dG(1)(x)

dx
= D(x) + S(x) + (P (x)− x2/4 + x2/12) +H(x)

+ (B(x)− x2/4 + x2/8)

= D(x) + C(x)− 7x2/24

B(x) = x2(D(x) + C(x))/2 + x2/4

C(x) = S(x) + P (x) +H(x) +B(x)

D(x) = B(x)2/x2 − x2/16

S(x) = C(x)2 − C(x)S(x)

P (x) = x2C(x) + x2C(x)2/2 + x2/4

2(C(x) + 1)H(x) = u(1− 2u)− u(1− u)3

x2(C(x) + 1)3 = u(1− u)3.

(1)

This system of equations is obtained by following the lines of Sections 3–6 in Bodirsky et

al. [4], where cubic planar simple graphs were studied, so below we just outline the argument.

The starting idea is that given a connected cubic planar weighted multigraph G, we select

an arbitrary edge e inG and orient the edge e, to obtain a rooted counterpart Ĝ. More precisely,

the rooted cubic graph Ĝ = (V,E, st) obtained from a connected cubic multigraphG = (V,E)
consists of G = (V,E) and an ordered pair of adjacent vertices s and t. The oriented edge st
is called the root of Ĝ. Denote by G− a graph obtained from Ĝ by deleting the root of Ĝ. We

have the following lemma analogous to Lemma 1 in [4].

Lemma 1. A rooted cubic graph Ĝ = (V,E, st) has exactly one of the following types.

• b: the root is a self-loop.

• d: G− is disconnected.

• s: G− is connected, but there is a cut edge in G− that separates s and t.

• p: G− is connected, there is no cut edge in G− separating s and t, and either st is an

edge of G−, or G \ {s, t} is disconnected.

• h: G− is connected, there is no cut-edge in G− separating s and t, G is simple, and

G \ {s, t} is connected.

The generating function for the family B of b-graphs is denoted by B(x). The other gener-

ating functions in (1) are analogously defined according to their corresponding types. Further-

more, the above system of equations follows from decomposition of graphs.

Note that the number of labeled connected cubic planar weighted multigraphs with one

distinguished oriented edge is counted by 3x dG(1)(x)
dx

.

The difference between the system of equations above and that in Bodirsky et al. [4] arises

as follows. In [4] the term (B(x) − x2/4 + x2/8)) does not appear in 3x dG(1)(x)
dx

. The reason
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Figure 1: The five types of rooted cubic graphs in Lemma 1

is that each graph in B enumerated by B(x) works merely as a building block in Ĝ when

considering simple graphs, while it may also appear as a connected component (whose root

edge is a loop) when considering multigraphs. Note however that when considering weights, a

graph on 2 vertices in B (that is, a rooted ”dumbbell” consisting of two vertices, an edge, and

two loops one of which is marked as a root) gets a weight 1/2 when it is used as a building block

(one loop disappears in the building operation), but 1/4 when used as an isolated component

(due to two loops). In a similar way, a graph on 2 vertices in the family P enumerated by P (x)
(which is indeed a triple edge, one of which is oriented) gets a weight 1/2 when it is used as a

building block, but 1/6 when used as an isolated component.

Analogous to Section 6 in [4], one can use the singularity analysis to obtain the following

asymptotic estimates.

Theorem 1. For n even,

g(0)n = (1 +O(n−1)) g n−7/2 ρ−n n! , (2)

g(1)n = (1 +O(n−1)) gc n
−7/2 ρ−n n! , (3)

where all constants are analytically given, ρ is the dominant singularity ofG(1)(x), and gc/g =

e−G(1)(ρ). Furthermore, g
(0)
n = g

(1)
n = 0 for odd n.

We note that the first digits of γ := ρ−1 are 3.38, while the growth constant for the labeled

simple cubic graphs is close to 3.13 [4]. The difference in growth is due to the fact that, unlike

in the non-planar case, in average the cubic planar graphs contain large number of multiple

edges and loops.

LetGn ∈ G(0)
n denote a random graph chosen uniformly at random from the family G(0)

n of all

labeled cubic planar weighted multigraphs on n vertices, where each multigraph with f1 loops,

f2 double edges, and f3 triple edges gets weight 2−f1−f26−f3 . Using the asymptotic estimation

of g
(0)
n , g

(1)
n , we obtain the following results on the size L1(Gn) of the largest component of Gn.

Lemma 2. (a) Uniformly over n = 1, 2, . . . , and 0 ≤ j < n/2,

P(L1(Gn) = n− j) = (1 +O(1/n)) gc (1− j/n)−7/2 j−7/2. (4)
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(b) There are constants C and n0 such that for all integers n ≥ n0 and j = 1, 2, . . .

P(L1(Gn) ≤ n− j) ≤ Cj−5/2. (5)

Proof. (a) If L1(Gn) = n− j, where j < n/2, then the graph obtained from Gn by deleting the

largest component (which is a connected cubic planar weighted multigraph on n − j vertices)

is an arbitrary cubic planar weighted multigraphs on j vertices. By Theorem 1 we have

P(L1(Gn) = n− j) =

(

n

j

)

g
(1)
n−j × g

(0)
j

g
(0)
n

= (1 +O(1/n))

(

n

j

)

gc (n− j)−7/2 ρ−(n−j) (n− j)!× g j−7/2 ρ−j j!

g n−7/2 ρ−n n!

= (1 +O(1/n)) gc(1− j/n)−7/2 j−7/2.

(b) We let R(Gn) denote n− L1(Gn), the number of vertices outside of the largest compo-

nent. The part (a) implies that there is a constant C ′ such that for each n and each 1 ≤ j < n/2,

P(R(Gn) = j) ≤ C ′j−7/2,

and hence

P(j ≤ R(Gn) < n/2) ≤ C ′
∑

j≤i<n/2

j−7/2 ≤ 2C ′j−5/2.

Now it suffices to show that P(L1(Gn) ≤ n/2) = O(n−5/2). Let G ∈ G(0)
n with L1(G) ≤ n/2.

Then, the vertex set of G can be partitioned into two sets V1, V2, such that n/3 ≤ |V1|, |V2| ≤
2n/3, |V1|+|V2| = n, and there is no vertex between V1 and V2. Hence, since for all sufficiently

large n we have 2−1gn−7/2 ρ−n n! ≤ |g(0)n | ≤ 2gn−7/2 ρ−n n!, for large n we get

|{G ∈ G(0)
n : L1(G) ≤ n/2}| ≤

∑

n/3≤i≤n/2

(

n

i

)

g
(0)
i g

(0)
n−i

≤ 4g2ρ−n n!
∑

n/3≤i≤n/2

i−7/2 (n− i)−7/2

= O(n−5/2g(0)n ) .

This completes the proof of part (b).

3.2 Shrinking

Let Q(n; d) denote the family of labeled planar multigraphsG on vertex set [n] = {1, 2, . . . , n}
with (3n + d)/2 edges which have minimum degree at least three. Therefore the deficiency

df(G) of G ∈ Q(n; d) equals d. Moreover, let

q(n; d) =
∑

G∈Q(n;d)

2−f1(G)
∏

i≥2

(i!)−fi(G),
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where f1(G) counts loops in G, and fi(G) stands for the number of edges with parity i for each

i ≥ 2. Since each G ∈ Q(n; 0) is cubic, the asymptotic behavior of q(n; 0) is determined by

(2).

The following lemma gives bounds for q(n; d) for d ≥ 1.

Lemma 3. Let 1 ≤ d ≤ n and n > 0 be integers such that 3n + d is even. Then we have

q(n+ d; 0)

d!62d
≤ q(n; d) ≤ q(n + d; 0)9d

d!
(6)

where q(n; 0) is given by (2).

Proof. The idea of the proof is to generate multigraphs in Q(n; d) from the graphs from Q(n+
d; 0) by contracting edges incident to vertices {n + 1, n + 2, . . . , n + d}. More precisely, for

each of the vertices {n+1, n+2, . . . , n+d} we choose one of the incident edges ei = {i, wi},

i = n+ 1, . . . , n+ d, and contract it, i.e. we replace the vertices i, wi by one vertex x which is

adjacent to all neighbors of i and wi. Finally, we relabeled x by label min{i, wi}. Sometimes

this procedure fails to give a multigraph in Q(n+d; 0) (e.g. when an edge is nominated by both

its ends, or some of the edges ei form a cycle), nonetheless each multigraph from Q(n; d) can

clearly be obtained from some graph from Q(n; d) in the above process.

Now let us show the upper bound for q(n; d). Choose G ∈ Q(n + d; 0) and select edges

ei, i = n + 1, . . . , n + d, in one of at most 3d ways. Suppose that by contracting all edges ei,
i = n+1, . . . , n+ d, we get a multigraph H ∈ Q(n; d). Note that the weight of the multigraph

H could only increase by at most (3/2)d in the case when all vertices i = n + 1, . . . , n + d
belong to different components of size two (then we replace a triple edge which contributes to

the weight 1/6 by two loops of total weight (1/2)2). Finally, we claim that there are at least

d!2−d graphsG′ ∈ Q(n+d; 0) which differ fromG only by labelings of vertices n+1, . . . , n+d,

i.e. each H ∈ Q(n; d) is counted in this procedure at least d!2−d times. Indeed, let us remove

all labels n + 1, . . . , n + d from vertices of G getting a graph Ḡ in which d ‘dummy’ vertices

are not labeled. We try to relabel those vertices with n + 1, . . . , n + d. Take any vertex w of

H of degree larger than three. Then, w is adjacent in Ḡ to i dummy vertices, where 1 ≤ i ≤ 3.

Thus, we can label neighbors of w with i labels from n+ 1, . . . , n+ d in at least

(

d

i

)

≥ d . . . (d− i+ 1)

2i

ways. Now take another vertex which has been already labeled and choose labels for its dummy

neighbors, and so on, until all dummy vertices gets their labels. Clearly, the number of way of

doing that is bounded from below by d!2−d. Hence, using (2), we get

q(n; d) ≤ q(n + d; 0)3d(3/2)d

d!2−d
=

q(n+ d; 0)9d

d!
.

In order to get a lower bound for q(n; d) we count only multigraphs H ∈ Q(n; d) with

maximum degree four. Note that the number of vertices of degree four in H is d. Each vertex
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v of degree four in H we split into two vertices: one of them we label with v the other we

leave as a ‘dummy’ vertex which has not get labeled so far. We add an edge between the two

vertices, which we mark as used. We can make such a split into at most six possible ways.

Now, we can choose labels for dummy vertices into one of possible d! ways (note that each

dummy vertex is uniquely identified by the other end of the used edge). Consequently, from

each H we get at most d!6d different graphs from Q(n; d) with d disjoint edges marked. Note

however that splitting a vertex we may increase the weight of the graph by at most six (if we

split the quadruple edge into two double edges), thus the total weight of different multigraphs

obtained from H is bounded from above by d!62d. Consequently,

q(n; d) ≥ q(n + d; 0)

d!62d
.

4 Planar graphs with positive excess

Recall that a graph is called complex if all its components have positive excess. In this section,

we derive the asymptotic number of all labeled complex planar graphs with given size and

excess (Theorem 2). In order to do that we first estimate the number of such graphs with given

deficiency (Lemma 4).

4.1 Fixed deficiency

In this section we estimate the number Cd(k, k + ℓ) of all labeled complex planar graphs G on

k vertices with ex(G) = ℓ > 0 and df(G) = d ≥ 0.

To this end, observe first that the core core(G) of a complex graphG can be obtained fromG
by pruning each vertex of degree one in G recursively, i.e. to get core(G) we have to delete

the tree-like part of G rooted at vertices of core(G). Then, in order to find the kernel ker(G) of

G, one needs to replace each path in core(G) whose internal vertices are all of degree two by

a single edge. Note that both core(G) and ker(G) have the same excess as G, and ker(G) is a

planar multigraph of minimum degree at least three. Therefore, if ex(G) = ℓ and df(G) = d,

the number of vertices in ker(G), denoted by v(ker), equals 2ℓ − d and the number of edges,

denoted by e(ker), equals 3ℓ− d.

In order to find pl(n,M) we reverse the above procedure and first count all possible kernels

of graphs, then study the number of cores which lead to these kernels, and finally add to them

the rooted forest to obtain all possible graphs G. More precisely, one can construct all graphs

G on k vertices with k + ℓ edges, whose kernel is a planar multigraph graph with minimum

degree at least three and deficiency d, in the following way.

(i) Choose the vertex set {c1, c2, · · · , ci} of the core (for some i ≤ k), and then select the

vertex set {k1, k2, · · · , kv(ker)} of the kernel from the vertex set of the core. It can be done

in
(

k
i

)(

i
v(ker)

)

ways.

10



(ii) Select a kernel of order v(ker) among all the possible candidates for kernels (i.e. cubic

planar weighted multigraphs on vertex set [v(ker)] with e(ker) edges), and then map

[v(ker)] to {k1, k2, · · · , kv(ker)} in their relative order, i.e. we map j to kj . There are

q(v(ker); d) ways of doing that.

(iii) Order the edges of the kernel lexicographically, each edge with a direction from the one

end point with the smaller label to the other end point with the larger label. For multiple

edges with the same ends take any order, and choose one of two possible directions for

each loop (the weights we assign when we counted candidates for the kernel was chosen

precisely to assure that in this way we avoid double counting). Now make a directed

path of length e(ker) consisting of the kernel edges, according to this order, and insert

the core vertices that are not in the kernel on the edges of the kernel in such a way that

each loop gets at least two core vertices, and at least j − 1 edges from j edges incident

to the common end points get at least one core vertex. Let m = m(ℓ) be such that

mℓ = 2f1 +
∑

j≥2(j − 1)fj , where f1 denotes the number of loops and fj multiple

edges with parity j for j ≥ 2 in ker(G) (hence 0 ≤ m ≤ 6). This can be done in

(i− v(ker))!
(

i−v(ker)−m ℓ+e(ker)−1
e(ker)−1

)

ways.

(iv) Plant a rooted forest on the core vertices. According to Cayley’s formula, one can do it

in ikk−i−1 ways.

As a consequence, we have

Cd(k, k + ℓ)

=
∑

i

(

k

i

)(

i

v(ker)

)

q(v(ker); d) (i− v(ker))!

(

i− v(ker)−m ℓ+ e(ker)− 1

e(ker)− 1

)

ikk−i−1

=
∑

i

(k)i
(2ℓ− d)!

q(2ℓ− d; d)

(

i+ ℓ−m ℓ− 1

3ℓ− d− 1

)

ikk−i−1. (7)

Applying Lemma 3 we obtain the following estimate.

Lemma 4. Let d ≥ 0 and k, ℓ > 0 be integers. Let γ, g be the constants so that the assertion

of Theorem 1 holds. Then

Cd(k, k + ℓ) = 2−4g kk+
3ℓ−d−1

2 γ2ℓ ℓ−7/2 e
3ℓ−d

2 (3ℓ− d)−
3ℓ−d−1

2 αd

(

2ℓ

d

)

× exp

(

(

2

3
d− (m+ 1)ℓ

)

√

3ℓ− d

k
+O

(

ℓ2

k
+

1

ℓ

)

)

,

for some α = α(k, ℓ), 6−2 ≤ α ≤ 9, and m = m(k, ℓ), 0 ≤ m ≤ 6.

Moreover, the typical size of the core in a randomly chosen complex planar graph G on k
vertices with ex(G) = ℓ and df(G) = d is a.a.s.

(

1 +O(
√

ℓ/k) +O(1/
√
ℓ)
)
√
3kℓ .

11



Proof. Note that from Lemma 3 we have

q(2ℓ; 0)

d!62d
≤ q(2ℓ− d; d) ≤ q(2ℓ; 0)9d

d!
,

where

q(2ℓ; 0)
(2)
= (1 + o(ℓ−1))g (2ℓ)−7/2 γ2ℓ (2ℓ)!.

Therefore from (7) we get

∑

2ℓ−d≤i≤k

g kk−1 γ2ℓ (2ℓ)−7/2 6−2d

(

2ℓ

d

)

∑

i

(k)i i k
−i

(

i+ (1−m)ℓ− 1

3ℓ− d− 1

)

≤ Cd(k, k + ℓ)

≤
∑

2ℓ−d≤i≤k

g kk−1 γ2ℓ (2ℓ)−7/2 9d
(

2ℓ

d

)

∑

i

(k)i i k
−i

(

i+ (1−m)ℓ− 1

3ℓ− d− 1

)

. (8)

Thus, it is enough to estimate the quantity

C̃d(k, k + ℓ) = g kk−1 γ2ℓ (2ℓ)−7/2 αd

(

2ℓ

d

)

∑

i

(k)i i k
−i

(

i+ (1−m)ℓ− 1

3ℓ− d− 1

)

, (9)

where α and m satisfy 6−2 ≤ α ≤ 9 and 0 ≤ m ≤ 6.

Below we use several times Stirling’s formula

n! = (1 +O(1/n))
√
2π nn+1/2e−n for n ∈ N (10)

and the following consequence of Maclaurin expansion of ex

1 + x = exp(x− x2/2 + x3/3 +O(x4)) . (11)

To derive an asymptotic formula for (9), note that

(k)i = ki
i−1
∏

j=0

(

1− j

k

)

(11)
= ki exp

(

i−1
∑

j=0

(

− j
k
− 1

2

(

j

k

)2

− 1

3

(

j

k

)3

+O

(

j

k

)4
))

= ki exp

(

− i2

2k
− i3

6k2
+O

(

i

k
+
i4

k3

))

and
(

i+ (1−m)ℓ− 1

3ℓ− d− 1

)

=
(i+ (1−m)ℓ− 1)3ℓ−d−1

(3ℓ− d− 1)!

(10)
=

(3ℓ− d) i3ℓ−d−1
∏3ℓ−d−1

j=1

(

1 + (1−m)ℓ−j
i

)

(1 +O (1/ℓ))
√

2π(3ℓ− d) ((3ℓ− d)/e)3ℓ−d

(11)
=

e3ℓ−di3ℓ−d−1

√
2π(3ℓ− d)3ℓ−d−1/2

exp

(

−(3ℓ− d)2

2i
+

(1−m)ℓ(3ℓ− d)

i
+

1

ℓ
+
ℓ

i

)

.

12



Next, we rewrite the sum over i in (9) as

∑

i

(k)i i k
−i

(

i+ (1−m)ℓ− 1

3ℓ− d− 1

)

=
e3ℓ−d

√
2π(3ℓ− d)3ℓ−d−1/2

∑

i

exp(a(i)) , (12)

where the function a(i) = ak,ℓ,d(i) is defined as

a(i) = (3ℓ− d) log i− i2

2k
− i3

6k2
− (3ℓ− d)2

2i
+

(1−m)ℓ(3ℓ− d)

i
+

1

ℓ

+
ℓ

i
+O

(

i

k

)

+O

(

i4

k3

)

.

We observe that the main contribution to (12) comes from the terms i = i0 +O(
√
k), where

i0 =

(

1 +
m− 1

6

√

3ℓ− d

k

)

√

k(3ℓ− d). (13)

For such i’s, we have

exp(a(i0)) = (k(3ℓ− d))
3ℓ−d

2 exp

(

−3ℓ− d

2
+

(

2

3
d− (m+ 1)ℓ

)

√

3ℓ− d

k

)

× exp

(

O

(

ℓ2

k

)

+O

(

1

ℓ

))

and

∑

i=i0+O(
√
k)

exp(a(i)−a(i0)) =
∑

∆i=O(
√
k)

exp

(

−1

k
(∆i)2 +O

(

ℓ

k

))

=
√
πk exp

(

O

(

ℓ

k

))

.

Thus, we get

∑

i

(k)i i k
−i

(

i+ (1−m)ℓ− 1

3ℓ− d− 1

)

= 2−1/2k
3ℓ−d+1

2 (3ℓ− d)−
3ℓ−d+1

2 e
3ℓ−d

2

× exp

(

(

2

3
d− (m+ 1)ℓ

)

√

3ℓ− d

k
+O

(

ℓ2

k
+

1

ℓ

)

)

.

(14)

Finally, (9) and (14) yield

C̃d(k, k + ℓ) = 2−4g γ2ℓ ℓ−7/2 kk+
3ℓ−d−1

2 e
3ℓ−d

2 (3ℓ− d)−
3ℓ−d−1

2 αd

(

2ℓ

d

)

× exp

(

(

2

3
d− (m+ 1)ℓ

)

√

3ℓ− d

k
+O

(

ℓ2

k
+

1

ℓ

)

)

.

The last part of the assertion follows from the fact that the main contribution to the sum (9)

comes from the terms i = (1 + o(1))i0, where i0 is given by (13).
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4.2 Asymptotic numbers and typical deficiency

In this section we estimate the number C(k, k + ℓ) of labeled complex planar graphs with k
vertices and k + ℓ edges.

Theorem 2. Let γ, g, gc be the constants for which the assertion of Theorem 1 holds and let k,

ℓ > 0 be integers.

(i) There exists a function β = β(k, ℓ) with −14 ≤ β ≤ 27, for which

C(k, k + ℓ) = 2−431/2 g kk+3ℓ/2−1/2

(

γ2e3/2

33/2

)ℓ

ℓ−3ℓ/2−3

× exp

(

β

√

ℓ3

k
+O

(

ℓ2

k

)

+O

(

1

ℓ

)

)

.

(ii) The number Cconn(k, k+ ℓ) of labeled connected complex planar graphs with k vertices

and k + ℓ edges is given by a similar formula, with g replaced by gc.

(iii) A graph chosen uniformly at random among all complex planar graphs with k vertices

and k + ℓ edges has a.a.s. deficiency Θ(
√

ℓ3/k) and the core of size (1 + O(
√

ℓ/k) +

O(1/
√
ℓ))

√
3kℓ. In particular, if ℓ = o(k1/3), then a.a.s. such a random graph is clean.

(iv) If ℓ = O(k1/3), then a graph chosen uniformly at random among all complex planar

graphs with k vertices and k + ℓ edges has a.a.s. O(1) components, among which there

is a giant component of size k − O(k/ℓ). Furthermore, a.a.s. each small component has

Θ(k/ℓ) vertices and the probability that such a graph contains exactly h such components

is bounded away from both 0 and 1 for every h = 0, 1, . . . .

Proof. Using the asymptotic estimate of Cd(k, k + ℓ) from Lemma 4, we get the following.

C(k, k + ℓ) =
∑

d

Cd(k, k + ℓ)

(8)
=2−4g γ2ℓ kk+

3ℓ−1
2 e

3ℓ
2 (3ℓ)−

3ℓ−1
2 ℓ−7/2 exp

(

O

(

ℓ2

k
+

1

ℓ

))

(15)

×
∑

d

k−
d
2 (3ℓ)

d
2αd

(

2ℓ

d

)

exp

(

(

2

3
d− (m+ 1)ℓ

)

√

3ℓ− d

k

)

,

where α = α(k, ℓ) and m = m(k, ℓ) satisfy 6−2 ≤ α ≤ 9 and 0 ≤ m ≤ 6.

Define a function η(d) = ηk,ℓ(d) as

η(d) =
∑

d

k−
d
2 (3ℓ)

d
2αd

(

2ℓ

d

)

exp

(

(

2

3
d− (m+ 1)ℓ

)

√

3ℓ− d

k

)

.
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We observe that the main contribution to η(d) comes from d = Θ(
√

ℓ3/k) and therefore

η(d) =
∑

d

(

2ℓ

d

)

(α
√

3ℓ/k)d exp

(

−(m+ 1)ℓ

√

3ℓ

k
+O

(

ℓ2

k

)

)

= (1 + α
√

3ℓ/k)2ℓ exp

(

−(m+ 1)

√

3ℓ3

k
+O

(

ℓ2

k

)

)

= exp

(

(2α− (m+ 1))

√

3ℓ3

k
+O

(

ℓ2

k

)

)

.

Finally, taking β = β(k, ℓ) = (2α − (m + 1))
√
3 (and thus −14 ≤ β ≤ 27) completes the

proof of (i).

In order to show (ii) one should repeat computations from the proof of Lemma 4 and the

one given above, for graphs with connected kernels. Therefore q(2ℓ; 0) should be replaced by

the number of connected cubic planar weighted multigraphs vertices, which, by (3), is equal to

(1 +O(ℓ−1))gc (2ℓ)
−7/2 γ2ℓ (2ℓ)!.

To see (iii) observe the main contribution to (15) comes from d = Θ(
√

ℓ3/k).
Finally, Lemma 2 states that a randomly chosen cubic planar graph a.a.s. contains a giant

component of size n−O(1), and using exact counts it is easy to show that the number of small

components has a non-degenerate distribution. Since for ℓ = O(k1/3) we can count graphs up

to a constant factor, a similar statement is true also for supercubic weighted multigraphs. Now

(iv) follows from the fact that the trees rooted in one edge of the kernel have in average Θ(k/ℓ)
vertices altogether.

Unfortunately, since we can only estimate the number of supercubic graphs up to a factor

of exp(
√

ℓ3/k), we cannot prove the assertion of Theorem 2(iv) in the case when ℓ ≫ k1/3.

Nonetheless, we think that it is true also in much wider range and that the following conjecture

holds.

Giant Conjecture. The assertion of Theorem 2(iv) holds for every ℓ ≤ k.

5 Evolution of planar graphs

In this section we derive the asymptotic number pl(n,M) of labeled planar graphs with n
vertices and M edges and investigate how the size of the largest component in P (n,M), its

excess and the size of its core change with M .

Throughout the section, we let γ, g be the constants for which the assertion of Theo-

rem 1 holds. By Lj(n,M) we denote the number of vertices in the j-th largest component

of P (n,M). Let exc(n,M) (resp. crc(n,M)) stand for the excess (resp. the number of vertices

in the core) of the subgraph of P (n,M) which consists of its complex components, and let

Lc(n,M) denote its size. Finally, let ex(n,M) and cr(n,M) denote the excess and the size of

the core of the largest component of P (n,M), respectively.

15



Before studying P (n,M) we recall in the next section some properties of the uniform

random graph G(n,M) which are relevant for our argument.

5.1 Properties of the uniform random graph

Let L̄j(n,M) denote the number of vertices in the j-th largest component of G(n,M), let

ēx(n,M) stand for the excess of the largest component of G(n,M), and let c̄r(n,M) be the

number of vertices in the core of the largest component of G(n,M).
The following results on the largest components were proved by Łuczak [21, 23] and

Łuczak, Pittel, and Wierman [25] (see also Janson, Łuczak, and Ruciński [20]).

Theorem 3 (Subcritical phase). Let M = n/2+s, where s = s(n). If s3/n2 → −∞, then for j

fixed, a.a.s. L̄j(n,M) = (1/2+o(1))n
2

s2
log |s|3

n2 . Furthermore, a.a.s. the j-th largest component

of G(n,M) is a tree.

Theorem 4 (Critical phase). Let M = n/2+ s, where s = s(n). If s3/n2 → c, then for j fixed,

a.a.s. L̄j(n,M) = Θ(n2/3). The total excess of the complex components of G(n,M) is a.a.s.

O(1), and the probability that the j-th largest component of G(n,M) has excess h is bounded

away from zero for every fixed j = 1, 2, . . . , and h = −1, 0, 1, . . . .
Furthermore, ifG(n,M) contains some complex components, then a.a.s. they have Θ(n2/3)

vertices in total and c̄r(n,M) = Θ(n1/3).

Theorem 5 (Supercritical phase). Let M = n/2 + s, where s = s(n). If s3/n2 → ∞, then

a.a.s. L̄1(n,M) = (4 + o(1))s, while for j ≥ 2 fixed, L̄j(n,M) = (1/2 + o(1))n
2

s2
log s3

n2 .

Moreover, a.a.s. the j-th largest component of G(n,M) is a tree, provided j ≥ 2.

The structure of the giant component of G(n,M) was studied by Łuczak [22].

Theorem 6. If M = n/2 + s, where s3/n2 → ∞ but s = o(n), then a.a.s. ēx(n,M) =
(16/3 + o(1)) s

3

n2 and c̄r(n,M) = (8 + o(1)) s
2

n
.

The following threshold for the property that G(n,M) is planar was proved by Łuczak,

Pittel, and Wierman [25].

Theorem 7 (Planarity). Let M = n/2 + cn2/3 for a constant c. Then the probability that

G(n,M) is planar tends to a limit ϕ(c) as n → ∞, where 0 < ϕ(c) < 1, limc→−∞ ϕ(c) = 1,

and limc→∞ ϕ(c) = 0.

A different proof of the above result can be found in Janson et al. [19], who also showed

that 0.987 < ϕ(0) < 0.9998.

We shall use Theorems 3, 4 and 7 in the proofs of Theorems 9 and 10. We do not use

Theorems 5 and 6 in our proofs below, but we decide to invoke them here to show how our

results differ from those for G(n,M).
For a constant c ∈ (−∞,∞), let us define

ν(c) =

√

2

3π
e−4c3/3

∞
∑

r=0

(−9c3)r/3

r!
Γ

(

2r

3
+

1

2

)

cos
πr

3
. (16)
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Note that ν(c) decreases monotonically with ν(c) → 1 as c → −∞ and ν(c) ≤ exp(−(4 +
o(1))c3/3) for large c. In our argument we use also the following result of Britikov [7]. Here

and below by ρ(n,M) we denote the probability thatG(n,M) contains no complex component.

In other words, ρ(n,M) = U(n,M)/
((n2)

M

)

, where U(n,M) denotes the number of labeled

graphs with n vertices and M edges, which contain no complex components.

Theorem 8. Let M = n/2 + s, where s = s(n). Then the following holds.

(i) If s3/n2 → −∞, then ρ(n,M) = 1 +O(n2/|s|3).

(ii) If s3/n2 → c, where c is a (not necessarily positive) constant, then ρ(n,M) = (1 +
o(1))ν(c1/3).

(iii) If s3/n2 → ∞, then ρ(n,M) ≤ exp(−s3/n2).

5.2 The formula for pl(n,M)

The main ingredient of our argument is a simple observation that each graph can be uniquely

decomposed into the complex part and the remaining part which consists of isolated tees and

unicyclic components. Moreover, it is the complex part which determines whether the graph

is planar. Consequently, the number pl(n,M) of labeled planar graphs on n vertices with M
edges is given by

pl(n,M) =
∑

k,ℓ

(

n

k

)

C(k, k + ℓ)U(n− k,M − k − ℓ). (17)

Thus, the estimate ofC(k, k+ℓ) (Theorem 2) and that of U(n−k,M−k−ℓ) (Theorem 8) yield

the asymptotic estimate of pl(n,M). Moreover, the leading terms of (17) give us information

on the size of the complex part of the graph and thus, by Theorem 2, on the size of the largest

component of P (n,M) and its internal structure. On the other hand, the size of the largest

non-complex component can be deduced from Theorems 3 and 4.

5.3 Subcritical phase

The behavior of P (n,M) in the subcritical case follows directly from Theorem 3.

Theorem 9. Let M = n/2 + s, where s = o(n). If s3/n2 → −∞, then

pl(n,M) = (1 + o(1))
nn+2sen/2+s−1/2

√
π(n+ 2s)n/2+s+1/2

.

Furthermore, for fixed j a.a.s. Lj(n,M) = (1/2 + o(1))n
2

s2
log |s|3

n2 and the j-th largest compo-

nent of P (n,M) is a tree.
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Proof. Theorem 7 states that a.a.s. G(n,M) is planar. Therefore, we have

pl(n,M) = (1 + o(1))

(
(

n
2

)

M

)

= (1 + o(1))
nn+2sen/2+s−1/2

√
π(n + 2s)n/2+s+1/2

,

and the structure of P (n,M) follows from Theorem 3.

5.4 Critical phase

The critical period is only slightly harder to deal with than the previous one as far as we estimate

pl(n,M) only up to a constant factor.

Theorem 10. Let M = n/2 + s. If s3/n2 → c for a constant c ∈ (−∞,∞), then

pl(n,M) = Θ(1)
nn+2sen/2+s−1/2

√
π(n+ 2s)n/2+s+1/2

.

Furthermore, for j fixed, a.a.s. Lj(n,M) = Θ(n2/3), and, if P (n,M) contains complex com-

ponents, then Lc(n,M) = Θ(n2/3), ex(n,M) = O(1), and cr(n,M) = Θ(n1/3).

Proof. Theorem 7 states that the probability that G(n,M) is planar tends to a limit which is

strictly between 0 and 1. Hence

pl(n,M) = Θ(1)

(
(

n
2

)

M

)

= Θ(1)
nn+2sen/2+s−1/2

(n+ 2s)n/2+s+1/2
.

The assertion on the structure of P (n,M) is a direct consequence of Theorem 4.

5.5 Supercritical phase

The evolution of P (n,M) in the ‘early supercritical’ period starts to be more interesting. Note

that the result below estimates pl(n,M) up to a factor of 1 + o(1).

Theorem 11. Let M = n/2 + s, where s = o(n) and s3/n2 → ∞. Then

pl(n,M) = (1 + o(1))
g35/2

27
√
πγ10/3e3/4

nn+11/6

s7/2
en/2−s

(n− 2s)n/2−s
exp

(

γ4/3s

n2/3

)

×
∫ ∞

−∞
exp

(

−x
3

6
+
γ4/3x

2

)

ν
(

−x
2

)

dx.

Furthermore, a.a.s. L1(n,M) = (2 + o(1))s, while for any fixed j ≥ 2 we have Lj(n,M) =

Θ(n2/3). In addition, a.a.s. ex(n,M) = (2γ
4/3

3
+ o(1)) s

n2/3 and cr(n,M) = (2γ2/3+ o(1)) s
n1/3 .
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Proof. From Theorem 2 and (10), we get

(

n

k

)

(10)
=

(1 +O(1/k))√
2π

nn+1/2

(n− k)n−k+1/2kk+1/2
,

C(k, k + ℓ) =
g 31/2

24
kk+3ℓ/2−1/2

(

γ2e3/2

33/2

)ℓ

ℓ−3ℓ/2−3

× exp

(

β

√

ℓ3

k
+O

(

ℓ2

k

)

+O

(

1

ℓ

)

)

.

In addition, the estimate

(
(

n
2

)

j

)

=
n2j

√
π(2j)j+1/2

exp

(

j − j

n
− j2

n2
+O

(

1

n

)

+O

(

j

n2

))

and Lemma 8 give

U(n− k,M − k − ℓ)

= ρ(n− k,M − k − ℓ)

(
(

n−k
2

)

M − k − ℓ

)

= (1 +O(1/n))
ρ(n− k, n/2 + s− k − ℓ)√

πe3/4
en/2+s−k(n− k)n+2s−2k

(n + 2s− 2k)n/2+s−k+1/2

(

n+ 2s− 2k

(n− k)2

)ℓ

.

Therefore, we get

pl(n,M) =
∑

k,ℓ

(

n

k

)

C(k, k + ℓ)U(n− k,M − k − ℓ)

= (1 +O(1/n))
g 31/2

29/2πe3/4
nn−1/2en/2+s

×
∑

k

(1 +O(1/k) +O(k/n))
ρ(n− k, n/2 + s− k) (n− k)2s−k

kek(n + 2s− 2k)n/2+s−k
(18)

×
∑

ℓ

(

γ2e3/2k3/2(n+ 2s− 2k)

33/2(n− k)2ℓ3/2

)ℓ

ℓ−3 exp

(

β

√

ℓ3

k
+O

(

ℓ2

k

)

+O

(

1

ℓ

)

)

.

Now let φ = φ(n, s, k) := γ2e3/2k3/2(n+2s−2k)

33/2(n−k)2
. Then the sum in (18) depending on ℓ becomes

∑

ℓ≥1

(

φ

ℓ3/2

)ℓ

ℓ−3 =
∑

ℓ≥1

ℓ−3 exp(b(ℓ)), (19)

where the function b(ℓ) = bn,s,k(ℓ) is defined as

b(ℓ) = ℓ logφ− 3

2
ℓ log ℓ.

19



The main contribution to (19) comes from the terms ℓ = ℓ0 +O(
√
ℓ0), where

ℓ0 = ℓ0(n, s, k) := e−1φ2/3 =
γ4/3

3

k(n+ 2s− 2k)2/3

(n− k)4/3
. (20)

Furthermore, we have

ℓ−3
0 exp(b(ℓ0)) = ℓ−3

0 exp(3ℓ0(logφ
2/3 − log ℓ0)/2)

=
33

γ4
(n− k)4

k3(n+ 2s− 2k)2
exp

(

γ4/3

2

k(n+ 2s− 2k)2/3

(n− k)4/3

)

and

∑

ℓ=ℓ0+O(
√
ℓ0)

exp(b(ℓ)− b(ℓ0)) = (1 + o(1))
∑

ℓ=ℓ0+O(
√
ℓ0)

exp

(

−3(ℓ− ℓ0)
2

4ℓ0

)

= (1 + o(1))

√

4πℓ0
3

= (1 + o(1))
2π1/2γ2/3

3

k1/2(n+ 2s− 2k)1/3

(n− k)2/3
.

This implies

∑

ℓ≥1

(

φ

ℓ3/2

)ℓ

ℓ−3 =(1 + o(1)) ℓ−3
0 exp(b(ℓ0))

∑

ℓ=ℓ0+O(
√
ℓ0)

exp(b(ℓ)− b(ℓ0))

=(1 + o(1))
2
√
π32

γ10/3
(n− k)10/3

k5/2(n+ 2s− 2k)5/3

× exp

(

γ4/3k

2

(

(n+ 2s− 2k)

(n− k)2

)2/3
)

,

and hence (18) becomes

pl(n, n/2 + s) = (1 +O(1/n))
g 35/2

27/2π1/2e3/4γ10/3
nn+7/6en/2+s

×
∑

k

(1 +O(1/k) +O(k/n))ρ(n− k, n/2 + s− k) (21)

× (n− k)2s−k

(n + 2s− 2k)n/2+s−k

1

k7/2ek
exp

(

γ4/3k

2

(

(n + 2s− 2k)

(n− k)2

)2/3
)

.

We shall sum over k in (21), or, more specifically, over r for k = 2s+ r, where r = r(n, s)
will shortly be determined. Letting k = 2s+ r, we estimate the summands in (21) as

(n− k)2s−k

(n+ 2s− 2k)n/2+s−k
= (n− 2s)−(n/2−s)

(

1− r

n− 2s

)−r (

1− 2r

n− 2s

)r−n/2−s

(11)
= (n− 2s)−(n/2−s) exp

(

r − r3

6(n− 2s)2
+O

(

r4

(n− 2s)3

))

.
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Therefore (21) becomes

pl(n,n/2 + s) = (1 +O(1/n) +O(1/s) +O(s/n))
g 35/2

27π1/2e3/4γ10/3
nn+7/6en/2−s

× (n− 2s)−(n/2−s) exp

(

γ4/3s

(n− 2s)2/3

)

∑

r

ρ(n− 2s− r, n/2− s− r)ϕ(r),

(22)

where the function ϕ(r) = ϕn,s(r) is defined as

ϕ(r) := (s+ r/2)−7/2 exp

(

γ4/3r

2(n− 2s)2/3
− r3

6(n− 2s)2
+O

(

r4

(n− 2s)3

)

+O
( r

n

)

)

.

Observe that the main contribution to ϕ(r), and therefore to (22), comes from the terms

r = O(n2/3). Since n/2− s− r = (n− 2s− r)/2− r/2, from Lemma 8 (ii) and Definition 16

we have ρ(n− 2s− r, n/2− s− r) → ν(−x/2), when r/(n− 2s− r)2/3 → x. Thus, the sum

over r = O(n2/3) in (22) can be replaced by an integral over x = rn−2/3, and we get

∑

r

ρ(n− 2s− r, n/2− s− r)ϕ(r)

= (1 + o(1)) n2/3 s−7/2

∫ ∞

−∞
exp

(

−x
3

6
+
γ4/3x

2

)

ν
(

−x
2

)

dx.

As as consequence, the first part of the theorem follows.

For the second part of the assertion note that in this case the main contribution to the sum

(18) follows from ℓ’s close to ℓ0 given in (20) and k = (2 + o(1))s, and so a.a.s. ex(n,M) =

(2γ
4/3

3
+ o(1)) s

n2/3 . Therefore, by Theorem 2, a.a.s. P (n,M) is clean, its kernel has

(2 + o(1))ex(n,M) =
(4γ4/3

3
+ o(1)

) s

n2/3

vertices, and cr(n,M) = (2γ2/3 + o(1)) s
n1/3 .

5.6 Middle range

As far as M/n is bounded away from both 0 and 1 we can prove results similar to Theorem 11

but, since now ℓ = O(n1/3) = O(k1/3), we can estimate pl(n,M) only up to a constant factor.

Theorem 12. If M = an for a constant 1/2 < a < 1, then

pl(n,M) = Θ(1)nan−5/3

(

e

2− 2a

)n−an

exp
(

γ4/3(a− 1/2)n1/3
)

.

Furthermore, a.a.s. L1(n,M) = (2a − 1 + o(1))n, ex(n,M) = Θ(n1/3), and cr(n,M) =
Θ(n2/3).
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Proof. Following the lines of the proof of Theorem 11, but with s replaced by an−n/2, yields

the assertion.

Using Theorems 9-12 one can find that the threshold for the property that P (n,M) has the

chromatic number four is M = n+ o(n).

Theorem 13. Let ǫ > 0.

(i) If M ≤ (1− ǫ)n, then a.a.s. χ(P (n,M)) = 3.

(ii) If M ≥ (1 + ǫ)n, then a.a.s. P (n,M) contains a copy of K4, and as a consequence,

χ(P (n,M)) = 4.

Proof. Here we only sketch the argument. Let M = an, 1/2 < a < 1. Then a.a.s. the kernel

of P (n,M) has deficiency Θ(1) and Θ(n1/3) vertices (see Theorem 2 and 12). Furthermore,

on the edges of the kernel we need to place Θ(n2/3) vertices of the core. Thus, the probability

that on some edge we place fewer than five vertices is Θ(n−1/3), and so there are a.a.s. at most

ln lnn edges of the kernel of P (n,M) which contain fewer than three vertices of the core.

Moreover, none of the vertices of the kernel is incident with more than one such edge. It is

easy to see that such a graph can be colored using three colors. A similar argument shows that

χ(P (n,M)) ≤ 3 for M ≤ n/2 + o(n). On the other hand, from the formula for pl(n,M) for

M ≥ (1 + ǫ)n by Giménez and Noy [16] and Chebyshev’s inequality it follows that for such

an M the graph P (n,M) contains a copy of K4 (in fact it a.a.s. contains Θ(n) copies of K4, in

which three vertices have degree three in P (n,M)).

Let us remark that Dowden [10] studied the probability that P (n,M) contains a given

subgraph and determined its asymptotic behavior depending on the ratio M/n. In particular,

Theorem 13 (ii) is relevant to his Theorem 17.

5.7 Second critical range

In the previous section we showed that as far as M = an, and a ∈ (1/2, 1), the size of the

largest component grows with M , but its density does not depend much on the value of a
and in the whole range is of the order n1/3. Clearly, this situation must change when the size

of the largest component is n − o(n). Indeed, starting from some point, the increase in the

number of edges of P (n,M) must contribute to the density of the largest component, since

when M = n+ t, for t large enough, we should expect ex(n,M) = (1+o(1))t. Our next result

states that this change occurs when M = n +O(n3/5).

Theorem 14. Set M = n + t, where t = o(n).

(i) Let w = w(n, t) = γ4/3(n−2|t|)
3·22/3|t|2/3 . If t≪ −n3/5, but n/2 + t≫ n2/3, then

pl(n,M) = Θ(1) nn−1/2 (2|t|+ 2w)t+1/6

(3|t|+ 5w)1/2w5/2

( |t|
|t|+ w

)w

× exp

(

5w

2
+ |t| − 3w2

n− 2|t| + β · γ2

33/22

n− 2|t|
|t|

)

.

(23)
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Furthermore, a.a.s. L1(n,M) = n − (2 + o(1))|t|, exc(n,M) = (1 + o(1))w, and

crc(n,M) = (γ
2/3

21/3
+ o(1))n−2|t|

|t|1/3 .

(ii) Let b be the unique positive solution of the equation b3/2(b − c) = γ2

2·33/2 . If t = c · n3/5

for c ∈ (−∞,∞), then

pl(n,M) = Θ(1) nn−1/2t−17/6(2(b/c− 1)t)t

× exp

((

5b

2c
− 1

)

t− 3b

c

(

b

c
− 1

)

t2

n
+ β · (bt/c)

3/2

n1/2

)

.
(24)

Furthermore, a.a.s. L1(n,M) = n− (2b− 2c+ o(1))n3/5, exc(n,M) = (b+ o(1))n3/5,

and crc(n,M) = Θ(n4/5).

(iii) Let z = z(n, t) = γ2

2·33/2
(

n
t

)3/2
. If t≫ n3/5, then

pl(n,M) = Θ(1)
nn−1/2 (2z)t+1/6

(2t+ 5z)1/2(t+ z)5/2

(

t

t + z

)3(t+z)/2

× exp

(

3

2
t+

5

2
z − 3z(t+ z)

n
+ β · t

3/2

n1/2

)

.

(25)

Furthermore, if in addition t ≪ n2/3, a.a.s. L1(n,M) = n − (γ2/33/2 + o(1))(n/t)3/2,

exc(n,M) = (1 + o(1)(t+ z), and crc(n,M) = Θ(
√
nt).

Proof. In order to show (i) we follow the argument presented in Section 5.5. Thus, from

Theorem 2 and Lemma 8, we get

pl(n, n + t) =
∑

k,ℓ

(

n

k

)

C(n− k, n− k + ℓ)U(k, k + t− ℓ)

=(1 + o(1))
g 31/2

π25
nn−1/2

∑

ℓ

(

γ2e3/2

33/2

)ℓ
1

ℓ3ℓ/2+3

∑

k

ψ(k), (26)

where the function ψ(k) = ψn,t(k) is defined as

ψ(k) := ρ(k, k + t− ℓ)(k(k + t− ℓ))−1/2(n− k)3ℓ/2 kk+2t−2ℓ

(

e

2(k + t− ℓ)

)k+t−ℓ

× exp

(

−k + t− ℓ

k
−
(

k + t− ℓ

k

)2

+O

(

1

k

)

+O

(

k

n

)

+ β

√

ℓ3

n− k
+O

(

ℓ2

n− k

)

)

.

In order to estimate (26) observe that the maximum of the sum
∑

k ψ(k) is taken at k0 =
2(ℓ−t); more precisely, the main contribution to the sum comes from the terms k = 2(ℓ−t)+r,
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where r = O
(

(2(ℓ− t))2/3
)

. Thus,

∑

k

ψ(k) = (1 + o(1))e−3/421/2
eℓ−t(n− 2(ℓ− t))3ℓ/2

(2(ℓ− t))ℓ−t+1

×
∑

r

ρ(2(ℓ− t) + r, ℓ− t + r) exp

(

r3

6(2(ℓ− t))2
− 3rℓ

2(n− 2(ℓ− t))

)

× exp

(

β

√

ℓ3

n− 2(ℓ− t)
+ O

(

ℓ2

n− 2(ℓ− t)

)

)

,

where we sum over r = O
(

(2(ℓ − t))2/3
)

. Note also that ℓ − t + r = 2(ℓ−t)+r
2

+ r
2
, and so if

r/(2(ℓ− t) + r)2/3 → x, then ρ(2(ℓ− t) + r, ℓ− t+ r) → ν
(

x
2

)

.

Next note that the main contribution to the sum over ℓ in (26) comes from the terms ℓ =

ℓ0 +O(
√
ℓ0), where ℓ0 =

γ4/3(n−2(ℓ0−t))

3(2(ℓ0−t))2/3
, so (26) can be estimated by

pl(n, n+ t) = (1 + o(1))
g 31/2

π29/2e3/4
nn−1/2

∫ ∞

−∞
exp

(

x3

6
− γ4/3x

2

)

ν
(x

2

)

dx

× A(n, t) exp

(

β

√

ℓ30
n− 2(ℓ0 − t)

+O

(

ℓ20
n− 2(ℓ0 − t)

)

)

,

(27)

where the function A(n, t) is defined as

A(n, t) :=
∑

ℓ

(

γ2e3/2

33/2

)ℓ
eℓ−t(n− 2(ℓ− t))3ℓ/2

ℓ3ℓ/2+3(2(ℓ− t))ℓ−t+1/3
.

The behavior of A(n, t) depends on the range of t. Thus, we consider three cases, corre-

sponding to the periods described in the three parts of the assertion of Theorem 14.

First, let t ≪ −n3/5, but n/2 + t ≫ n2/3. The main contribution to the sum A(n, t) comes

from the terms ℓ = ℓ0 +O(
√
ℓ0) with ℓ0 = w, where

w = w(n, t) :=
γ4/3(n− 2|t|)
3 · |2t|2/3 .

In this case we have

A(n, t) = (1 + o(1))(2π)1/2
(2(w − t))t+1/6

(5w − 3t)1/2w5/2

( |t|
w − t

)w

exp

(

5w

2
− t− 3w2

n+ 2t

)

,

and (23) follows. In order to get the information on the structure of P (n,M) for this range one

should apply Theorem 2 and observe that

√

ℓ30
n− 2(ℓ0 − t)

= (1 + o(1))
γ2

33/22

n+ 2t

|t| .
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Now let t = c n3/5 for some constant c ∈ (−∞,∞). In this case, the main contribution to

the sum A(n, t) comes from the terms ℓ = ℓ0 +O(
√
ℓ0) with ℓ0 = b t/c, where b is the unique

positive solution of the equation b3/2(b− c) = γ2

2·33/2 . We have

A(n, t) = (1 + o(1))(2π)1/2
(2(b− c))1/6c3

(5b− 3c)1/2b5/2
t−17/6(2(b/c− 1)t)t

× exp

((

5b

2c
− 1

)

t− 3b

c

(

b

c
− 1

)

t2

n

)

,

and
√

ℓ30
n− 2(ℓ0 − t)

= (1 + o(1))
(bt/c)3/2

n1/2
.

Therefore, (ii) follows from (27) and Theorem 2.

Finally, let t ≫ n3/5, but t = o(n). Then the main contribution to the sum A(n, t) comes

from the terms ℓ = ℓ0 +O(
√
ℓ0) with ℓ0 = t + z, where

z = z(n, t) :=
γ2

2 · 33/2
(n

t

)3/2

.

We have

A(n, t) = (1 + o(1))(2π)1/2
(2z)t+1/6

(2t+ 5z)1/2(t + z)5/2

(

t

t+ z

)3(t+z)/2

× exp

(

3

2
t +

5

2
z − 3z(t + z)

n

)

,

which, together with (27), gives (25).

The second part of (iii) follows from (27), Theorem 2, and the observation that

√

ℓ30
n− 2(ℓ0 − t)

= (1 + o(1))
t3/2

n1/2
.

We also remark that we expect the estimates for exc(n,M) and crc(n,M) to hold also for

n2/3 ≤ t ≪ n but the error term O(t3/2n−1/2) in (25) becomes too large to provide a precise

information on the structure of P (n,M). Let us also point out that if Giant Conjecture is true,

then ex(n,M) = (1+ o(1))exc(n,M) and cr(n,M) = (1+ o(1))crc(n,M) in the whole range

of M .

6 Concluding remarks

Let us first propose some heuristic which explains the behavior of P (n,M) as described in

Theorems 9–14. Note that the number pl(n,M) of planar graphs with n vertices and M edges
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can be computed in two different ways. Our estimates were based on the formula

pl(n,M) =
∑

k,ℓ

(

n

k

)

C(k, k + ℓ)U(n− k,M − k − ℓ),

where we extracted from the graph its complex part. But one could also use the formula

pl(n,M) =
∑

k,ℓ

(

n

k

)

Cconn(k, k + ℓ)Rpl(n− k,M − k − ℓ), (28)

where we first identify in the graph the largest component of k vertices and k + ℓ edges, which

typically is complex and unique, and then we supplement it by a random planar graph of n− k
vertices and M − k− ℓ edges. However, Theorem 2(iv) states that (at least for small ℓ) a graph

chosen at random from all complex planar graphs with k vertices and k+ℓ edges consists of the

giant component of size k−O(k/ℓ) and, possibly, some small components of finite complexity

and size Θ(k/ℓ). If the Giant Conjecture is true, it is in fact the case for all values of ℓ ≤ k.

Thus, the planar graph which is outside the largest component must contain just a few (if any)

components which are complex. It happens only if its density is such as the density of the

standard uniform graph model in the critical period. Consequently, in (28), we must have

M − k − ℓ = (n− k)/2 + Θ((n− k)2/3) , (29)

and, since in the critical period the sizes of all complex components of a random graph on n
vertices are of the order n2/3,

k/ℓ = Θ((n− k)2/3) . (30)

Let us check what it gives when M = n/2 + s with s ≫ n2/3 to ensure that P (n,M)
contains a complex and unique giant component. If k ≪M , then from (29) we get

L1(n,M) = 2M − n+O(ℓ) +O(n2/3) = 2s+O(ℓ) +O(n2/3) ,

and, by (30),

ℓ = Θ
( k

(n− k)2/3

)

= Θ
( s

(n− s)2/3

)

which fits perfectly the estimates from Theorem 11 and 12. Now let M = n − t, t = o(n).
Then, as before, from (29) and (30) we infer that

n− L1(n,M) = 2t+O((n− L1(n,M))2/3) +O(ℓ), (31)

and

ℓ = Θ
( n

(n− L1(n,M))2/3

)

. (32)

Note that when −t is large, then, clearly, ℓ = Θ(|t|), and the error term O(ℓ) in (31) is equal

to the main term 2t. In order to compute this ‘threshold value’ of t one should use (32) and

substitute to it ℓ = Θ(|t|) and n − L1(n,M) = Θ(t). It gives |t| = Θ(n3/5) as the threshold
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value for the property that ℓ = Θ(|t|). Consequently, if t≫ n3/5, then we have n−L1(n,M) =
(2 + o(1))t, as stated in Theorem 14(i), while for t≪ −n3/5, we have ℓ = Θ(|t|) and, by (32),

n− L1(n,M) = Θ((n/t)3/2), which agrees with Theorem 14(iii).

Since for M < an, where a < 1, the random graph P (n,M) is a.a.s. quite sparse (see

Theorem 12), while for M > an, a > 1, it is quite dense (e.g. a.a.s. it contains a copy of any

given planar graph), it seems that the most interesting period in the evolution of P (n,M) is for

M = n−o(n). This intuition is confirmed by Theorem 13, but clearly a lot remains to be done.

For instance, it seems that the correct threshold function for the property that χ(P (n,M)) = 4
is M = n +Θ(n7/9), more precisely, we conjecture that the following holds.

Conjecture If (M − n)/n7/9 → 0, then a.a.s. χ(P (n,M)) ≤ 3, while if (M − n)/n7/9 →
∞, then a.a.s. P (n,M) ⊇ K4 and so χ(P (n,M)) = 4.

Let us briefly justify the above claim that K4 emerges in P (n,M) when M = n+Θ(n7/9).
First of all, in order to have a single copy of K4 in P (n,M) we need a lot of copies of K4

in the kernel of the largest component of P (n,M). The number of copies of K4 in the kernel

should be of the same order as the number of vertices of degree four in the kernel, which, in

turn, is expected to be of the order of deficiency of the graph. Once we have a copy of K4 in

the kernel, the probability that after placing vertices of the core at the edges of the kernel none

of these vertices will be put at one of six edges of K4 is Θ((ker(n,M)/core(n,M))6). Hence,

if our estimates for ker(n,M) and core(n,M) from Theorem 14(iii) remain valid for all values

of M such that n3/5 ≪ M − n ≪ n, then the expected number of copies of K4’s in P (n,M)
is of the order

df(n,M) ·
( ker(n,M)

core(n,M)

)6

∼
√

ℓ3

k

( ℓ√
kℓ

)6

= ℓ9/2k−7/2 ∼ t9/2n−7/2.

Thus, this number is bounded away from zero for t = Θ(n7/9).
Let us also add a few words on the models of random planar graphs different from P (n,M).

One of the most natural one is the graph obtained by the random planar process, when we add

to an empty graph on n vertices M edges one by one each time choosing a new edge uniformly

at random from all pairs which preserve planarity of the graph (see Gerke et al. [15]). In

this model the structure of components is similar to that of a standard graph G(n,M ′) for an

appropriately chosen M ′ ≥ M . Another model of random planar graph is the binomial random

graph P (n, p), when we look at properties of G(n, p) conditioned on the fact that it is planar.

Equivalently, one can view P (n, p) as the graph chosen from the family P(n) of all planar

graphs on n vertices in such a way that each G ∈ P(n) appears as P (n, p) with the probability

P(P (n, p) = G) = pe(G)(1− p)(
n
2)−e(G)/Z(n, p), (33)

where e(G) denotes the number of edges of G, and

Z(n, p) =
∑

G∈P(n)

pe(G)(1− p)(
n
2)−e(G) . (34)
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Since clearly for every property A

P(P (n, p) has A|e(P (n, p)) =M) = P(P (n,M) has A) ,

once we determine the typical number of edges in P (n, p) the problem of finding properties of

P (n, p) reduces to studying these properties forP (n,M). From the estimates of pl(n,M) given

in Theorems 9–12 and 14 it follows that if np ≤ 1 then a.a.s. P (n, p) has M = (1 + o(1))p
(

n
2

)

edges; if 1/n ≤ p ≪ n−3/5, then a.a.s. M = n − (1 + o(1))/(2p); for p = O(n−3/5) we are

in the second critical period, i.e. a.a.s. M = n + O(n3/5); finally for p ≫ n−3/5 we have a.a.s.

M = n + Θ(p2/3n). Note that a large part of the evolution of P (n, p), when 1/n ≪ p ≪ 1,

corresponds to the period of evolution of P (n,M) when M = n + o(n) which, as we have

already remarked, is crucial for many properties of P (n,M).
Another interesting model is a random cluster model P (n,M, q) on planar graphs when for

every labeled planar graph with vertex set [n] we put

P(P (n,M, q) = G) = qc(G)/Z(n,M, q),

where q > 1 is a parameter, c(G) stand for the number of components in G, and Z(n,M, q)
is the normalizing factor. In a similar way one can define P (n, p, q) adding factors qc(G) to the

right hand sides of (33) and (34). It is well known that the additional cluster factor qc(G) in, say,

the standard model G(n, p) leads to an interesting phenomena such as the discontinuous phase

transition which occurs in G(n, p, q) for q > 2 (cf. Luczak and Łuczak [26]). Unfortunately,

no such event can be observed in the planar case. The evolution of P (n,M, q) is quite similar

to that of P (n,M) = P (n,M, 1). The reason is quite simple: the giant complex component

of P (n,M) is very sparse until it reaches the size n− o(n) and so the number of components

is always close to n −M + o(n) and, as calculations show, cannot be influenced much by the

presence of the additional factor qc(G). The asymptotic behavior of P (n, p, q) does not depend

very much on the value of q either except for the scaling: the number of edges of P (n, p, q) is

roughly the same as for P (n, p/q).
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