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TWO DECOMPOSITIONS IN TOPOLOGICAL COMBINATORICS

WITH APPLICATIONS TO MATROID COMPLEXES

MANOJ K. CHARI

Abstract. This paper introduces two new decomposition techniques which
are related to the classical notion of shellability of simplicial complexes, and
uses the existence of these decompositions to deduce certain numerical proper-
ties for an associated enumerative invariant. First, we introduce the notion of
M-shellability, which is a generalization to pure posets of the property of shella-
bility of simplicial complexes, and derive inequalities that the rank-numbers
of M-shellable posets must satisfy. We also introduce a decomposition prop-
erty for simplicial complexes called a convex ear-decomposition, and, using
results of Kalai and Stanley on h-vectors of simplicial polytopes, we show that
h-vectors of pure rank-d simplicial complexes that have this property satisfy
h0 ≤ h1 ≤ · · · ≤ h[d/2] and hi ≤ hd−i for 0 ≤ i ≤ [d/2]. We then show
that the abstract simplicial complex formed by the collection of independent
sets of a matroid (or matroid complex ) admits a special type of convex ear-
decomposition called a PS ear-decomposition. This enables us to construct
an associated M-shellable poset, whose set of rank-numbers is the h-vector of
the matroid complex. This results in a combinatorial proof of a conjecture of
Hibi [17] that the h-vector of a matroid complex satisfies the above two sets
of inequalities.

1. Introduction

This paper addresses a fundamental invariant associated with the abstract sim-
plicial complex (henceforth called a matroid complex ) defined by the collection of
independent sets of a matroid. The motivation for this work and the primary re-
sults are essentially combinatorial in nature, however the techniques that are used
have a distinctly topological flavor. In particular, we will study the geometric re-
alization of the matroid complex and show that it satisfies a certain topological
decomposition property which eventually leads to the combinatorial results about
this invariant. To describe the problem and nature of the techniques and results in
greater detail, we will need some elementary definitions and terminology.

For a finite, abstract, pure, rank-d simplicial complex Σ, the i-faces of Σ are
the elements of Σ of cardinality i. We will refer to the d-faces as facets of Σ.
The f-vector of Σ is the integer vector (f0, f1, . . . , fd), where fi is the number
of its i-faces. The f -vector is the enumerative invariant of a simplicial complex
that comes to mind first, however one can also define a related invariant called the
h-vector as the vector (h0, h1, . . . , hd), where hi is the coefficient of xd−i in the
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polynomial
∑d

i=0 fi(x−1)d−i. The seminal work of McMullen [21],[22] and Stanley
([26], [27], [28], etc.) has shown that the h-vector encapsulates crucial algebraic,
enumerative and topological properties of simplicial complexes that are shellable.
The notion of shellability of boundary complexes of convex polytopes and, more
generally, cell complexes has a long history [34]. However, we will restrict ourselves
to the framework of abstract simplicial complexes, where this topological notion
has the following equivalent and purely combinatorial formulation.

A pure rank-d simplicial complex is shellable if there exists an ordering (called
a shelling) F1, F2, . . . , Fm of its facets with the following property:

For every 1 ≤ i < j ≤ m, there exists h ≤ j such that Fi ∩ Fj ⊆ Fh ∩ Fj and
|Fh ∩ Fj | = d− 1.

Several important classes of simplicial complexes that arise in combinatorial
mathematics, such as matroid complexes, boundary complexes of simplicial poly-
topes, broken circuit complexes [9], are known to be shellable ([8],[25],[14]). Using
algebraic methods, Stanley [26] showed that the h-vector of any shellable simpli-
cial complex is the degree sequence of some order ideal of monomials (in short, an
O-sequence). An explicit numerical characterization for O-sequences is well known
due to Macaulay [26], and this gives a set of numerical restrictions on the set of
the h-vectors of shellable complexes. (The proper framework for these results is the
theory of Cohen-Macaulay complexes developed by Baclawski, Hochster, Reisner
and Stanley, and we refer to [28] for details). Since then research has focussed on
obtaining separate characterizations or at least stronger restrictions for h-vectors
for each of these important classes of complexes. A singular accomplishment in this
area of mathematics was the complete resolution (c. 1980) of McMullen’s conjec-
tured combinatorial characterization of the set of h-vectors of simplicial polytopes.
Stanley’s proof of the necessity of McMullen’s conditions involved the algebraic ge-
ometry of toric varieties, while the subsequent sufficiency proof of Billera and Lee
was combinatorial [27], [28]. An alternative necessity proof using polytope algebras
has recently been given by McMullen [23].

In comparison, progress on the fundamental problem of characterizing the h-
vectors of matroid complexes has been extremely limited. Several unimodality and
log-concavity conjectures have been made about the f -vectors and h-vectors of ma-
troid complexes [4], [31], [11], though proofs are known only for very special cases.
We believe that the results of this paper represent tangible progress towards the
goal of identifying a plausible characterization for h-vectors of matroid complexes.
The research in this paper was primarily motivated by the following conjecture of
Stanley [26], and a weaker version thereof, formulated more recently by Hibi [17].
(Note: A pure O-sequence is the degree sequence of an order ideal of monomials,
whose maximal elements are all of the same degree.)

Conjecture 1 (Stanley). The h-vector of a matroid complex is a pure O-sequence.

A complete numerical characterization is not known for pure O-sequences, and
indeed this problem is widely regarded to be extremely difficult, if not intractable.
(See the discussion in the last section.) However, Hibi [16] has shown that a pure
O-sequence (h0, h1, · · · , hd) must satisfy the following two conditions:

h0 ≤ h1 ≤ · · · ≤ h[d/2](1)

hi ≤ hd−i, 0 ≤ i ≤ [d/2].(2)
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((1) is often referred to as the generalized lower bound conjecture (GLBC) in the
context of h-vectors of simplicial spheres [30].)

This result led Hibi [17] to formulate the following weaker version of Stanley’s
conjecture.

Conjecture 2 (Hibi). The h-vector of a matroid complex must satisfy inequalities
(1) and (2).

In that paper, Hibi [17] established the following partial result in the direction
of (2):

h0 + h1 + . . .+ hi ≤ hd + hd−1 + · · ·+ hd−i

for i ≤ [d/2].
The following recent result of Brown and Colbourn [7] is perhaps more inter-

esting, since it shows that Stanley’s conjectured necessary condition for h-vectors
of matroid complexes is certainly not sufficient—for example, consider the pure
O-sequence (1, 4, 2) !

Proposition 1 (Brown and Colbourn). The h-vector of a connected rank-d ma-
troid satisfies the following:

(−1)j
j∑

i=0

(−b)ihi ≥ 0, 0 ≤ j ≤ d,(3)

for any positive real number b ≥ 1, with equality possible only if b = 1.

The two results that we just mentioned were, to the best of our knowledge,
the strongest general restrictions known in the literature for h-vectors of matroids.
Our decomposition techniques will enable us to prove (1), (2), and (3) for h-vectors
of matroid complexes as a corollary of a topological decomposition theorem for
matroids along with some purely poset-theoretic results of Section 2. Though we
are unable to prove Stanley’s conjecture in this paper, our results suggest a stronger
condition for h-vectors of matroids, which we present at the end of the paper as a
conjecture.

The techniques introduced in this paper derive their initial inspiration from
Björner’s work [4] (which appeared first in a 1979 preprint, see also [12]), in which
for any given matroid complex, he gives an explicit combinatorial description of
a set of spherical subcomplexes of the matroid complex which are joins of simpli-
cial boundaries. The primary result of Björner is that the fundamental cycles of
these subcomplexes form a basis for the only non-trivial homology group of the
matroid complex and, further, the original matroid complex is the union of these
subcomplexes. We take a completely different approach by developing a recursive
algorithm to construct a concrete topological decomposition for matroid complexes.
The resulting “pieces” of the matroid complex, however, have essentially the same
structure as Björner’s subcomplexes. The nature of the decomposition reveals an
interesting relation between the structure of matroid complexes and boundary com-
plexes of simplicial polytopes and their subcomplexes which, to the best of our
knowledge, has not been explored in the literature.

This paper assumes familiarity with basic concepts of matroid theory [32], [24],
the theory of posets [29], and the elements of combinatorial topology [6]. Other
references which discuss the background directly related to this paper in detail

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3928 M. K. CHARI

include Stanley [28], Billera [2] Björner [4], and Colbourn [11]. In Section 2, we
introduce a set of structural decomposition properties called k-decomposability, M-
partitionability and M-shellability for pure posets, which are generalizations of the
properties of k-decomposability [25], interval-partitionability and shellability for
simplicial complexes. The primary enumerative result in this theory is that the ex-
istence of the weakest decomposition of these properties, namely M-partitionability,
for a pure poset implies that the set of rank numbers of the poset must satisfy the
inequalities (1), (2), and (3).

In Section 3, we discuss a decomposition, called a convex ear-decomposition, asso-
ciated with simplicial complexes, which can be interpreted as a higher-dimensional
analog of the notion of ear-decomposition of graphs [19]. Using results of Kalai
and Stanley, we show that the h-vectors of simplicial complexes that admit such a
decomposition satisfy inequalities (1) and (2). We then show that complexes that
admit a special type of convex ear-decomposition called a PS ear-decomposition
admit a shelling, whose lower-bound poset is M-shellable in the sense of Section
2. This poset is defined so that its set of rank numbers equals the h-vector of the
simplicial complex. In particular, we establish that matroid complexes have this
property, thus providing a strictly combinatorial proof that h-vectors of matroid
complexes satisfy inequalities (1),(2), and (3)—thus proving Hibi’s conjecture.

2. A poset-theoretic generalization of shellability

2.1. Preliminaries and definitions. We will assume familiarity with posets and
refer to Stanley’s book [29] for terminology and elementary properties of posets and
poset operations. In what follows, we will assume that all posets are finite. We
will denote by C(P ) the set of cover relations of P . A poset P is a ranked poset,

if it has a unique minimal element denoted by 0̂ and, further, for any element x
of P every saturated chain from 0̂ to x of the poset has the same length, which is
defined to be its rank and is denoted by ρ(x). A poset P is pure rank-d if it is a
ranked poset and all its maximal elements are of rank d.

We say that Q is an edge-induced subposet of P if Q ⊆ P as sets and C(Q) =
{(x, y) : x, y ∈ Q, (x, y) ∈ C(P )}. We should point out that this concept is some-
what different from the traditional notion of induced subposet, where the partial
order itself is induced on to the subset of elements and not just the cover relations
as in our case. The rationale for our particular choice will be clear later in the
paper.

For an element x of a poset P , let F(x) represent the order filter generated by
x, that is, F(x) is the edge-induced subposet on {z ∈ P : x ≤ z}. Also, we define
the poset Γ(x) as the edge-induced subposet on the set P − F(x).

Definition. A poset Q is an M-poset if there exists a monomial M on a finite set
E of indeterminates such that Q is isomorphic to the poset (ordered by divisibility)
on the set of monomials on E that divide M.

Equivalently, an M-poset is a direct product of chains. Hence, for d ≥ 0, the
simplest example of such a rank-d M-poset is a d-chain.

Given two elements x ≤ y of P , the interval [x, y] is called an M-interval if it is
an M-poset.

Definition. A pure poset P is M-partitionable if P can be partitioned into M-
intervals [xi, yi], i = 1, 2, . . . , n, such that each yi is a maximal element of the poset
P . Such a partition is called an M-partition of the poset P .
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Definition. An M-shelling of a poset P is an M-partition of P along with an
ordering of the M-intervals such that the union of the elements in any initial sub-
sequence of M-intervals in the ordering of intervals is an order ideal of P . A poset
P is M-shellable, if it admits an M-shelling.

We leave it to the reader to construct an example to show that M-shellability is
a strictly stronger property. We will refer to the elements xi and yi associated with
an M-interval as the lower bound and upper bound associated with the M-interval.

If P is a simplicial complex, then the above definitions reduce to the classical def-
initions of partitionability and shellability. (See the first lemma of Section 2.4.) We
would have liked to use the terms partitionable and shellable posets, however this
expression has been used extensively (see [3], [4], [29]) for pure posets, whose chain
complexes satisfy the classical notions of shellability and interval-partitionability.

Now we define an important poset associated with an M-shelling of a poset.

Definition. Given an M-shelling S of a pure rank-d poset of P , we define the
lower-bound poset associated with S, denoted by ∆(S, P ), to be the edge-induced
subposet of P on the set of lower bounds of S.

Next, we define a hierarchy of combinatorial decomposition properties which are
generalizations of the theory of k-decomposability of simplicial complexes developed
by Provan and Billera ([25]).

Definition. Let P be a pure rank-d poset. For an integer k, 1 ≤ k, P is k-
decomposable if P is an M-poset, or there exists an element x of P , with ρ(x) ≤ k,
(called a k-element of P) such that

1. F(x) is a pure rank-(d− ρ(x)) poset and is k-decomposable, and
2. Γ(x) is a pure rank-d poset and is k-decomposable.

Clearly k-decomposability of posets forms a heirarchy of properties, that is, k-
decomposability implies k + 1-decomposability. Note that k-decomposability for
k > d, where d is the rank of the poset, is equivalent to d-decomposability. Thus
in (1) of the above definition, we could equivalently require k1-decomposability of
F(x) where k1 = min{k, d− ρ(x)}. Also, it is easy to see that the requirement of
purity of F(x) in (1) is redundant, but it is included to make the definition more
symmetric. When k = 1, we will call the property atom-decomposability, which
generalizes the property of vertex-decomposability of simplicial complexes defined
by Provan and Billera. It is easy to show that many interesting classes of complexes,
including matroid complexes and broken-circuit complexes, have this property [25].
At the present time, we do not have any new examples of interesting classes of
k-decomposable posets for k < d. Indeed, our primary interest in this paper is
in the property of M-shellability, which we will relate in the next section to the
notion of k-decomposability. We have developed a more general approach through
k-decomposability to emphasize the fact that M-shellability has an equivalent re-
cursive formulation (see (2) of Theorem 1), which is certainly not obvious from its
original definition. We also hope that other interesting applications of this more
general decomposition theory can be found in the future.

2.2. Some structural results. Many aspects of the k-decomposability theory for
simplicial complexes of [25] can be generalized to our framework, however we will
state and prove only the most significant of these properties in the next theorem.
When more than one poset is involved, we will use subscripts or brackets to indicate
the poset with respect to which a certain function or subposet is defined. We will
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assume familiarity with the notion of the direct product of two posets P and Q,
which we denote by P ×Q. We now define two other useful poset operations.

1. The i-truncation of a pure rank-d poset P , where 0 ≤ i ≤ d, is the pure rank
i-poset P i = {x ∈ P : ρ(x) ≤ i}.

2. An i-join of a pure rank-d poset P with respect to a pure rank-(d− i) poset
Q is defined only if 1 ≤ i ≤ d, and the two posets are (set-wise) disjoint. Such
a poset is denoted by Pi ↗ Q, and its Hasse diagram is obtained taking the
“disjoint union” of the Hasse digrams of the two posets and making the 0̂(Q)
cover some element of P of rank i− 1, and then letting some (possibly none)
of the elements of Q cover the elements of P of the appropriate rank so that
the resulting poset is a pure rank-d poset. (Strictly speaking, when we talk
of an i-join we must specify the new cover relations that are introduced, but
for our purposes this will not be relevant and for brevity’s sake we shall use
the generic term i-join.)

Theorem 1.

1. The direct product of k-decomposable posets is k-decomposable.
2. A pure rank-d poset is d-decomposable if and only if it is M-shellable.
3. The direct product of M-partitionable posets is also M-partitionable. Given

M-shellings S1 and S2 of two posets P and Q which are pure rank-d1 and
pure rank-d2 respectively, there exists on M-shelling S of the direct product
P ×Q such that ∆(S, (P ×Q)) = ∆(S1, P )×∆(S2, Q).

4. For 1 ≤ i ≤ d, the i-truncation of an M-partitionable (M-shellable) rank-d
poset P is a rank-i M-partitionable (M-shellable) poset.

5. For 1 ≤ i ≤ d, an i-join of an M-shellable (M-partitionable) rank-d poset P
with an M-shellable (M-partitionable) poset rank-(d − i) poset Q is a rank-d
M-shellable (M-partitionable) poset.

Proof. 1. Suppose P and Q are pure k-decomposable posets of rank d1 and d2

respectively. Clearly P × Q is an M-poset if and only if both P and Q are, and
P × Q is pure if and only if both P and Q are. Now suppose P × Q is not an
M-poset, then we can assume without loss of generality that P is not an M-poset.
Let xp be a k-element of P . Now observe that ΓP×Q(xp, 0̂(Q)) = ΓP (x)×Q , while

FP×Q(xP , 0̂(Q)) = FP (x) ×Q. It follows by induction and the k-decomposability

of P and Q, that (xp, 0̂(Q)) is a k-element for P ×Q.
2. First, we show, using induction on the number of elements of P , that a pure

rank-d d-decomposable poset P is M-shellable. Clearly the result is true, when
|P | = d + 1. (d + 1 is the smallest number of elements P can have.) Now the
result is also true if P is an M-poset. Suppose P is not an M-poset, then there
exists a d-element x such that ΓP (x) and FP (x) are pure rank-d and pure rank-
(d−ρP (x)) posets respectively and are both d-decomposable. Note that for FP (x),
the d-element (which exists unless it is an M-poset) actually has rank at most
(d− ρP (x)), and hence FP (x) is actually a (d− ρP (x))-decomposable poset. Thus
it follows by induction that both ΓP (x) and FP (x) are M-shellable, and now it is
easy to construct an M-shelling of P from those two M-shellings.

Now to prove the converse, let P be a rank-d M-shellable poset and let x be
the lower bound of the last M-interval of P in some M-shelling of P . Of course, if
x = 0̂(P ) then P is an M-poset and we are done. Otherwise, we claim that x is a
d-element for P . Clearly, we have that F(x) is a rank-(d − ρ(x)) M-poset. Now,
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evidently ΓP (x) is a pure rank-d M-shellable poset, and hence, by induction, it is
d-decomposable. It follows that P is d-decomposable.

3. The proofs of these two statements follow from the following simple ob-
servations. First, the direct product of two M-posets is an M-poset, and further,
the direct product can be distributed across a disjoint union of subposets. Also a
subposet is an order ideal in P ×Q if it is the product of order ideals of P and Q.
The proof of (3) is now straightforward.

4. Observe that the (d− 1)-truncation of a rank-d M-poset is M-shellable. It is
now straightforward to construct an M-shelling of the (d− 1)-truncation of P from
the M-shellings of the truncation of each M-interval. The above procedure can be
applied repeatedly to get the result for general i.

5. We omit the easy proof of the result for i-joins. This completes the proof of
the theorem.

2.3. Rank-number inequalities. Clearly, M-partitionability and M-shellability
imply a very specific structure for the poset. Indeed, we can derive interesting
enumerative consequences for posets that admit such special structure.

Let F (t) =
∑d

i=0 fit
i be the rank generating function of the poset P, so that

fi is the number of rank-i elements of P . Now let the ith M-interval [xi, yi] in
the M-partition of a given M-partitionable pure rank-d poset be isomorphic to
the ideal generated by the monomial Mi = z

ri,1
1 z

ri,2
2 . . . z

ri,si
si . Hence, we have d =

ρ(xi) + ri,1 + . . . + ri,si for every i = 1, 2, . . . , n. Now, let us define for any non-
negative integer k, a polynomial u(k; t) as follows:

u(k; t) = t0 + t1 + · · ·+ tk.

Thus, u(k; t) is the rank generating function of the k-chain.

Proposition 2. The rank generating function F (t) of an M-partitionable poset
satisfies the following equation:

F (t) =
n∑
i=1

tρ(xi) u(ri,1; t) u(ri,2; t) · · ·u(ri,si ; t)(4)

Proof. It is easy to verify that each term in the sum corresponds exactly to the sum
of the individual terms for the elements in a fixed M-interval. The product form
follows from the fact that each M-interval is an M-poset.

Proposition 3. The rank numbers (f0, f1, f2, . . . , fd) of a rank-d M-partitionable
poset P satisfy the following sets of inequalities:

f0 ≤ f1 ≤ · · · ≤ f[d/2],(5)

fi ≤ fd−i, 0 ≤ i ≤ [d/2],(6)

(−1)j
j∑

i=0

fi(−b)i ≥ 0, 1 ≤ j ≤ d,(7)

for any positive real number b ≥ 1, with equality possible only if b = 1.
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Proof. Consider any element a in the poset P with ρ(a) ≤ [d/2]. Let [xj , yj ] be
the unique M-interval of the M-partition to which a belongs. It is well-known
([16], [1]) that any poset which is a direct product of chains admits a symmetric
saturated chain decomposition. Thus a belongs to a unique saturated chain C
which is contained in [xj , yj ] and symmetric with respect to this interval. Since
ρ(xj) ≤ ρ(a) ≤ [d/2] and ρ(yj) = d, the rank of the top element of C is at least
d− ρ(a). Thus we can define maps φj(a) for [d/2] ≥ j ≥ ρ(a) and for j = d− ρ(a),
such that φj(a) in an element of the chain C and ρ(φj) = j. It is easy to see that
each such map φj is an injective map from the set of elements of rank ρ(a) to the
set of elements of rank j. The first two inequalities follow from the existence of
these injections.

We will use the rank generating function to prove the third inequality, noting
that we could also prove the first two inequalities using the expansion of F (t). Since
j-truncations of M-partitionable posets ((4) of Theorem 1) are M-partitionable, it
suffices to prove the inequality for j = d.

We address the case b = 1 first. Note that if t = −1 in the product

u(ri,1; t) u(ri,2; t) · · ·u(ri,si ; t),

we obtain 1 exactly when the highest exponent in each polynomial is even, while for
any other instance, the product is zero. So if the product is 1, we must have that
d − ρ(xi) (which is the sum of the individual highest exponents) is even. Hence,
(−1)−dF (−1) ≥ 0, which is equivalent to inequality for b = 1 .

Now if b > 1, we have u(k; (−b)) = ((−b)k+1 − 1)/(−b − 1), and therefore
(−1)ku(k; (−b)) > 0 for all non-negative integers k. The strict inequality follows
quite easily now from the expansion of F (t).

The proof of the proposition is now complete.

2.4. The lower-bound poset of a shelling. The following classical result of Mc-
Mullen [21] indicates that the definitions of M-shellability and M-partitionability
given in the previous sections reduce to the classical definition of shellability and
interval-partitionability when P is an abstract pure rank-d simplicial complex, or-
dered by inclusion.

Lemma 1. For a pure simplicial complex Σ, and a given ordering F1, F2, . . . , Fm,
the following are equivalent:

1. F1, F2, . . . , Fm is a shelling.
2. There exist sets Gi ⊆ Fi, i = 1, 2, . . . ,m, such that Θ = {[Gi, Fi], i =

1, 2, . . . ,m} is an interval-partition of Σ and, further,
⋃j
i=1 [Gi, Fi] is a sim-

plicial complex for j = 1, 2, . . . ,m.

Further, if (h0, h1, . . . , hd) is the h-vector of Σ, then we have

hi = |{Gj : |Gj | = i, 1 ≤ j ≤ m}|.
In particular, this means that the number of lower bounds of a certain cardi-

nality is independent of the particular shelling. Henceforth, we will use the clas-
sical terminology when dealing with complexes and use the terms M-intervals, M-
partitionable, etc. only when dealing with posets which are not complexes. Hence-
forth, we will abuse notation and also use the term shelling to denote the ordered
sequence of intervals in the interval-partition.
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The rationale behind using the edge-induced subposet is clear from the following
lemma, which appears as Lemma 7.2.6 in [4] but we will include a proof for the
sake of completeness.

Lemma 2. Let Σ be a simplicial complex and S be a shelling for Σ. Then ∆(S,Σ)
is a poset with a well-defined rank function, and the set of rank-numbers of ∆(S,Σ)
is equal to the h-vector of Σ.

Proof. Obviously, ∅ is an element of ∆(S,Σ). We will show that for any nonempty
lower bound F associated with the shelling S, there exists a saturated chain of
length |F | in ∆(S,Σ) from ∅ to F . For this, it suffices to show that for some
element x in F , F − {x} is also a lower bound of S.

Now let [L,U ] be the last interval (clearly, well-defined) of the shelling S whose
lower bound is a proper subset of F . We claim that L = F−{x} for some x ∈ F \U .
To show this, let x be any element of F −L. By definition of [L,U ], it is clear that
F −{x} must be an element of [L,U ] and hence F −{x} ⊆ U . So if x and y are two
distinct elements of F −L, then we have F − {x} ⊆ U and F − {y} ⊆ U , implying
that F ⊆ U , which is impossible. Therefore, F − L is a singleton set as required.

Thus ∅ is indeed the unique minimal element of Σ. From the fact that ∆(S,Σ)
is an edge-induced subposet of Σ, it is evident that any chain from the minimal
element to F also exists in Σ, and hence is of the same length, that is, |F |.
Corollary 1. If the lower-bound poset of some shelling of a rank-d simplicial com-
plex Σ is a pure rank-d M-partitionable poset, then the h-vector of the simplicial
complex satisfies inequalities (1), (2) and (3).

Example 1. Consider the simplicial complex Σ whose facets are 13, 14, 23, 24.
Observe that this particular order S is a shelling, and ∆(S,Σ) is an M-poset with
elements ∅, 4,2, and 24. However, for the shelling S1 given by the order 13,23,24,14,
∆(S1,Σ) has elements ∅,2,4,14, and hence is not even pure! Thus, lower-bound
posets associated with different shellings of the same simplicial complex can have
completely different structural properties, though their set of rank-numbers is an
invariant of the simplicial complex.

Example 2. If Σ is the collection of all proper subsets of a 4-element set, then it is
evident that any ordering of its facets gives rise to a shelling, and the lower-bound
poset for any such shelling is a 3-chain. In general, one can easily show that for
every shelling of the boundary of a d-simplex, the resulting lower-bound poset is a
d-chain. Further, from (3) of Theorem 1, direct products of such complexes admit
a shelling such that the lower-bound poset is an M-poset of rank equal to the sum
of the ranks of the individual complexes.

The above results and examples clearly suggest that to be able to infer anything
useful about the h-vector from the lower-bound poset, it is important to be able to
construct shellings, so that the associated posets are “well-structured”.

3. A topological decomposition

3.1. Preliminaries. For the purpose of this section, we will assume familiarity
with the combinatorial theory of polytopes and polyhedra [34] and also with some
basic concepts of combinatorial topology to the extent of [6]. In the context of
simplicial complexes, direct product corresponds to the notion of join, but for the
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sake of consistency with the previous section, we will continue to use the poset-
theoretic term. We will also continue to use the notion of rank when talking about
general simplicial complexes, but we will also use the notion of dimension whenever
the simplicial complex triangulates a d-sphere or a d-ball, in which case we will call
the complex a d-sphere or a d-ball. Recall that the boundary of a (d − 1)-ball Σ,
which we denote by ∂Σ, is the pure rank-(d − 1) simplicial complex (which is a
(d − 2)-sphere) whose facets are the rank-(d − 1) faces of Σ that are contained in
only one facet of Σ. We will denote the ((|X | − 1)-dimensional) simplex on the set
X by X , and denote its boundary by ∂X. The boundary complex of a simplicial
polytope is the simplicial complex obtained by representing each “geometric” face
of the simplicial polytope by the set of its vertices.

Given a nonempty face F of a simplicial complex Σ, we define

link(Σ, F ) = {G ∈ Σ : (G ∪ F ) ∈ Σ, (G ∩ F ) = ∅}.
We define Σ \ F as the simplicial complex {G ∈ Σ : F is not a face of G}.
3.2. Convex ear-decompositions and h-vectors. We begin with the following
important definition.

Definition. A convex ear-decomposition of a pure rank-d simplicial complex Σ is
an ordered sequence Σ1,Σ2, . . . ,Σm of pure rank-d subcomplexes of Σ such that

1. Σ1 is the boundary complex of a simplicial d-polytope, while for each i =
2, . . . ,m, Σi is a (d−1)-ball which is a (proper) sub-complex of the boundary
complex of a simplicial d-polytope, and

2. For i ≥ 2, Σi ∩ (
⋃i−1
j=1 Σj) = ∂Σi.

Let h(Γ) represent the h-vector of the rank-d simplicial complex Γ and let hr(Γ)
represent the h-vector of Γ in reverse order. Thus if h(Γ) = (1, 2, 0) for a rank-2
simplicial complex Γ, then hr(Γ) = (0, 2, 1).

Lemma 3. If Σ1,Σ2, . . . ,Σm is a convex ear-decomposition of Σ, then we have
the following:

h(Σ) = h(Σ1) +

m∑
i=2

hr(Σi)

Proof. It is well-known (see the proof of Lemma 2.3 in [30]) that if Ω triangulates
a (d− 1)-ball, then

∑
F∈Ω−∂Ω

fi(x− 1)d−|F | =

d∑
i=0

hix
i,

where (h0, h1, . . . , hd) is the h-vector of Ω. The proof of the lemma follows imme-
diately.

We now state a recent result, originally due to Kalai [18], which is proved using
a more general algebraic framework by Stanley [30].

Proposition 4 (Kalai, Stanley). The h-vector of a (d− 1)-ball which is a subcom-
plex of a simplicial d-polytope satisfies the following:

hd ≥ hd−1 ≥ · · · ≥ h[d/2],

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DECOMPOSITIONS AND MATROID COMPLEXES 3935

hi ≥ hd−i, for 0 ≤ i ≤ [d/2].

Corollary 2. Let Σ be a pure rank-d simplicial complex which admits a convex
ear-decomposition. Then the h-vector of Σ satisfies inequalities (1) and (2).

Proof. The h-vector of Σ1 is symmetric and also unimodal due to Stanley’s result
[27] on the necessity of McMullen’s conditions for boundary complexes of simplicial
polytopes. The proof of the corollary now follows immediately from Lemma 3 and
Proposition 4.

The symmetry of the h-vector (also called the Dehn-Sommerville equations) is
known for arbitrary triangulations of spheres, however the question of whether the
GLBC inequality h0 ≤ h1 ≤ · · · ≤ h[d/2] holds for all triangulations of spheres
or even shellable triangulations is not yet settled. We could have defined a more
general notion of, say, spherical ear-decompositions, by only requiring the first
subcomplex to be a (d − 1)-sphere and rest of the complexes to be (d − 1)-balls.
However, this generalization does not seem worthwhile at this time, since the above
corollary cannot be extended to such a framework.

3.3. PS ear-decompositions and M-shellability. We now define a very spe-
cific type of convex ear-decomposition of a simplicial complex, which we call a PS
ear-decomposition. (“PS” represents the fact that products of simplices and their
boundaries are involved in a crucial way.) For complexes that admit such an ear-
decomposition, an alternative, purely combinatorial proof of the inequalities (1)
and (2) for the h-vector can be given. This is because the PS ear-decomposition
naturally leads to a shelling of a matroid complex such that the lower bounds poset
of the shelling is a pure, M-shellable poset.

Definition. A PS-d-sphere is a d-sphere which is the direct product of boundaries
of simplices. (The complex consisting of only the empty set is a PS-0-sphere.) A
PS-d-ball is a d-ball which is the direct product of a simplex and a PS-sphere.

It is easy to verify the following from the above definitions:
(i) A PS-(d− 1)-sphere is the boundary complex of some simplicial d-polytope.
(ii) A PS-ball is a simplicial complex of the form Σ \ v, where v is some vertex

(rank-1 face) of a PS-sphere.
(iii) The boundary of PS-d-ball is a PS-(d− 1)-sphere.
(iv) The direct product of PS-spheres is a PS-sphere, while the direct product

of a PS-ball with a PS-sphere is a PS-ball.

Remark. It can be shown that a matroid complex triangulates a sphere ([4], page
278) if and only if each connnected component of the matroid is a circuit. Since
the matroid complex of a circuit is the boundary of a simplex, we have that if a
rank-d matroid complex triangulates a sphere then it is a PS-(d− 1)-sphere.

Definition. A PS ear-decomposition of a pure rank-d simplicial complex Σ is a
convex ear-decomposition Σ1,Σ2, . . . ,Σm in which Σ1 is a PS-(d− 1)-sphere while
each Σi, for i ≥ 2, is a PS-(d− 1)-ball.

Proposition 5. If a pure rank-d simplicial complex admits a combinatorial ear-
decomposition, then it has a shelling S such that ∆(S,Σ) is a pure rank-d M-
shellable poset.
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Proof. We saw earlier (Example 2 in Section 2.4) that there is a shelling of a PS-
sphere such that the lower-bound poset of the shelling is an M-poset. Thus we can
shell Σ1 in this manner. Now let Σ2 = X×Ω2, where Ω2 is a PS-(d−|X |−1)-sphere.
Now we take the appropriate shelling of Ω2, and augment each lower and upper
bound with the set X and “attach” it to the shelling of Σ1. From the boundary
condition of the ear-decomposition, this clearly gives a shelling of Σ1 ∪Σ2, and the
resulting lower-bound poset is a well-defined |X |-join of M-shellable lower-bound
posets associated with shellings of Σ1 and Ω2, and hence is M-shellable. It is easy to
see that continuing this process eventually gives us a shelling of Σ with the required
properties.

Once again, we find that this decomposition, which can be interpreted as some
sort of higher-order shellability property, has an equivalent recursive formulation
which has the flavor of the notion of k-decomposability of Provan and Billera.

Definition. A simplicial complex Σ is PS-decomposable if it is pure (of rank-d,
say) and either Σ is PS-(d− 1)-sphere, or there exists a nonempty face F of Σ such
that

1. Σ \ F is pure rank-d and PS-decomposable, and
2. link(Σ, F ) is a pure rank-(d− |F |) and PS-decomposable.

Theorem 2. A pure rank-d simplicial complex Σ is PS-decomposable if and only
if admits a PS ear-decomposition.

Proof. First, we will prove, by induction on the number of faces of Σ, that if it is a
PS-decomposable simplicial complex then it admits a PS ear-decomposition. If Σ
has just one face, namely the empty set, then Σ is the boundary of the 0-simplex and
hence the result is obviously true. More generally, the proof is trivial if Σ is a PS-
(d− 1)-sphere. If not, there exists a nonempty face F satisfying the two conditions
of the above definition. Now, let Ψ1,Ψ2, . . . ,Ψm be a PS ear-decomposition of
Σ \ F and Ω1,Ω2, . . . ,Ωk be a PS ear-decomposition of link(Σ, F )—both of which
exist by the induction hypothesis. Now we define a decomposition of Σ into a
sequence of subcomplexes Σ1,Σ2, . . . ,Σm+k, where Σi = Ψi for i = 1, 2, . . . ,m and
Σm+j = F × Ωj for j = 1, 2, . . . , k. We claim that this is a PS ear-decomposition
for Σ. It is easy to see that for each i = 2, 3, . . . ,m + k, Σi is a PS-(d − 1)-ball,
while Σ1 is a PS-(d − 1)-sphere. Now, we observe that the intersection condition
for this to be a PS ear-decomposition needs to be checked only for the PS-balls
Σm+1,Σm+2, . . . ,Σm+k.

It is evident that for i = 2, 3, . . . , k we have

∂Σm+i = (∂F × Ωi) ∪ (F × ∂Ωi).

Now,

Σm+i ∩
(
m+i−1⋃
l=1

Σl

)
= [Σm+i ∩ (Σ \ F )] ∪

[
Σm+i ∩

(
i−1⋃
l=1

Σm+l

)]

= [(F × Ωi) ∩ (Σ \ F )] ∪
[
F ×

(
Ωi ∩

(
i−1⋃
l=1

Ωl

))]
= [∂F × Ωi] ∪ [F × ∂Ωi]

= ∂Σm+i
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Also, Σm+1 ∩ (Σ \ F ) = [(F × Ω1) ∩ (Σ \ F )] = ∂F × Ω1 = ∂Σm+1. Thus
we have shown that the ordered sequence Σ1,Σ2, . . . ,Σm+k is indeed a PS ear-
decomposition of Σ.

Now assume that a pure rank-d simplicial complex Σ has a PS ear-decomposition;
then we will prove by induction on the number m of subcomplexes of the ear-
decomposition that Σ is PS-decomposable. The result is obviously true for m =
1. Now for m > 1 suppose Σm, the last subcomplex of the combinatorial ear-
decomposition Σ1,Σ2, . . . ,Σm, is of the type Σm = F × Ψm, where Ψm is a
PS-sphere. Then it is evident that link(Σ, F ) = Ψm, which is obviously PS-
decomposable. Also, Σ \ F admits a PS ear-decomposition Σ1,Σ2, . . . ,Σm−1 and
hence by induction is PS-decomposable. Hence we have shown that Σ is PS-
decomposable, as required.

Corollary 3. Let Σ be a pure rank-d PS-decomposable simplicial complex. Then
Σ is shellable and the h-vector of Σ is the set of rank-numbers of some pure rank-d
M-shellable poset. In particular, the h-vector of Σ satisfies equations (1), (2), and
(3).

4. Application to matroid complexes

We will apply the results of the last two sections to matroid complexes, and this
results in a proof of Hibi’s conjecture and another proof of the Brown-Colbourn
alternating sum inequalities. In what follows, we will denote the matroid complex
associated with a matroid M by Ψ(M). We will denote deletion and contraction
by a subset X of the ground set E of M by M −X and M/X respectively. We will
denote the uniform matroid of rank-d on n elements by Ud,n.

Theorem 3. A coloop-free matroid complex Ψ(M) is PS-decomposable.

Proof. We prove the result by induction on the number of elements of Ψ(M). Since
M is coloop free, if Ψ(M) has one element, then M has rank 0 and Ψ(M) is the
boundary of the 0-simplex, and the result follows. Now, we can assume that d ≥ 1.
For any (non-loop) element e of M , let

X = {e} ∪ {x ∈ E : {x, e} is a (2-element) cocircuit of M}.
It is easily seen using the (co)circuit exchange axioms for matroids that if {a, b}

and {a, c} are both (2-element) cocircuits in M , then so is {b, c}. In particular,
being in a 2-element cocircuit is an equivalence relation on the non-loop elements
of M , and hence the vertices (rank-1 elements) of Ψ(M) can be partitioned into
series classes (with each loop being regarded as an individual series class). The set
X defined above is such a series class, and we observe that for any element x ∈ X ,
X \ {x} is precisely the set of coloops of the matroid M −{x} . Another important
property of the series class X is that for any circuit C of M , either C ∩ X = ∅
or C ∩ X = X . This follows from the fact that every pair of elements in X is a
cocircuit and hence cannot intersect the circuit C in a single element. In particular,
if the series class X is dependent in M , then X is, in fact, a circuit of M . Further,
since X ⊆ C is not possible, in this case, for any circuit C of M , we must have
C ∩X = ∅. We conclude, therefore, that if X is a dependent series class, then X
is a circuit which is disconnected from the rest of the matroid.

Now for the matroid M , exactly one of the following two possibilities is true.
a. Every series class X of the matroid M is dependent in M .
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From the above discussion it follows that, in this case, M is a direct sum of
circuits. Hence Ψ(M) is the direct product of boundaries of simplices, that is, it is
a PS-(d− 1)-sphere.

b. Some series class X is independent in M .
If X is an independent series class of M , then clearly link(Ψ(M), X) = Ψ(M/X),

and since M/X has no coloops, it is PS-decomposable by induction. Since X is a
series class, an independent set of M belongs to Ψ(M) \X if and only if it is the
disjoint union of an independent set of the matroid M −X and some proper subset
of X . In other words,

Ψ(M) \X = Ψ(M −X)×Ψ(U|X|−1,|X|).

Now M −X has no coloops since X is a series class of M , and also U|X|−1,|X|
has no coloops. In particular, we have shown that Ψ(M) \ X is a pure rank-d
coloop-free matroid complex, and hence by induction, it is PS-decomposable.

Therefore, we have shown above that either (a) Ψ(M) is a PS-(d − 1)-sphere,
or (b) there exists a face X of Ψ(M), such that Ψ(M) \ X is a pure rank-d PS-
decomposable complex and link(Ψ(M), X) is also a PS-decomposable complex. It
follows, hence, that Ψ(M) is PS-decomposable.

Example 3. Let M be the graphic matroid of the graph K4 with the edgeset
labelled as per the topmost graph of Figure 1. An implementation of the recursive
decomposition used in the proof of the above theorem is demonstrated in this figure.

This decomposition gives rise to the following shelling of the matroid complex:

S = {[∅, 134], [5, 135], [45, 145], [2, 234], [25, 235], [245, 245], [12, 123],

[124, 124], [6, 126], [46, 146], [36, 236], [346, 346], [56, 356], [456, 456],

[156, 156], [256, 256]}
The six subcomplexes of the PS ear-decomposition are shown in Figure 2. The

M-shelling of ∆(S,M) of the poset of lower bounds of this shelling is shown in Figure
3, with solid dark lines indicating the cover relations that appear in M-intervals.
The lighter solid lines are the cover relations in ∆(S,M) which correspond to the
join operations described in the proof of Proposition 5. The dashed lines indicate
the remaining cover relations of ∆(S,M).

We should point out that the poset of lower bounds has been studied by Dawson
[13] and Purtill [4] for the shelling Slex of the matroid complex which is given by
the lexicographic order on the bases induced by an arbitrary but fixed total order
on the ground set. For instance, they have shown that the associated poset, which
we denote by ∆(Slex,M), is an interval greedoid (see [4]). However, an example
due to C. Athanasiadis (private communication) shows that ∆(Slex,M) is not even
M-partitionable in general.

Let us define the H-polynomial of the matroid M as the polynomial H(M ; t) =∑d
i=0 hit

d−i, where d is the rank of the matroid and (h0, h1, · · · , hd) is the h-vector
of M . Thus H(M ; t) = T (M ; t, 1), where T (M ;x, y) is the Tutte polynomial of the
matroid M [4]. The following corollary can also be proved directly using the theory
of the Tutte polynomial, and this approach is outlined in the communication [10],
which is an announcement for the results of this paper.
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Figure 1

Corollary 4. For a coloop free matroid M of rank d, we have the following:

1. If M has m connnected components, each of which is a circuit of size di + 1,
i = 1, 2, . . . ,m then

H(M ; t) = u(d1; t)u(d2, t) · · ·u(dm; t)
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Figure 2

Otherwise, for any independent series class X of M with |X | = k + 1,

H(M ; t) = u(k; t)H(M −X ; t) + H(M/X ; t).

2. The h-vector (h0, h1, · · · , hd) of a coloop-free matroid M satisfies the inequal-
ities (1), (2), and (3).

For the graphic matroid of K4 discussed in Example 3, the expansion for H(M ; t)
that is defined recursively in the previous corollary can be read off “top down” from
the M-shelling of Figure 3 as follows:

H(M ; t) = (1 + t)(1 + t+ t2) + (1 + t) + (1 + t)(1 + t) + (1 + t) + 1 + 1.

It would be interesting to examine whether the existence of such an expansion
can be used to derive new results about the location of roots of this polynomial

Figure 3
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and other related polynomials [7], [11]. The PS ear-decomposition may also be of
interest in studying the matroid-basis graph, which is in some sense dual to the
geometric realization of Ψ(M), and hence inherits a corresponding decomposition.
We leave the detailed analysis of these issues to future research.

It was brought to our attention by G. Ziegler (private communication) that PS-
spheres also appear (under a different name) in the work of Dayton and Weibel
[15] on hyperplane arrangements. Ziegler [33] generalized some of their results to
the combinatorial framework of the broken-circuit complex of a matroid (see [9],
[4] for definitions). His work is essentially an extension of Björner’s construction of
homology cycles for matroid complexes discussed in the introduction, except that in
this case, the original broken-circuit complex is not the union of the subcomplexes.
Unfortunately, our techniques do not apply directly to broken-circuit complexes.
In fact, the example of a broken circuit complex given by Brylawski in [9] has an
h-vector (1, 2, 3, 1) and hence cannot admit a convex ear-decomposition. However,
it is conceivable that some modification of our approach may indeed be succesful
in developing an analogous theory for these complexes. Any result in this direction
would be of significant interest, since it would have implications for the coefficients
of chromatic polynomials of graphs, about which very little is known.

We will conclude with remarks about the consequences of this work to the fol-
lowing fundamental question in the study of matroid invariants.

Is there a numerical characterization for the set of h-vectors of matroids?
In this paper, we have shown that the h-vector of any coloop-free rank-d matroid

is the set of rank-numbers of some M-shellable poset. It is only natural to combine
our results with Stanley’s conjecture, and so we define a shellable O-sequence as
the degree sequence of a pure, M-shellable order ideal of monomials.

Conjecture 3. The h-vector of a coloop-free matroid complex is a shellable O-
sequence.

This conjecture naturally suggests the following problem.
Problem. Find a numerical characterization for shellable O-sequences.
It is interesting that the f -vectors of simplicial complexes and O-sequences have

known numerical characterizations due to Kruskal and Katona and Macaulay [1]
respectively, while the numerical characterizations for f -vectors of pure simplicial
complexes or pure O-sequences are not known and are widely assumed to be in-
tractable (see Ziegler’s remarks on page 284 of [34]). However, we have seen that
f -vectors of pure rank-d shellable simplicial complexes do have such a character-
ization through their h-vectors, thanks to Stanley and Macaulay. In view of this
background, it is reasonable to expect the problem of numerically characterizing
shellable O-sequences to be tractable (or at least, more so than characterizing pure
O-sequences). It would indeed be worthwhile to develop a theory of M-shellability
of pure order ideals of monomials and define an appropriate invariant analogous
to the h-vector of shellable complexes. It is well-known that the combinatorial
property of shellability of simplicial complexes, in some sense, is a concrete mani-
festation of the more general property of being Cohen-Macaulay ([28], [26]). This
property has two equivalent formulations: one is based on the homology of the
simplicial complex, while the other is based on a purely ring-theoretic property of
the Stanley-Reisner ring associated with the complex ([2], [28]). It is possible that
M-shellability of an order ideal of monomials correponds to a more general algebraic
theory in the ring-theoretic setting, which can be used to develop results analogous
to Stanley’s theory for h-vectors of Cohen-Macaulay complexes.
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