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Abstract. In this paper, two different approaches to solve underdetermined nonlinear sys-

tem of equations are proposed. In one of them, the derivative-free method defined by La Cruz,

Martínez and Raydan for solving square nonlinear systems is modified and extended to cope with

the underdetermined case. The other approach is a Quasi-Newton method that uses the Broyden

update formula and the globalized line search that combines the strategy of Grippo, Lampariello

and Lucidi with the Li and Fukushima one. Global convergence results for both methods are

proved and numerical experiments are presented.
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1 Introduction

We consider the problem of determining a solution x∗ ∈ Rn that verifies the

nonlinear system of equations

F(x) = 0 (1)

where F : Rn → Rm is a continuously differentiable function and m ≤ n,

making special emphasis when m < n. We are interested in systems for which
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the Jacobian matrix of F , denoted by J (x), is not available or requires a pro-

hibitive amount of storage. This situation is common when functional values

come from experimental measures, for example: from physics, chemistry or

economics.

Such kind of problems also appears as the feasible set of general nonlinear

programming problems. Our main motivation is the application of the pro-

posed methods as subalgorithms for finding feasible points in derivative-free

nonlinear programming algorithms such as, for example two-phases algorithms

[3, 8, 16, 26], feasible methods [1, 12, 18, 19, 20, 22, 23, 24, 25] and inexact

restoration methods [15, 17].

The resolution of square nonlinear systems without using derivatives has been

addressed using the spectral residual approach in [11] and the Broyden Quasi

Newton approach in [13]. Some ideas of those papers are incorporated in the

present work. In [11], the authors defined the derivative-free spectral algorithm

for nonlinear equations called DF-SANE. Furthermore, global convergence was

proved by using a derivative-free line search that combines the nonmonotone

strategy of Grippo, Lampariello and Lucidi [9] with the Li and Fukushima

scheme [13].

In [13], a Quasi Newton method based on the Broyden update formula and

on a nonmonotone derivative-free line search was defined for the square case.

Also in [4] an inexact Quasi-Newton method was introduced with a similar line

search technique to the one introduced in [13] and using Bk = J (xk) periodi-

cally. Under appropriate hypotheses, global and superlinear convergence were

proved in both papers.

In the present paper we define two approaches for the nonsquare system of

equations based on the ideas appearing in [11] and [13]. The proposed algo-

rithms use a generalization of the derivative-free nonmonotone line search

defined in [11]. The search direction in [11] is computed using the residual

vector F(xk) and the spectral coefficient [2]. For the underdetermined system,

the current point is computed by considering a fixed number of Lm directions

that are the solution of some appropriate square systems using a spectral coeffi-

cient under the idea explained in [11]. The direction in the second algorithm is

computed as an approximate solution of a linear system using the nonsquare
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Broyden update formula for matrices. It is well established in the literature

that, for the square case, this is the most used secant approximation to the Jaco-

bian and it works very well locally [6]. As we mentioned before, the Broyden

update formula has been previously used by Li and Fukushima and combined

with a derivative-free line search for the square case. In [13] the current direc-

tion is the solution to the linear system

Bkd + F(xk) = 0 (2)

and the update matrix Bk+1 is defined as

Bk+1 = Bk + βk
(yk − Bksk)sT

k

‖sk‖2
(3)

where yk = F(xk) − F(xk−1), sk = xk − xk−1 and the parameter βk is chosen

such that |βk − 1| ≤ β̄ < 1 for which Bk+1 is nonsingular. In this paper,

when there is a solution of the linear system (2) we use such solution as a

search direction and, when there is none, we solve the linear system approxi-

mately as proposed in [14]. Consequently, we avoid the necessity of choosing

the parameter βk .

Under appropriate hypotheses, global convergence of the sequence gener-

ated by both methods will be proved. The global convergence result obtained

for the algorithm based on the spectral ideas extends the convergence result

in [11]. For the Quasi Newton method that uses the Broyden update formula,

we obtain convergence using a Dennis-Moré type condition. We show that this

condition can be dropped out for a particular derivative-free line search. Thus,

both algorithms can be viewed as extensions of the well known methods de-

fined in [11] and [13] for square nonlinear systems.

We consider the usual continuously differentiable merit function f : Rn → R,

which consists in a measure of the residual F(x) at x , f (x) = 1
2‖F(x)‖2.

The iterative algorithms generate a sequence {xk}, for k = 1, 2, . . ., start-

ing from a given initial point x0. A subsequence of {xk} will be indicated by

{xk}k∈K where K is some infinite index set.

This paper is organized as follows. In Section 2 we present the algorithm

that performs the derivative-free line search and we establish there some of its

properties. In Section 3 we define DF-SAUNE Algorithm, a modification of
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DF-SANE Algorithm of [11] for handling efficiently problem (1) and we prove

the global convergence results. In Section 4 we define the Quasi Newton method

using the Broyden update formula and the derivative-free line search introduced

in Section 2. We analyze the conditions under which it is possible to obtain

global convergence. Both algorithms are tested and the numerical results are

presented in Section 5. Finally, some conclusions are drawn in Section 6.

Notation.

• ‖.‖ denotes the Euclidean norm.

• Given a matrix B ∈ Rm×n , N (B) denotes the null space of the matrix B.

• For i = 1, . . . , n; ei is the canonical vector in Rn .

• In denotes the identity matrix in Rn×n .

• g(x) = J (x)T F(x) = ∇( 1
2‖F(x)‖2).

2 The nonmonotone line search without derivatives

In this section we shall be concerned with the nonmonotone derivative-free line

search that will be used in the methods defined in the following sections. As

we mentioned before, the strategy is based on the line search proposed in [11].

Given the current iterate xk and a search direction dk , the algorithm looks for a

steplength αk such that

f (xk + αkdk) ≤ max
0≤ j≤M−1

f (xk− j )+ ηk − γα2
k f (xk) (4)

where M is a nonnegative integer, 0 < γ < 1 and
∞∑

k=0

ηk = η <∞.

This procedure combines the well known nonmonotone line search strat-

egy for unconstrained optimization introduced by Grippo, Lampariello and

Lucidi [9]:

f (xk + αkdk) ≤ max
0≤ j≤M−1

f (xk− j )+ γαk∇ f (xk)
T dk, (5)

with the Li-Fukushima derivative-free line search scheme [13]:

‖F(xk + αkdk)‖ ≤ (1+ ηk)‖F(xk)‖ − γα2
k‖dk‖

2. (6)

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/26 — 17:05 — page 221 — #5

N. ECHEBEST, M.L. SCHUVERDT and R.P. VIGNAU 221

The combined strategy (4) produces a robust nonmonotone derivative-free

line search that takes into account the advantages of both schemes. The line

search (4) is strongly based on the fact that the search direction comes from the

residual vector. For details we refer to [11]. In such paper this strategy was

implemented and tested using an extensive set of numerical experiments which

showed its competitiveness for square systems of nonlinear equations.

In this paper, given a general search direction dk , based on (5) and (6), we

consider the following line search condition:

f (xk + αkdk) ≤ max
0≤ j≤M−1

f (xk− j )+ ηk − γα2
k‖dk‖

2, (7)

where ‖dk‖2 takes the place of f (xk) in (4), obtaining a more general strategy.

For completeness, we establish here the implemented process.

Algorithm 1. Nonmonotone line search

Given d ∈ Rn , 0 < τmin < τmax < 1, 0 < γ < 1, M ∈ N, {ηk} such that

ηk > 0 and
∑∞

k=0 ηk = η <∞

Step 1: Compute f k = max{ f (xk), . . . , f (xmax{0,k−M+1})}

α+ = α− = 1

Step 2: If f (xk + α+d) ≤ f k + ηk − γα2
+‖d‖

2,

define dk = d , αk = α+, xk+1 = xk + αkdk

else if f (xk − α−d) ≤ f k + ηk − γα2
−‖d‖

2,

define dk = −d , αk = α−, xk+1 = xk + αkdk

else

choose α+new ∈ [τminα+, τmaxα+], α−new ∈ [τminα−, τmaxα−]

α+ = α+new, α− = α−new and go to step 2

Proposition 2.1. Algorithm 1 is well defined.

Proof. See Proposition 1 of [11]. �

The new algorithms for solving (1) will follow the next procedure.
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Algorithm 2. General Algorithm

Given x0, F(x0), M ∈ N, 0 < τmin < τmax < 1, 0 ≤ ε < 1, 0 < γ < 1, {ηk}

such that ηk > 0 and
∞∑

k=0

ηk = η <∞.

Set k ← 0.

Step 1: If ‖F(xk)‖ ≤ ε max{1, ‖F(x0)‖} stop.

Step 2: Compute a search direction dk .

Step 3: Find αk and xk+1 = xk + αkdk using Algorithm 1.

Update k ← k + 1 and go to Step 1.

By considering the procedure above it is possible to obtain results (see be-

low) that will be used in the next sections for obtaining the convergence results.

The proofs of Propositions 2.2 and 2.3 below follow from Propositions 2 and

3 in [11] updated for the line search condition (7). We establish them here for

completeness.

Proposition 2.2. For all k ∈ N consider

Uk = max{ f (x(k−1)M+1), . . . , f (xkM)}

and define ν(k) ∈ {(k − 1)M + 1, . . . , kM} the index for which f (xν(k)) = Uk .

Then for all k = 1, 2, . . .

f (xν(k+1)) ≤ f (xν(k))+ η

where η =
∞∑

i=0

ηi .

Proof. We have that

f (xk M+1) ≤ max{ f (x(k−1)M+1), . . . , f (xkM)} + ηkM − γα2
kM‖dkM‖

2

= Uk + ηk M − γα2
kM‖dkM‖

2 ≤ Uk + ηkM

then

f (xk M+2) ≤ max{ f (x(k−1)M+2), . . . , f (xkM+1)} + ηkM+1 − γα2
kM+1‖dkM+1‖

2

≤ max{Uk, f (xk M+1)} + ηkM+1 ≤ Uk + ηkM + ηk M+1.
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Thus, by an induction argument we obtain:

f (xkM+l) ≤ Uk +
l−1∑

j=0

ηkM+ j − γα2
kM+l−1‖dkM+l−1‖

2,

for l = 1, 2, . . ..

Since ν(k + 1) ∈ {kM + 1, . . . , kM + M}

Uk+1 = f (xν(k+1)) ≤ Uk +
M−1∑

j=0

ηkM+ j − γα2
ν(k+1)−1‖dν(k+1)−1‖

2.

Thus, for all k = 1, 2, . . . we have that

f (xν(k+1)) ≤ f (xν(k))+
M−1∑

j=0

ηkM+ j − γα2
ν(k+1)−1‖dν(k+1)−1‖

2 ≤ f (xν(k))+ η

as we wanted to prove. �

Proposition 2.3.

lim
k→∞

α2
ν(k)−1‖dν(k)−1‖

2 = 0.

Proof. For all k = 1, 2, . . . we have

f (xν(k+1)) ≤ f (xν(k))+
M−1∑

j=0

ηkM+ j − γα2
ν(k+1)−1‖dν(k+1)−1‖

2.

Writing the last inequality for k = 1, 2, . . . , L and adding these L inequali-

ties we obtain

f (xν(L+1)) ≤ f (xν(1))+
(L+1)M−1∑

j=M

η j − γ

L∑

j=1

α2
ν( j+1)−1‖dν( j+1)−1‖

2.

Therefore

γ

L∑

j=1

α2
ν( j+1)−1‖dν( j+1)−1‖

2 ≤ f (xν(1))+
(L+1)M−1∑

j=M

η j − f (xν(L+1))

≤ f (xν(1))+ η.
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Thus, the series
∞∑

j=1

α2
ν( j+1)−1‖dν( j+1)−1‖

2 is convergent and

lim
k→∞

α2
ν(k)−1‖dν(k)−1‖

2 = 0

as claimed. �

Proposition 2.4. The sequence {xk} generated by the General Algorithm is

contained in

� = {x ∈ Rn : f (x) ≤ f (xν(1))+ η}.

Proof. From Proposition 2.2 we have that, for all k ≥ 1,

f (xν(k+1)) ≤ f (xν(1))+ η.

Therefore, f (xk+1) ≤ f (xν(k+1)) ≤ f (xν(1))+ η as we wanted to prove. �

The results obtained up to here depend strongly on the line search technique

without taking into account the way in which the direction dk in the step 2 of the

Algorithm 2 was computed.

From now on we will consider the set

K = {ν(1)− 1, ν(2)− 1, ν(3)− 1, . . .} (8)

and from Proposition 2.3 we have that

lim
k∈K

α2
k‖dk‖

2 = 0. (9)

Observe that from the proof of Propositions 2.3 and 2.4 we obtain the

following result:

Proposition 2.5. If we take M = 1 in Algorithm 1 then

• the sequence {xk} generated by the General Algorithm is contained in

� = {x ∈ Rn : f (x) ≤ f (x0)+ η}.

• the series
∞∑

k=1

α2
k‖dk‖

2 is convergent.
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3 Derivative-Free Spectral Algorithm for solving Underdetermined Non-

linear Equations (DF-SAUNE)

In this section, we develop a derivative-free method based on the algorithm DF-

SANE [11] updated for the underdetermined case. DF-SANE is a derivative-

free method for solving square nonlinear systems that uses the n−dimensional

residual vector as a search direction together with a spectral step length and

a globalization strategy that produces a nonmonotone process. The spectral

coefficient is the inverse of an approximation of the Rayleigh quotient with

respect to a secant approximation of the Jacobian:

σk =
〈sk, sk〉

〈yk, sk〉
, (10)

where yk = F(xk)− F(xk−1), sk = xk − xk−1, see [2, 11].

The iterative process in DF-SANE can be viewed as a Quasi Newton method

considering the matrix Bk = 1
σk

In together with the iteration xk+1 = xk −

αk B−1
k F(xk) = xk − αkσk F(xk) where αk is computed using the derivative-free

nonmonotone strategy (4).

In order to solve the underdetermined case we propose to combine the idea

of the augmented Jacobian algorithm, see for example [29], with the spectral

residual vector explained above. In order to do that we consider Lm as the ceil

number of n
m , that is,

Lm =






n

m
if

n

m
∈ N

[ n

m

]
+ 1 if not.

For each j = 0, . . . , Lm − 1 we define the matrices E j ∈ Rm×n as fol-

lows. If Lm = n
m then E j is the matrix whose rows are the m canonical vectors

e jm+1, e jm+2, . . ., e jm+m in Rn . If Lm = [ n
m ] + 1 then for j = 0, . . . , Lm − 2,

E j is the same matrix defined above and ELm−1 is the matrix whose rows are

the m canonical vectors e(Lm−1)m+1, . . . , en, e1, . . ., eLm m−n in Rn .

Given xk , for j = 0, . . . , Lm − 1 we consider the direction dk+ j ∈ Rn as the

solution to the square linear system

1

σk+ j

(
E j

Vj

)
dk+ j =

(
−F(xk+ j )

0

)
(11)
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where E j was defined above, Vj ∈ R(n−m)×n is the matrix whose rows are the

canonical vectors in Rn that span N (E j ) and σk+ j is a spectral coefficient.

Thus we can observe that dk+ j = −σk+ j E T
j F(xk+ j ) and

‖dk+ j‖
2 =| σk+ j |

2 ‖F(xk+ j )‖
2. (12)

Once the direction dk+ j is obtained, the line search is performed using Algo-

rithm 1.

Observe that the system (11) is a square system that resembles the one used in

DF-SANE for obtaining its current direction.

Given an arbitrary initial point x0 ∈ Rn , the algorithm that allows us to obtain

the next iterate is given below:

Algorithm 3. DF-SAUNE

Given x0, F(x0), 0 < γ < 1, 0 < τmin < τmax < 1, σ0 = 1,

0 < σmin < σmax <∞, 0 ≤ ε < 1.

Set k ← 0.

Main Step: Given xk , F(xk), σk .

(1) If ‖F(xk)‖ ≤ ε max{1, ‖F(x0)‖}, stop.

(2) For j = 0 : Lm − 1

• Compute dk+ j = −σk+ j E T
j F(xk+ j )

• Find α j and xk+ j+1 = xk+ j + α j dk+ j using the Algorithm 1.

• If ‖F(xk+ j+1)‖ ≤ ε max{1, ‖F(x0)‖}, stop.

• Compute s = xk+ j+1 − xk+ j ,

y = F(xk+ j+1)− F(xk+ j ) and σ = 〈E j s,E j s〉
〈y,E j s〉 .

• If |σ | ∈ [σmin, σmax] define σk+ j+1 = σ . If not, choose σk+ j+1

such that |σk+ j+1| ∈ [σmin, σmax]

End

(3) Update k ← k + Lm and repeat the main step.

End
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By (9) we have that

lim
k∈K

α2
k‖dk‖

2 = 0.

Thus, using (12) and considering that each |σk | ∈ [σmin, σmax] we obtain that

lim
k∈K

α2
k f (xk) = 0. (13)

In the following Theorem we prove the main convergence result associated to

DF-SAUNE Algorithm. The proof follows the idea of the Theorem 1 in [11]

updated for the Algorithm 3.

Theorem 3.1. Assume that {xk}k∈N is the sequence generated by Algorithm 3.

Then, for every limit point x∗ of {xk}k∈K there exists an index j0 ∈ {0, . . . , Lm−1}

such that

〈J (x∗)T F(x∗), E T
j0 F(x∗)〉 = 0 (14)

Proof. Let x∗ be a limit point of {xk}k∈K . Thus, there is an infinite index set

K1 ⊂ K such that

lim
k∈K1

xk = x∗.

Then, by (13),

lim
k∈K1

α2
k f (xk) = 0. (15)

We have two possibilities:

(1) The sequence {αk}k∈K1 does not tend to zero;

(2) The sequence {αk}k∈K1 tends to zero.

In the first case there exists an infinite sequence of indices K2 ⊂ K1 such that

αk ≥ c > 0 for all k ∈ K2. Then, by (15),

lim
k∈K2

f (xk) = 0.

Since f is continuous this implies that f (x∗) = 0.

Suppose that case 2 happens. Once the direction dk was computed, in the step

2 of the Algorithm 1, one tests the inequality

f (xk + α+dk) ≤ f̄k + ηk − 2γα2
+σ

2
k f (xk). (16)
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If this inequality does not hold, one tests the inequality

f (xk − α−dk) ≤ f̄k + ηk − 2γα2
−σ

2
k f (xk). (17)

The first trial points at (16)–(17) are α+ = α− = 1. Since lim
k∈K1

αk = 0,

there exists k0 ∈ K1 such that αk < 1 for all k ∈ K1, k ≥ k0. Therefore, for

those iterations k, there are steps α+k and α−k that do not satisfy (16) and (17)

respectively for which

lim
k∈K1

α+k = lim
k∈K1

α−k = 0.

So, for all k ∈ K1, k ≥ k0, we have that

f (xk + α+k dk) > f̄k + ηk − 2γ (α+k )2σ 2
k f (xk), (18)

f (xk − α−k dk) > f̄k + ηk − 2γ (α−k )2σ 2
k f (xk). (19)

Since |σk | ∈ [σmin, σmax], we have that (18) implies

f (xk + α+k dk) > f̄k + ηk − γ (α+k )2 f (xk) (20)

and (19) implies

f (xk − α−k dk) > f̄k + ηk − γ (α−k )2 f (xk) (21)

where γ = 2γ σ 2
max.

The inequality (20) implies that

f (xk + α+k dk) > f (xk)− γ (α+k )2 f (xk).

So,

f (xk + α+k dk)− f (xk) > −γ (α+k )2 f (xk).

By Proposition 2.4, { f (xk)} is a sequence bounded above by a constant C > 0.

Thus,

f (xk + α+k dk)− f (xk) ≥ −γ C(α+k )2 (22)

which implies that

‖F(xk + α+k dk)‖
2 − ‖F(xk)‖

2 ≥ −γ C(α+k )2.
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So,
‖F(xk + α+k dk)‖2 − ‖F(xk)‖2

α+k
≥ −γ Cα+k .

By the Mean Value Theorem, there exists ξk ∈ [0, 1] such that

〈g(xk + ξkα
+
k dk), dk〉 ≥ −γ Cα+k .

Since Lm is finite there exists j0 ∈ {0, . . . , Lm − 1}, K2 ⊂ K1 such that, for all

k ∈ K2

dk = −σk

(
E T

j0
V T

j0

)
(

F(xk)

0

)

.

Thus, we have that

−σk

〈
g(xk + ξkα

+
k dk),

(
E T

j0
V T

j0

)
(

F(xk)

0

) 〉
≥ −γ Cα+k .

Now, if σk > 0 for infinitely many indices k ∈ K2 the last inequality implies

that, for k ∈ K2, k ≥ k0

〈
g(xk + ξkα

+
k dk),

(
E T

j0
V T

j0

)
(

F(xk)

0

) 〉
≤

γ Cα+k

σk
≤

γ Cα+k

σmin
. (23)

Using (21) and proceeding in the same way, we obtain that, for k ∈ K2,

k ≥ k0,

〈
g(xk − ξ

′

kα
−
k dk),

(
E T

j0
V T

j0

)
(

F(xk)

0

) 〉
≥ −

Cγα−k

σk
≥ −

Cγα−k

σmin
. (24)

for some ξ
′

k ∈ [0, 1].

Since {σk} and { f (xk)} are bounded we have that {‖dk‖} is bounded.

Then, using that α+k → 0, α−k → 0, and taking limits in (23) and (24), we

obtain that 〈
g(x∗),

(
E T

j0
V T

j0

)
(

F(x∗)

0

) 〉
= 0.

If σk < 0 for infinitely many indices, proceeding in an analogous way, we

deduce the same equation as we wanted to prove. �
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Remark 3.2. We have proved that there exists an index j0 ∈ {0, . . . , Lm − 1}

such that the gradient of ‖F(x)‖2 at x∗ is orthogonal to the residual E T
j0

F(x∗).

Note that when m = n, the result of Theorem 3.1 coincides with the conver-

gence result obtained in [11]. Thus, we can say that DF-SAUNE Algorithm is

an extension of DF-SANE.

Corollary 3.3. Assume that x∗ is a limit point of the sequence {xk}k∈K gener-

ated by Algorithm 3 and suppose that for all j ∈ {0, . . . , Lm − 1} we have that

〈J (x∗)E T
j v, v〉 6= 0 for all v ∈ Rn, v 6= 0. Then F(x∗) = 0.

4 Derivative-Free Quasi Newton method using the Broyden update for-

mula (DF-QNB)

In this section we will define a Quasi Newton method based on the Broyden

update formula for the matrices with the derivative-free line search defined in

Algorithm 1 and we will establish the convergence results.

We will define the search direction as an approximate solution to the linear

system Bkd = F(xk) and we will use the nonsquare rank one Broyden update

formula:

Bk+1 = Bk +
(yk − Bksk)sT

k

sT
k sk

(25)

where sk = xk+1 − xk and yk = F(xk+1)− F(xk).

As previously stated, the aim is to solve the linear system accurately when

it is possible and in an approximate way in any other case, as considered

in [14].

Algorithm 4. DF-QNB

Given x0, B0 ∈ Rm×n , F(x0), 0 < γ < 1, 0 ≤ θ0 < 1, 1 > 0, 0 < τmin <

τmax < 1, 0 ≤ ε < 1.

Set k ← 0.

Step 1: If ‖F(xk)‖ ≤ ε max{1, ‖F(x0)‖} stop.

Step 2: Computing the direction dk
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Step 2.1: Find d such that

Bkd + F(xk) = 0 and ‖d‖ ≤ 1. (26)

If such direction d is found, define dk = d, θk+1 = θk and go to

Step 3.

Step 2.2: Find a solution d of min
d∈Rn
‖Bkd + F(xk)‖.

If d satisfies

‖Bkd + F(xk)‖ ≤ θk‖F(xk)‖ and ‖d‖ ≤ 1 (27)

define dk = d, θk+1 = θk and go to Step 3.

Else, set dk = 0, xk+1 = xk , θk+1 =
θk+1

2 and go to Step 5.

Step 3: Find αk and xk+1 = xk + αkdk using Algorithm 1.

Step 4: Update Bk+1 using (25).

Step 5: Update k ← k + 1 and go to Step 1.

In [14], the subproblems in Step 2 were defined using two different matrices.

Remark 4.1. When m = n the Algorithm 4 is similar to the Algorithm defined

in [13], in the sense that both of them use the Broyden update formula. In [13]

the authors solve the linear system (2) by using the update (3). We acknowledge

that, in large scale problems, it is difficult to solve linear systems, even when they

do have a solution. Having that in mind we have tried to find an approximate

solution in the sense of (27) for those cases.

The following theorems establish the necessary hypotheses for obtaining the

convergence results.

Theorem 4.2. Assume that Algorithm 4 generates an infinite sequence {xk}.

Suppose that

lim
k→∞
〈(Bk − J (xk))dk, F(xk)〉 = 0 (28)

and there exists k0 ∈ N such that, for all k ≥ k0, θk = θ < 1. Then, every limit

point of {xk}k∈K is a solution of (1), where K is given by (8).
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Proof. Let x∗ be a limit point of {xk}k∈K , then there exists K1 ⊂ K such that

lim
k∈K1

xk = x∗.

We know that lim
k∈K

α2
k‖dk‖

2 = 0, so lim
k∈K1

α2
k‖dk‖

2 = 0.

We will consider two cases: a) lim
k∈K1

αk 6= 0 and b) lim
k∈K1

αk = 0.

Let suppose the first case. Then, we have that

lim
k∈K1
‖dk‖ = 0. (29)

(1) First we assume that in the process of the Algorithm 4, the direction dk

was calculated finitely times solving the linear system Bkd+ F(xk) = 0.

Then, there exists k1 ∈ K1 such that ∀k ≥ k1, k ∈ K1, dk verifies

the formula ‖Bkd + F(xk)‖ ≤ θk‖F(xk)‖. Thus, for all k ∈ K1,

k ≥ max{k0, k1} we have that

〈Bkdk, F(xk)〉 ≤
θ

2
− 1

2
‖F(xk)‖

2.

This implies that

〈(Bk − J (xk))dk, F(xk)〉 + 〈J (xk)dk, F(xk)〉 ≤
θ

2
− 1

2
‖F(xk)‖

2.

Taking limits for k ∈ K1, k ≥ max{k0, k1} in the last expression, and using

the continuity of F and J and (28)–(29), we obtain that

0 ≤
θ

2
− 1

2
‖F(x∗)‖2.

Since θ < 1, we have that ‖F(x∗)‖ = 0 as we wanted to prove.

(2) Let assume now that the direction dk was obtained infinitely many times

solving the linear system Bkd + F(xk) = 0.

Then, there exists K2 ⊂ K1 such that for all k ∈ K2 we have that Bkdk +

F(xk) = 0.

Thus, for all k ∈ K2,

〈(Bk − J (xk))dk, F(xk)〉 + 〈J (xk)dk, F(xk)〉 = −‖F(xk)‖
2.
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Taking limits for k ∈ K2, k ≥ k0 and using the continuity of F and J and

(28)–(29), we obtain that

‖F(x∗)‖ = 0.

Let suppose the case b). Since the sequence {dk}k∈N is bounded (and then it

is bounded in K1), there exists K2 ⊂ K1 and d̄ ∈ Rn such that lim
k∈K2

dk = d.

In the line search, to choose the step αk the algorithm DF-QNB tests the

following inequalities

f (xk + α+dk) ≤ f k + ηk − γα2
+‖dk‖

2 (30)

f (xk − α−dk) ≤ f k + ηk − γα2
−‖dk‖

2. (31)

The initial values of α+ and α− are 1. Since lim
k∈K2

αk = 0, there exists k ∈ K2

such that αk < 1 for all k ∈ K2, k ≥ k. Thus, for those iterations k there exist

steps α+k and α−k that do not satisfy (30) and (31) and lim
k∈K2

α+k = lim
k∈K2

α−k = 0.

So we have that

f (xk + α+k dk) > f k + ηk − γ (α+k )2‖dk‖
2 (32)

f (xk − α−k dk) > f k + ηk − γ (α−k )2‖dk‖
2. (33)

Considering (32), the following inequality holds

f (xk + α+k dk) > f k + ηk − γ (α+k )2‖dk‖
2 > f (xk)− γ (α+k )2‖dk‖

2.

Since ‖dk‖ ≤ 1 we obtain that

f (xk + α+k dk)− f (xk)

α+k
> −γα+k 12.

By the Mean Value Theorem there exists ξ+k ∈ [0, 1] such that

〈g(xk + ξ+k α+k dk), dk〉 > −γα+k 12. (34)

Considering (33), we have that

f (xk − α−k dk) > f k + ηk − γ (α−k )2‖dk‖
2 > f (xk)− γ (α−k )2‖dk‖

2.
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Since ‖dk‖ ≤ 1 we obtain that

f (xk − α−k dk)− f (xk)

α−k
> −γα−k 12.

By the Mean Value Theorem there exists ξ−k ∈ [0, 1] such that

〈g(xk − ξ−k α−k dk), dk〉 < γα−k 12. (35)

Taking limits in (34) and (35) when k →∞, k ∈ K2, we obtain that

〈g(x∗), d 〉 = 〈J (x∗)T F(x∗), d 〉 = 0.

Thus,

〈J (x∗) d, F(x∗)〉 = 0. (36)

Now, as we did before, we have to consider two cases: (i) the direction dk

was calculated finitely many times solving the linear system Bkd + F(xk) =

0; and (i i) dk was obtained infinitely many times solving the linear system

Bkd + F(xk) = 0.

Proceeding in analogous way as we did when lim
k∈K1

αk 6= 0 and using (28)

and (36) we obtain that

‖F(x∗)‖ = 0

as we wanted to prove. �

Observe that, according to Proposition 2.4, we have that ‖F(xk)‖ is bounded.

Thus, if

lim
k→∞

‖(Bk − J (xk))dk‖

‖dk‖
= 0

we obtain the hypothesis (28). The last condition is known as a necessary and

sufficient condition for obtaining q-superlinear convergence of classical Quasi

Newton methods [6].

If we can not guarantee that θk = θ̄ < 1 for k ≥ k0 then we can prove the

following result which is similar to one obtained in [14].

Theorem 4.3. Suppose that, in Algorithm 4, θk is increased infinitely many

times and define

K∗ = {k ∈ N | θk+1 > θk}.
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Assume that

lim
k∈K∗
‖Bk − J (xk)‖ = 0. (37)

Then, every limit point x∗ of the sequence {xk}k∈K∗ is a solution of (1) or it is

a global minimizer of ‖F(x∗)+ J (x∗)(x − x∗)‖.

Proof. If F(x∗) = 0 we are done. Let us assume that ‖F(x∗)‖ > 0. Suppose

that x∗ is not a global minimizer of ‖F(x∗) + J (x∗)(x − x∗)‖, therefore, there

exists d such that ‖d‖ ≤ 1
2 and

‖F(x∗)+ J (x∗)d‖ < ‖F(x∗)‖

thus
‖F(x∗)+ J (x∗)d‖

‖F(x∗)‖
≤ r < 1.

By (37) and the continuity of F and J , we have that

‖F(xk)+ Bk(x∗ − xk + d)‖

‖F(xk)‖
≤

r + 1

2
(38)

for all k large enough k ∈ K∗. But, since ‖d‖ ≤ 1
2 and lim

k∈K∗
xk = x∗ we have

that, for all large enough k ∈ K∗, ‖x∗ − xk + d‖ ≤ 1. So, (38) contradicts the

fact that: θk → 1 and a direction verifying (27) can be obtained. �

A point x∗ that is a global minimizer of the function ‖F(x∗)+ J (x∗)(x− x∗)‖

can be viewed as the solution of the linear least squares problem

min
x∈Rn
‖A(x − x∗)− b‖ (39)

where A = J (x∗) and b = −F(x∗). The linear function is the affine model

of the function F around x∗. We can not expect, in general, to find x∗ such

that F(x∗) = 0 since the problem could not have a solution. Likewise, we

can not expect to find x∗ such that F(x∗) + J (x∗)(x − x∗) = 0 since this is

an underdetermined linear system of equations and J (x∗) could not have full

rank. Because of that, it seems reasonable to find a global minimizer of (39)

when the problem has no solutions.
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4.1 Analysis of the case M = 1

In this subsection we analyze the case in which the derivative-free line search

used in Algorithm DF-QNB considers M = 1. By the presence of ηk the line

search is still nonmonotone but it imposes an almost monotone behavior of

the merit function when xk is close to a solution. Thus, M = 1 is plausible

considering we are working with a Quasi Newton method. M = 1, as pointed

out in [11], could be inconvenient for the spectral residual method because it

performs highly nonmonotone even in a neighborhood of an isolated solution.

Next, we will demonstrate that, in this case, our algorithm verifies the assump-

tion (28).

Firstly, under this case, using Proposition 2.5 it can be observed that

∞∑

k=1

‖sk‖
2 =

∞∑

k=1

α2
k‖dk‖

2 <∞. (40)

Secondly, it will be convenient to define the matrix

Ak+1 =
∫ 1

0
J (xk + tsk)dt.

Thus, Ak+1sk = yk and

Bk+1 = Bk +
(Ak+1 − Bk)sksT

k

‖sk‖2
.

Finally, we can use the result that appears in Lemma 2.6 of [13] and that we

present here for completeness.

Lemma 4.4 (Lemma 2.6, [13]). Let us suppose that the set � = {x ∈ Rn :

f (x) ≤ f (x0) + η} is bounded and that J (x) is Lipschitz continuous in �.

If (40) is verified then

lim
k→∞

1

k

k−1∑

i=0

ρ2
i = 0

where

ρk =
‖(Ak+1 − Bk)dk‖

‖dk‖
.

In particular, there is a subsequence of {ρk} tending to zero.
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Thus, we can prove the following convergence result.

Theorem 4.5. Assume that Algorithm 4 generates an infinite sequence {xk}, that

M = 1 in the line search and that the hypotheses of Lemma 4.4 hold. Then, if

there exists k0 such that θk = θ̄ < 1 for all k ≥ k0, there is a limit point x∗ of

{xk}k∈N that is a solution of (1).

Proof. By Proposition 2.5 we have that (40) holds. Thus, by Lemma 4.4, there

is a subset K̃ ⊂ N such that

lim
k∈K̃

‖(Ak+1 − Bk)dk‖

‖dk‖
= 0. (41)

Let x∗ be a limit point of the subsequence {xk}k∈K̃ . Note that

| 〈(Bk − J (xk))dk, F(xk)〉 |≤ ‖(Bk − J (xk))dk‖ ‖F(xk)‖

≤ (‖(Ak+1 − Bk)dk‖ + ‖(J (xk)− Ak+1)dk‖)‖F(xk)‖.

By Proposition 2.5 we have that ‖F(xk)‖ is bounded. Thus, taking limit

when k ∈ K̃ , k → ∞ and using that {dk} is bounded and (41), we obtain that

‖(Ak+1 − Bk)dk‖ → 0. Also, by definition of Ak+1 we obtain that ‖(J (xk) −

Ak+1)dk‖ → 0. Thus, we prove that (28) happens for k ∈ K̃ and the proof

follows from Theorem 4.2. �

Observe that this particular line search improves the results of Theorem 4.2.

5 Numerical experiments

In this section we present some computational results obtained with a Fortran 77

implementation of DF-SAUNE and DF-QNB algorithms. All experiments were

run on a personal computer with INTEL(R) Core (TM) 2 Duo CPU E8400 at

3.00 GHz and 3.23 GB of RAM.

As it is usual in derivative-free optimization articles we are interested in the

number of function evaluations for both codes. We also report for medium size

problems the CPU time obtained for both algorithms and we include a compar-

ison with NEWUOA algorithm developed by M.J.D. Powell for unconstrained

optimization [21]. In these experiments, NEWUOA algorithm solves the least

squares problem: min ‖F(x)‖2.
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5.1 Test problems

The problems used for these numerical experiments, of the form F(x) = 0,

F : Rn → Rm , m ≤ n, were a set of problems defined by feasible sets of non-

linear programming problems in Hock and Schittkowski [10], where the number

of variables ranges from 2 to 10, and the number of equations from 1 to 4.

Also, conceiving tests for larger dimension problems, we tested some problems

described in [5]. Some of the test problems analyzed here have been previously

examined in [7] for problems with bound constraints and using derivatives in

order to achieve similar results to those pursued here; that is, to solve under-

determined nonlinear systems.

In Table 1 we show the data of the problems. In column 1 we show the number

of the problem, in column 2 the source of the problem and in the last columns

the number of equations (m) and variables (n).

Initial points were the same as in the cited references.

Remark 5.1. The case (a) in Problems 2 and 4 of [5] corresponds to the use

of the initial point x0(1 : n) = 2. The case (b) in Problem 2 and 4 of [5]

corresponds to the use of x0(1 : n) = 150 as initial point.

5.2 Implementation

In the implementations of DF-SAUNE and DF-QNB algorithms:

1. The parameters for Algorithm 1 were:

M = 2, τmin = 0.1, τmax = 0.5, γ = 10−4, η0 = 1,

• ∀ k ∈ N, k ≥ 1 ηk =
‖F(x0)‖

2k
for small size problems.

• ∀ k ∈ N, k ≥ 1, ηk =
‖F(x0)‖

(1+ k)2
for medium size problems.

2. The parameters for DF-SAUNE Algorithm were:

ε = 10−6, σ0 = 1, σmin = 10−10, σmax = 1010.

3. The parameters for DF-QNB Algorithm were:

ε = 10−6, θ0 = 0.95, 1 = 1012.
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Problem Source m n

1 Problem 6 of [10] 1 2
2 Problem 7 of [10] 1 2
3 Problem 8 of [10] 2 2
4 Problem 26 of [10] 1 3
5 Problem 27 of [10] 1 3
6 Problem 39 of [10] 2 4
7 Problem 40 of [10] 3 4
8 Problem 42 of [10] 2 4
9 Problem 46 of [10] 2 5

10 Problem 47 of [10] 3 5
11 Problem 48 of [10] 2 5
12 Problem 53 of [10] 3 5
13 Problem 56 of [10] 4 7
14 Problem 61 of [10] 2 3
15 Problem 63 of [10] 2 3
16 Problem 77 of [10] 2 5
17 Problem 78 of [10] 3 5
18 Problem 79 of [10] 3 5
19 Problem 81 of [10] 3 5
20 Problem 111 of [10] 3 10
21 Problem 2(a) of [5] 150 300
22 Problem 2(b) of [5] 150 300
23 Problem 4(a) of [5] 150 300
24 Problem 4(b) of [5] 150 300
25 Problem ARWHEAD of [21] 149 150
26 Problem ARWHEAD of [21] 299 300

Table 1 – Data of the problems.

4. In DF-QNB, the first B0 matrix was computed by finite differences as an

aproximation to the Jacobian matrix in x0.

5. In DF-QNB, we have used ACCIM algorithm described in [27] to find

a solution to Bkd = −F(xk). For solving the least squares problem

min
‖d‖≤1

‖Bkd + F(xk)‖
2 we have used BVLS algorithm described in [28].

6. The stopping condition for the two new algorithms was:

‖F(xk)‖ ≤ 10−6 max{1, ‖F(x0)‖}.
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7. The maximum number of function evaluations allowed was:

• M AX F E = 5000, for small size problems,

• M AX F E = 15000, when n = 150,

• M AX F E = 30000, when n = 300.

For DF-QNB method we have also added the required evaluations to cal-

culate the initial matrix B0.

The implementation of NEWUOA is the original version of M.J.D. Powell

[21] with its stopping criterion, that is, the algorithm stops when the trust-

region radius is lower than a tolerance ρend = 10−6. As previously mentioned,

NEWUOA algorithm solved the least squares problem min ‖F(x)‖2 in our trials.

5.3 Numerical results

In Table 2 we show the results obtained by DF-SAUNE (DF-S) and DF-QNB

(DF-B) algorithms taking into account the final value ‖F(xend)‖ and the number

function evaluations. The results correspond to the stopping criterion satisfac-

tion or to internal conditions that do not allow further improvement.

Table 2 also shows the number of problems (column 1), the number of itera-

tions (Iter, column 2), the number of function evaluations (Feval, column 3), and

the final functional values obtained for both codes (‖F(xend)‖, column 4).

These results illustrate DF-QNB effectiveness, although DF-SAUNE has also

a satisfactory behavior. We can see in 15 out of the 20 test problems DF-QNB

used less function evaluations than DF-SAUNE. It is also worth mentioning

that when DF-QNB requires more function evaluations than DF-SAUNE such

difference becomes particulary significant. These problems are too small to

consider useful showing CPU time readings.

In problem 5, we have seen that, in many interations the norm of the solution

dk of the linear system Bkd + F(xk) = 0 is bigger than 1 and, in those iter-

ations, DF-QNB has to solve subproblem (27). Because of that, the decrease

of the merit function ‖F(x)‖ is very slow and the algorithm requires many

functional evaluations.

In problem 19, DF-SAUNE, stopped without obtaining a satisfactory decrease

in the residual when reaching the maximum number of function evaluations
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Iter Feval ‖F(xend)‖
Problem

DF-S DF-B DF-S DF-B DF-S DF-B

1 83 4 85 7 2.555333D-08 1.460382D-08

2 44 62 70 844 5.616128D-08 8.074138D-06

3 52 10 54 19 1.852329D-07 1.029118D-06

4 49 61 85 929 1.487057D-07 1.188074D-07

5 1 251 2 4815 0.0D+00 1.341756D-06

6 57 30 105 76 5.707520D-08 3.311382D-08

7 122 5 327 10 8.140108D-09 7.144642D-09

8 56 15 137 20 9.481413D-09 8.774760D-07

9 143 19 448 25 9.368079D-08 8.287063D-06

10 80 8 133 14 1.483448D-08 6.553991D-07

11 1 1 4 7 0.0D+00 5.264796D-06

12 1 1 3 7 0.0D+00 1.026234D-09

13 92 5 163 13 5.098483D-08 3.366883D-07

14 101 10 206 22 3.382254D-08 1.863196D-09

15 67 7 134 16 7.382254D-08 2.947364D-07

16 54 10 125 16 3.911728D-07 2.765711D-07

17 318 6 1176 12 2.243582D-06 1.839195D-07

18 68 7 169 13 6.362777D-08 1.753428D-06

19 696 8 5000 14 1.137512D-01 1.641720D-08

20 132 12 461 29 1.200486D-08 4.219128D-09

Table 2 – Small size problems.

allowed. We believe that the bad perfomance of DF-SAUNE it is related to the

strategy used to define the matrices E j when n
m /∈ N. We think that it is an

interesting future work to study a better strategy to complete the last matrix E j

in that specific case.

In Table 3 we show the number of iterations, number of function evaluations

and the CPU time in seconds required by DF-SAUNE, DF-QNB and NEWUOA

algorithms running the medium size problems 21, 22, 23, 24, 25 and 26. In that

table we indicate the number of equations (m) and variables (n) of the problems.

Firstly, an overall review of the numerical results shows that final residual

values are similar for all tested methods.

Secondly, we observe DF-SAUNE performed a more significant amount of

function evaluations in the last two problems. It should be highlighted that CPU
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Problem Method Iter Feval ‖F(xend)‖ CPU

DF-SAUNE 105 123 1.096064D-06 0.01
21 DF-QNB 2 303 4.544647D-11 0.05

NEWUOA 3768 5765 4.681655D-10 245.12

DF-SAUNE 440 566 1.656464D-08 0.04
22 DF-QNB 1 302 2.002649D-05 0.05

NEWUOA 4010 6043 4.284213D-10 270.10

DF-SAUNE 147 185 5.481636D-06 0.01
23 DF-QNB 128 649 4.283559D-06 2.43

NEWUOA 15472 30000 8.203095D-07 1286.79

DF-SAUNE 94 122 9.933035D-07 0.01
24 DF-QNB 394 731 7.489404D-05 9.67

NEWUOA 18874 29205 1.334399D-07 1248.00

DF-SAUNE 3476 9848 2.696620D-07 0.34
25 DF-QNB 13 164 3.628420D-05 4.23

NEWUOA 7533 15000 1.092628D-09 124.15

DF-SAUNE 3001 8664 1.393098D-06 0.33
26 DF-QNB 13 314 5.139963D-05 52.20

NEWUOA 15072 30000 1.453638D-08 1237.54

Table 3 – Medium size problems.

time for DF-SAUNE was always substantially shorter than the one for DF-QNB.

The reason is that DF-QNB algorithm has to solve a linear system of equations

or a least squares problem in every iteration.

Finally we ran the well known NEWUOA solver in order to measure the number

of function evaluations of our algorithms. Although NEWUOA was designed to

solve unconstrained optimization problems, we can conclude that our methods

performs satisfactorily.

6 Conclusions

Many practical optimization methods require specific algorithms for obtaining

feasible points at every iteration. Thus, our aim in this paper was to define

algorithms capable of dealing with the feasible set defined by nonsquare sys-

tem of equations. We present two derivative-free algorithms that exploit this

structure: one of them is based on the spectral residual approach and the other
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on the Broyden Quasi Newton method. The algorithms can be viewed as gen-

eralizations of the algorithms defined in [11] and [13], the last one combined

with [14].

From a theoretical point of view we were able to obtain some convergence

results. Under usual assumptions on the Jacobian matrix we establish global

convergence of the scheme that uses the spectral residual idea. This convergence

result can be seen as the underdetermined counterpart of the result presented

in [11] for the square case.

For the Broyden Quasi Newton method we obtain global convergence under a

Dennis Moré type condition. We have shown that this condition can be dropped

out for a particular line search. It remains a challenge to reduce the restrictive

hypotheses required in Theorem 4.3 of Section 4.

Numerical experiments suggest that the algorithms behave as expected. We

consider both approaches are promising even though we also believe that it is

necessary to test a more challenging set of problems in order to decide which

is more suitable. Furthermore, such decision could depend on the requirements

of each user.

Since many nonlinear programming problems have also box constraints, future

research will consider the extension of this type of algorithms to solve under-

determined nonlinear systems with bound constraints.
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