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Two-Dimensional Adaptive Block Kalman Filtering

of SAR Imagery

Mahmood R. Azimi-Sadjadi, Senior Member, IEEE, and Sami Bannour, Student Member, IEEE

Abstract-Speckle effects are commonly observed in synthetic
aperture radar (SAR) imagery. In airborne SAR systems the
effect of this degradation reduces the accuracy of detection sub­
stantially. Thus, the elimination of this noise is an important
task in SAR imaging systems. In this paper a new method for
speckle noise removal is mtroduced using 2-D adaptive block
Kalman filtering (ABKF). The image process is represented by
an autoregressive (AR) model with nonsymmetric half-plane
(NSHP) region of support. New 2-D Kalman filtering equations
are derived which take into account not only the effect of spec­
kles as a multiplicative noise but also those of the additive re­
ceiver thermal noise and the blur. This method assumes local
stationarity within a processing window, whereas the image can
be assumed to be globally nonstationary. A recursive identifi­
cation process using the stochastic Newton approach is also
proposed which can be used on-line to estimate the filter pa­
rameters based upon the information within each new block of
the image. Simulation results on several images are provided
to indicate the effectiveness of the proposed method when used
to remove the effects of speckle noise as well as that of the ad­
ditive noise.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) systems are used in

many applications including space imagery. The pop­

ularity can be attributed to a great extent to their along­

track linear resolution characteristic, which is indepen­

dent of range. However, since SAR systems rely upon

coherence properties of the scattered signals they are

highly susceptible to speckles. Speckles appear in SAR

images as tiny spots with varying intensities. The source

of this noise is attributed to random interference of wave­

lets scattered by the microscopic fluctuations of the object

surface within one resolution element. The presence of

the speckle noise in an imaging system reduces the reso­

lution by as much as a factor of seven and is particularly

severe in low contrast images. Therefore, the suppression

of this noise is an important consideration in the design

of coherent imaging systems. Speckles have the charac­

teristics of a random multiplicative noise in the sense that

the terrain backscatter (the desired image) is multiplied

by a stationary random process which represents the ef­

fects of coherent fading [1]. This modeling is only valid

when the bandwidth of the signal is small compared with
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that of the imaging device [2]. Another constraint which

makes the restoration process in the presence of speckle

noise different from the standard minimum mean squared

error (MMSE) filtering scheme is that for radar, the signal

is nonstationary since the mean backscatter changes with

the type of target being sensed, despite the fact that the

noise can be modeled as stationary.

Basically SAR speckle reduction techniques fall into

two categories. The techniques in the first category in­

volve noncoherent integration, which aims at improving

the appearance of SAR images by averaging several un­
correlated frames from nonoverlapping spectra [3], [4].

This averaging process increases the SNR by a factor of

M I
/

2 where M is the number of frames. While these meth­

ods are effective for speckle reduction, they require mul­

tiple frames of the speckled images and do not take into

account a statistical model for the image. Moreover, they

fail to consider the effects of other degradations such as

the receiver thermal noise, the radiometric quantization

noise, which are additive, and blur. In recent years, ap­

plication of digital image restoration techniques to SAR

image processing has attracted considerable attention.

These, known as post-image formation methods, involve

developing statistical models for the signal (terrain back­

scatter) and the noise and then making use of either the

standard frequency domain methods such as Wiener fil­

tering [5]-[7] or recursive filtering using Kalman filters

[8]. The major disadvantage of the former class of tech­

niques is that they are inherently space invariant and do

not account for the nonstationarity in the image. More­

over, they are not effective when the image is corrupted

by multiple degradations. The recursive filtering tech­

niques may also suffer from the same deficiency if the

image is assumed to be globally stationary. However, the

assumption of stationarity may be applied to small re­

gions. In this case, it is necessary to adapt the filter pa­

rameters to the local changes in the image.

Several nonlinear and adaptive image restoration tech­

niques have been proposed over the past few years. An­

derson and Netravali [9] used a subjective error criterion

based on human visual system models and derived a non­

recursive filter. Abramatic and Silverman [10] general­

ized this method and related it to the classical Wiener fil­

ter. Ingle and Woods [11] proposed a composite image

model using the reduced update Kalman filter (RUKF).

This method which takes into account the specific corre-
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(6)

and modeled by an M x M order causal AR model given

by

x(m, n) = L:L: ap.qx(m - p, n - q) + u(m, n) (I)
p.qEW

The parameters of the AR model, i.e., <.» can be eval­

uated based upon the global estimates of the autocorrela­

tion sequence of the image on a finite window. Let the

autocorrelation sequence of the image {x(m, n)} be de­

noted by

rlk, l) : = E[x(m, n)x(m - k, n - I)] (5)

then the normal equation obtained from (1) is

(p, q) E W. (4)E[u(m, n)x(m - p, n - q)] = 0

where x(m, n) represents the pixel intensity at location (m,

n); u(m, n) is a white noise sequence which drives the

process; and ap . q' s are the reflection coefficients of the AR

model. For an AR model with NSHP region of support,

the prediction window W is given by

W = {p, q: I -s p -s M, -M -s q -s M, and

p = 0, 1 -s q -s M}. (2)

The region of support of this model is shown in Fig. I.

The statistics of the driving process u(m, n) are

E[u(m, n)] = 0

E[u(m + k, n + I)u(m, n)] = (J~o(k, I) (3)

where (J~ is the variance of the error u(m, n); o(k, I) is

the Kronecker delta function and E is the expectation op­

erator. The orthogonality property of the minimum vari­

ance estimator gives

Now, the parameters of the AR model, ap.q's and the vari­

ance of the driving noise, ( J ~ , can be obtained [21], [22]

by solving the system of normal equations (6). Having

evaluated these parameters, the AR model (1) can then be

arranged into a 2-D block recursive form. The direct ex­

tension of the block processing method [23] to AR models

with NSHP region of support leads to structures which

exhibit noncausality and hence cannot be implemented re­

cursively. Gnanasekaran [24] and Lee [25] proposed dif­

ferent 2-D block structures for models with NSHP and

SHP regions of support. However, their block structures

are computationally laborious and incompatible with the

structure of the 2-D Kalman filter. In this section a new

2-D block recursive structure for AR models with NSHP

region of support is derived based upon the idea of ar­

ranging the pixels in a diagonal block form. We begin by

defining the (i, j)th diagonal block of size K x L by

X,.j = [X'K(jL + L - 1)X'K(jL + L - 2) ... X'K(jL)f

(7a)

II. A 2-D BLOCK DIAGONAL MODEL FOR THE IMAGE

PROCESS

Consider an image of size N x N which is scanned row

by row from left to right and top to bottom. The image is

assumed to be represented by a zero mean Markov field

lation directions results in a bank of Kalman filters run­

ning in parallel. Rajala et al, [12] proposed an adaptive

Kalman filtering scheme based upon partitioning the im­

age into disjoint regions according to the local spatial ac­

tivity determined by the directional derivative informa­

tion. Other features of this method include the use of

nearest neighbor algorithm to determine the best previous

states and a 2-D interpolation scheme to improve the es­

timates of the initial states in each region. Another ap­

proach, which is based upon continuous adaptation of fil­

ter parameters during the scanning process in a local

window, has been proposed by Lee [13]. Later, he used

this approach for speckle noise removal using Sigma fil­

ters [14]. However, this approach does not consider a

model for the image process. Kuan et al. [IS] extended

Lee's local statistics algorithm to the case of nonstation­

ary mean-nonstationary variance (NMNV) image model.

Frost et al. [16] addressed the problem of optimum

MMSE filtering of images in the presence of multiplica­

tive noise with particular application to SAR. By using

the locally estimated parameter values, the filter is made

adaptive. However, it is shown that [17] their model is

not optimum in the MSE sense. More recently, Kuan et

al. [18] derived a local MMSE (LMMSE) filter based

upon a NMNV image model which accounts for the cor­

relation properties of the speckle noise. Azimi-Sadjadi

[19], [20] introduced a 2-D adaptive block Kalman filter

(ABKF) which can be used to remove the effects of mul­

tiple degradations from SAR images.

In this paper a new method for speckle noise reduction

is proposed. An adaptive block Kalman filtering (ABKF)

scheme is developed which takes into account the effects

of multiple degradations due to speckle noise, additive

receiver thermal noise, and linear space invariant (LSI)

blur. For an autoregressive (AR) image model with non­

symmetric half plane (NSHP) region of support a new

2-D block state-space model is derived in Section II in

which the states propagate in two directions. The degra­

dation process due to speckle, additive noise, and blur is

also modeled by a block equation in Section III. In Sec­

tion IV, these equations are combined to form a complete

block dynamic model for the entire process. For this

model a set of 2-D Kalman filter equation is derived which

accounts for the effects of multiple degradations. A new

2-D recursive identification procedure is developed in

Section V which can be used on-line to adjust the AR

model parameters in each processing window. In Section

VI the simulation results on an SAR image degraded by

speckle noise and additive noise are presented and a com­

parison between the proposed scheme and other locally

adaptive methods is made.
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fi A NSHP Region of Support
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Fig. I. An NSHP region of support of the AR model.
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XiK(jL + I) = [x(iK, jL + l)x(iK + I,

jL + I - M) . . . x(iK + K - I,

jL + I - (K - I)M)]. (7b)

i E [0, (IN/Kl - I)],j E [0, IN/Ll]

(8b)

+ A,_IXi _ I.) + , + Vi.) = 0 (8a)

or

The arrangement of pixels in a diagonal block is shown
in Fig. 2. From an implementation point of view, the op­
timal choice for the length of each diagonal, i.e., K is
found to be (M + I). It is also observed that the minimum
width for each block is L = M(M + I). These issues will
be discussed later in this section. Now, writing the AR
equation for each pixel in a diagonal block (i, j) and ar­
ranging them into a block vector yields the following 2­
D block equation which is somewhat similar to that of the
quarter plane case [23].

where

(l2b)x.: = CSi .)

s., = [X:_ I,)X:- 1,)+ IX:.)_IXU
f

(II)

then this local state can be expressed in terms of the past
states. Using the block recursive equation (8) the follow­
ing 2-D block state-space model can be obtained.

where

Note that in these matrices the elements <:» are set to
zero if either p or q goes outside the region Wand aOO =
-I. As evident from the 2-D block recursive equation
(8), the current diagonal block Xi.) can be evaluated from
the past three blocks Xi_ 1.)' Xi.) _ I> Xi_ I.) + I and a block
of driving noise sequence Vi.). Fig. 2 illustrates the di­
agonal block processing and the formation of the process­
ing window P. In this figure a second-order AR model
with NSHP region of support is arranged in a diagonal
block form of length 3 and width 6. As can readily be
seen choosing blocks with smaller width than 6 in this
case would lead to a block recursive equation with more
terms on the past blocks. Note that if the block width is
reduced to I, the block recursive equation will contain the
same number of terms as in the scalar AR model. Now,
if we define the local state vector in processing window
Pas

Si.) = AO.1Si.)-1 + A1._1Si_I.)+1 + BVi.). (l2a)

The current block Xi.) can be extracted from Si.) using

(9)

KLxKLAoo

Aoo=

where I l represents the ceiling operator

Boo = -Ai;'}

(8c)

Matrices Al _ I and A IO are similarly defined in which A/s
are replaced by Ai's. The block matrices A/s and Ai's
are themselves either lower or upper triangular Toeplitz
given by

and Vi.) represents a block of white noise sequence {u(m,
n)} defined in a manner similar to (1). The matrices Au's
that are either lower or upper triangular block Toeplitz are
defined as
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i

Global State at {i , j) th

Iteration
o Pixels that are estimated in the past blocks .

• Pixels to be estimated in the present block.

Fig. 2. 2-D diagonal block processing.

state vector Si.j _ I and one block of the old state vector

Si-l,j+ I by shifting and data extraction (see Fig. 3). The

last block of Si.j, i.e., X i• j, is evaluated from these three

blocks and a block of driving noise, Ui], via the 2-D block

recursive equation (8b). The state vector Si,j propagates

in two directions; the lower and upper right blocks are

needed when the processing is moved to the next pro­

cessing window; the lower left block is needed when the

processing is moved to the next strip. As a result, the lo­

cal state at location (i, j) only consists of Si,j _ I and

S,_ \,j + I state vectors whereas the global state at this lo­

cation includes all (Q + 1) blocks Si-I.b k E [j, Q] and

Si,l, l E [O,} - 1], Q:= (iN/Ll + 1) on the two ad­

jacent strips. A pointer is used to keep track of the head

of the global state vector. This process is known as re­

duced updating of the global state vector [11]. The local

and global states are shown in Fig. 3.

Fig. 3. Local and global state vectors when processing (i, j) the block.

Local State Si.j: § Past State Si,j-1: ~

As can be observed from this state-space model the cur­

rent local state, Si,j, consists of four blocks. The first three

blocks in Si,j are obtained from two blocks of the previous

y(m, n) = [y(m, n) . x(m, n)]**h(m, n) + v(m, n)

(13)

III. OBSERVATION MODEL

The image generated by the SAR is actually an image

with complex values. The recorded intensity image is

equivalent to a coherent image passed through a square­

law detector. The coherent image may be considered a

reflectance image multiplied by a Gaussian probability

distribution linearly transformed by passing through a low­

pass filter whose bandwidth is inversely proportional to

the resolution [3]. The Gaussian distribution results from

the central-limit theorem and the fact that there are many

independent scatterers, The square-law detector changes

this Gaussian probability distribution to a negative expo­

nential distribution which has been shown to be reason­

able for fully developed speckle. For this negative expo­

nential distribution the mean is equal to the standard

deviation. This fact indicates the multiplicative nature of

the speckle, that is, the higher the average intensity, the

noisier the area appears. In order to assure that the statis­

tics of the polarized components of the detected intensity

have a negative exponential distribution and that the spec­

kle be modeled by a multiplicative noise, we assume that:

(a) The object is sufficiently rough compared to the ra­

dar wavelength to produce fully developed speckle in the

image plane [3];

(b) There is a sufficiently large number of independent

scatterers within one resolution cell [2], [3];

(c) The elements of the detector array are small com­

pared to the speckle size [1].

With the above assumptions the recorded image in

presence of both multiplicative speckle noise and additive

thermal noise can be modeled as

where in this case him, n) is the point spread function

(PSF) of the radar system; -y(m, n) is a scalar white se­

quence with nonzero mean I-'--y and variance ~ which rep­

resents the speckle noise; v(m, n) is a scalar white noise

sequence with zero mean and variance u;, which repre-

(12c)

:/

Past State Si-1,j+1: I ~ : : : : : j

//
/////-

[ ~ t ~ ~ J

[ ~ ~ ~ LJ

[ ~ J and C = [0 0 0 I].

~oo '

B=

AO• 1

Global State: 0
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sents additive thermal noise; x(m, n) is the desired uncor­

rupted image; y(m, n) is the corrupted recorded image and

** represents 2-D linear convolution operation. If we ~­

sume that the support region of the PSF is limited to W,
W = W U (0, 0) the observation model in block form

becomes

and matrices H/s are block Toeplitz matrices with Toe­

piitz blocks defined in terms of h(m, n) similar to Au's in

(9) and (10); ri,j is a diagonal matrix consisting of speckle

noise samples -y(m, n) within one window forming from

four blocks of data; Vi •j represents a block of additive

white noise v(m, n); and finally Y;.j is a block of received

(degraded) image.

In what follows the block equations (12) and (14) for

the image and the degradation processes are combined to

form the complete dynamic equation needed for the Kal­

man filtering. Then the relevant 2-D BKF equations are

derived.

E[Zi.jZU = Rz(i,)) (18)

which is given by

Rz(i, j) = /l;HPh(i, j)H
t + a;[a~(i, j)

+ /l;(i, ))]HH
1 + a;,1 (19)

(l7f)

(l7c)

(l7d)

(17e)

x. = es. . (l7g)
I.J I.J

where S· . and S. .are respectively, the a priori (before
I.) I.j' .

the updating) and the a posteriori (after the updatmg) sub-

optimal estimates of Si.); Zi.) is the innovation sequence

that is, Zi.j = Yi.j - /lyHSi.j with zero mean and corre­

lation matrix

+ AO.IPc(i,j)AII.-I

+ AI._IPC<i,))tA~.1 + BBta~

K i.j = /lrPb(i, ))H
1
Rz'a, j)

Si.j = s., + Ki.jZi.j

~ ~ I

Pii, j) := E[(Si.) - Si.))(Si.) - Si)]

= [I - /lrKi.jH]Pb(i,))

(14a)

(14b)

Y;.j = Hri.jSi.j + Vi.j

where H is given by

H = [HIOHI - 1HOIH oo]

Pb(i, j) and Pii, j) are the a priori and the a posteriori

error covariance matrices, respectively; Pc(i, j) is the er­

ror cross-covariance matrix; K i . j is the Kalman gain ma­

trix; and a~(i, j) and /lAi, j) represent the local variance

and the local mean of the original image in the (i, j)th

block, respectively.

IV. BLOCK DYNAMIC MODEL AND KALMAN FILTER

EQUATIONS

Combining the image generation model in (12) and the

observation model in (14) would yield a complete block

dynamic model with uncertain observation [26], [27] due

to the presence of the multiplicative noise. This 2-D block

state-space dynamic model is

Si,j = AO.ISi.j-1 + AI._ISi_l.j+1 + BUi.j (I Sa) Remarks

E[V;.j] = 0

E[ri,) = /lr l

E[V;.j V; -m.j - n] = a;,1 ii(m, n)

E[ri.jr:-m.j-n] = a;lii(m, n) + /l;1

E[Ui.jU:-m.j-n] = a~/ii(m, n). (16)

The 2-D Kalman filter equations for the model in (15) are

derived as

s., = AO.1Si.)-1 + AI.-1Si-I.j+1 (l7a)

where

.... ~ t

Pc(i, j) : = E[(Si.j-1 - Si.)-I)(Si-I.j+ I - Si- I.j+ I)]

= [I - /lrKi.j-IH]AI.-IPii - I,j)

. Ab.I[I - /lrKi-l.j+ I Hy

Pii, j) : = E[(Si.) - Si)(Si.) - Si./]

= Ao.1Pa(i, j - l)A~.1

+ AI.-1Pa(i - I,) + I)A
1

1._1

(l5b)

(17b)

1. For the 2-D state-space model (15) to be BIBO sta­

ble, it is necessary that all the eigenvalues of matrices Ao. I

and A I _ I be in the interior of the unit circle [28].

2. The eigenvalues of matrix [I - /lyKi.jH], \;Ii.j must

be in interior of the unit circle in order to have an asymp­

totically stable filter [29].

3. The error covariances are decaying functions in dis­

tance.

4. As a consequence of remarks (1)-(3), all the higher

order terms in the a priori error covariance expression

(17c) are neglected. As a matter of fact, our simulation

results indicate that the cross term PJi, j) is also consid­

erably small in comparison with the first two terms in Ph(i,

)) and thus may be neglec~ed.

5. In order to evaluate Si.j in (17a) we need t~ keep the

updated estimates of the past local states, s., _1 and

Si - I.j + J, in the glo~al state which consistJ of all the (Q

+ I) state vectors s.. I.b k E [j, Q] and Si./' IE [0, j ­
I] in two adjacent strips. Similarly, in order to compute

Pc(i, j) and Ph(i, j) in (l7b) and (17c) we need to store

all the past Pa's and K's namely Pa(i,) - I), PlI(i - I,

j), PlI(i - I,) + I), K i.j- I and K, : I.j+ I in the global

storage for these matrices. The storage of K's may be

avoided if in the computation of Ph(i, j) the terms asso-
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ciated with Pc(i, j) are neglected. To avoid saving all these

states and matrices, a new Kalman filtering scheme is sug­

gested in [30] which requires only the local states and

local Pa and K matrices.

6. In the above Kalman filtering equations the assump­

tion is that the image is stationary within one window

(small region). The term [O'~(i, j) + IJ-~(i, j)] in (19) for

the special case when H = [0 0 0 /], i.e., no blur,

can be obtained from the local statistics in the (i, j)th

block of the observed image. The covariance matrix for

the observed image in the (i, j)th block is

Cy(i, j) := (Yi,j - Y;)(Yi,j - Yi,/

= [H(ri,jSi,j - /.<5i ) + Vi,j]

. [(s:,jr:,j - lJ-ySi,)H1 + VU

= H(ri,jSi.jS:.jrLj - IJ-~S7)HI + Vi.j V:.j,

(20)

where" " represents the mean of the relevant vector.

Taking the trace of both sides and dividing by KL yields

O'_~(i, j) = O'~IJ-;(i, j) + (O'~ + IJ-~)O';(i, j) + 0';,. (2la)

Note that

IJ-x(i,j) = IJ-/i,j)/IJ--y (2Ib)

where O'~(i, j) and IJ-I'(i, j) are the local variance and the

local mean of the observed image in the (i, j)th block,

respectively. Knowing the statistics of the speckle noise,

(21a) and (21b) can be used to find O';(i, j) and IJ-x(i, j).

Note that for a one-look image the mean and variance of

y(m, n) are unity [1].

The 2-D BKF equations in (17) provide an adaptive lo­

cal estimator in which the Kalman gain matrix is adjusted

based upon the local statistics within each block via (19)

and (l7d). If further improvement in the performance of

the filter is required, the adaptation should also account

for the changes in the AR model parameters in addition

to those in (19). This topic is addressed in the following

section.

This applies to any other block vector in the model. Now,

the 2-D block state-space equation (15) in space varying

form which accounts for local changes in statistics within

one window becomes

S, = Ao.,(<t»Sk-' + A1,-I(<t»Sk-Q+1 + B(<t»Uk (23a)

Yk = nr.s, + Vk (23b)

where the elements of the unknown parameter vector <t>

are ai./s arranged lexicographically. Now, use (l7e) to

transform the model into the "filtered form", i.e.

Sk = Sk + Kk(<t»[Yk - lJ-yHSk]

= [I - lJ-yKk(<t»H]Sk + Kk(<t»Yk (24a)

Y(kl<t» = Y(k) = lJ-yHSk. (24b)

Given the above model the natural way to measure the

goodness of the estimates is the prediction error Zk(<t». A

reasonable measure of the size of this vector is the quad­

ratic norm

(25)

where n is a positive definite matrix. The optimal choice

of n is the covariance matrix of the true prediction error,

i.e., Rz{k, <t», which gives the smallest covariance matrix

of the parameter estimates. The above quadratic criterion

can be recursively minimized for <t> using the stochastic

Newton method [31]. This would lead to the following

recursive identification step.

<t>(k) = <t>(k - 1) + v(k)CR -I(k) A(k, <t»

. Ri.'(k, <t»Zk(<t» (26)

where CR(k) is the Hessian (second derivative) of N(<t» wrt

<t> which can be computed recursively [31] using

CR(k) = CR(k - I) + v(k) [A(k, <t»Ri.'(k, <t»I~/(k, <t»

- CR(k - I)]. (27)

In these equations {v(k)} is the gain sequence which

should satisfy

(28)

where M; is the number of blocks in the image. The third

condition will ensure that the effects of noisy measure­

ments are eliminated asymptotically; and the second con­

dition guarantees the existence of a target. The choices

for the gain sequence {v(k)} and the initial value of CR(k)

are discussed later in this section. The gradient of the pre­

diction is defined by

A(k, <t» = l~ Y(kl<t»J. (29)

V. IMAGE MODEL PARAMETER IDENTIFICATION

In this section a new 2-D recursive identification

scheme for computing the AR model parameters at each

stage of the algorithm is developed. This method which

takes into account the effects of multiple degradations is

inspired from the 1-0 recursive prediction method in [31]

and makes use of the stochastic Newton approach.

In order to facilitate the derivation we map the 2-D ar­

ray (i, j) to a 1-0 array using the index mapping

k = iQ + j + 1, i E [0, (iN/Kl - 1)],

j E [0, (Q - 1)]. (22a)

Using this mapping we have

M"

v(k) 2: 0, lim L; v(k) -+ 00,

M o ~ o o k=O

Mo

lim L; v2
(k) < 00.

M o ~ 00 k =0

x., -+ x,

Xi-I.j -+ Xk- Q

Xi,j -, -+ Xk- ,

Xi-I.j+' -+ Xk- Q+ r-

Using (24b) we obtain

(22b) A'(k, <t» = lJ-yHI;,h(k, <t» (30)
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where

where

(37)

/..(0) = 0.95. (36)'A(k) = 0.99'A(k - I) + 0.01

The matrix inversion lemma [31] can be used for efficient

evaluation of ill -'(k) in (34d). However, the inversion

algorithm is sensitive to roundoff error which results in

numerical problems especially for large dimension mat­

rices (large block size). These problems can be circum­

vented if matrix factorization techniques such as Cho­

lesky decomposition or U-D factorization are employed

[31]. Due to the fact that elemental block matrices of

AO.1(c/J), AI. -I(c/J), and B(c/J) are block Toeplitz with Toe­

piitz blocks the operations involving these matrices can

be accomplished using fast convolution techniques [23].

The above steps for the general case are clearly more

complex and time consuming. The main computational

burden is in the calculation of the gradient of the Kalman

gain. To reduce the order of the computations dramati­

cally, steady-state Kalman gain, K" can be obtained and

used throughout the identification process. The relevant

equations in this case would essentially be the same with

the exception that K does not appear in these equations.

Thus (34b) and (34g) become

Sk = Sk + K,Zk (34a)

r.a(k, c/J) = [1 - /l-yK,H]r.b(k, c/J). (34b)

The gain sequence, {v(k)}, in the adaptation equation

(34d) has a significant influence on both the transient be­

havior and the accuracy of the estimation. Let us define a

new sequence, {'A(k)}, which is called "forgetting fac­

tor" [31] as

For large order models, 'A(k) should grow more slowly to

I. The choice of the initial estimate of cR(k) is also dis­

cussed in [31]. If no prior information about the variance

of the output innovation and covariance of c/J(O) is avail­

able the reasonable choice for cR(O) is found to be

'A(k) - v(k - I) [I - v(k)] (35a)
- v(k)

r.b(k + l, c/J) = Ao.1(c/J)r.a(k, c/J) + AI. -I(c/J)

. r.aCk - Q + 2, c/J) + W(c/J, Sk)'

(34h)

1
v(k) = I + 'A(k)/v(k _ I) (35b)

which grows exponentially to I. It is suggested [31] that

for most practical situations where the order of the AR

model is not high the following numerical method be used

to generate {'A(k)},

or

(31)

(340

(34d)

(32c)

(34a)

(34b)

(34c)

(33b)

(34e)

Zk(c/J) = Yk - Yk

Sk = s, + Kk(c/J)Zk(c/J)

~/(k, c/J) = /l-yHr.b(k, c/J)

cR(k) = cR(k - I) + v(k) [A(k, c/J)RZ1(k, c/J)

. A/(k, c/J) - cR(k - I)]

lp(k) = lp(k - I) + v(k)cR -I (k)A(k, c/J)

• RZI(k, c/J)Zk(c/J)

A d ~

W(c/J, Sk) : = dc/J [AO.1(c/J)Sk-1

+ AI. -1(c/J)Sk - Q+d"'=ql(k)

_ d ~ ~

W(c/J, Sk):= dc/J [AO.1(c/J)Sk-1 + AI.-I(c/J)Sk-Q+I]",=ql(k)

(32b)

The components of the gradient matrix K can also be ob­

tained [31] recursively by differentiating (l7c) and (l7d)

wrt c/J.

Having established the above results the recursive pre­

diction algorithm becomes [20]

where

Matrix r.aCk, c/J) can also be computed recursively by dif­

ferentiating (24a) wrt c/J, i.e.

d A

r.ik, c/J) = dc/J [(1 - /l-yKk(c/J)H)Sk + Kk(c/J)Yd

d A

= dc/J [Sk + Kk(c/J)Zk(c/J)]

= [1 - /l-yKk(c/J)H] r.b(k, c/J) + KZk(c/J) (33a)

and

d A

r.b(k, c/J) : = dc/J Sk'

This can be computed recursively using [31]

r.ik, c/J) = AO.1(c/J)r.a(k - 1, c/J) + AI.-1(c/J)

. r.aCk - Q + 1, c/J) + W(c/J, Sk) (32a)

r.aCk, c/J) = [I - /l-yKk(c/J)H]r.b(k, c/J) + KZk(c/J)

(34g)

Small values of p result in slower convergence. This cor­

responds to the case when too much confidence is given

to the initial estimates c/J(O).
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(38)

VI. IMPLEMENTATION AND RESULTS

In this section, the recursive parameter identification
algorithm developed in the previous section is used in
conjunction with the 2-D BKF to remove the effects of
speckle and additive noise from SAR images. A compar­
ison is made between this 2-D ABKF and the local linear
minimum variance estimator (LLMVE) in [13], [14], and
[18].

For an image corrupted by both multiplicative and ad­
ditive degradations the scalar observation equation (13)
becomes

y(rn, n) = y(m, n)x(m, n) + l'(m, II).

The filtering equation using LLMVE is

i(m, n) = /lAm, n) + ktm, II)

. [y(m, n) - /ly/lAm, n) - /l,] (39)

where the gain kim, n) is given [13] by

kim, n) ;= /l-yQ(m, n)/(/l;(m, n ) c r ~ + /l~Q(m, n) + cr;.)

(40a)

cr~(m, n) + /l~(m, n) 0 0Qim, n) :=. 2 2 - /l;(m, n) - cr;,.
cry + /ly

(40b)

The statistics of the image are measured based upon the
local information within each window of the observed im­
age [13], [18] and using (21). For the case of multipli­
cative noise alone cr;, = O. In this case, using (21) and
considering the fact that /ly = I we obtain

Q(m, n) = cr;(m, n) (4Ia)

and thus

kim, n) = cr;(m, n)/(/l;(m, n ) c r ~ + cr;(m, n» (4Ib)

which is the result obtained in [14] and [18]. This result
is essentially equivalent to the scalar version of the steady
state non-adaptive block Kalman filter in (17e) and (19).

The test images used for our study are shown in Figs.
4(a and b) and 5. Fig. 4(a and b) shows portions of the
original SAR image obtained from the Jet Propulsion
Laboratory (JPL) which contained complex field data for
each pixel. These digitally correlated "farm" images have
a resolution of 512 X 512 and the number of gray levels
which is 256. The images are obtained by mapping the
complex data to the intensity image as opposed to the
square root of the intensity because the square root oper­
ation changes the negative exponential distribution to the
Rayleigh distribution, thus compressing the dynamic
range of the SAR image and reducing the speckle standard
deviation by approximately a factor of 2. However, the
intensity distribution has a long tail in the high end of the
range with very low probability in this tail. As a result, a
slight compression of the upper end of the scale had to be
done to map those pixels that lie in this region into a small
range of the gray levels (5 levels). This only affects the

(a)

(b)

Fig. 4. (a) Original SAR image of Farm I (speckle only). (h) Original
SAR image of Farm 2 (speckle only).

Fig. 5. Original boat image.

statistics of the images negligibly. The "boat" image in
Fig. 5 is artificially corrupted by a multiplicative noise of
Gaussian distribution with mean of /ly = 0.75 and stan­
dard deviation of cry = 0.25. The resultant image is shown
in Fig. 6. These images are used as inputs to the 2-D
ABKF and LLMVE in order to study the performance of
these filters in removing the speckle effects only.

The results of applying LLMVE in (39), (40), and (4 I)
to these images are shown in Figs. 7(a and b) and 8, re-
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Fig. 6. Degraded boat image with multiplicative noise.

(a)

(b)

Fig. 7. (a) Processed Farm I image using LLMVE. (b) Processed Farm 1

image using LLMVE.

spectively. Processing windows of size 7 x 7 are used

throughout this experiment. Comparison with the original

images shows over-smoothing in the light areas within the

images and also smearing effects of the sharp edges. In

addition, an artifact similar to the "salt and pepper" noise

is clearly evident in the processed images. The over­

smoothing and smearing effects become even more prom­

inent when the input images are corrupted by both mul-

Fig. 8. Processed boat image (multiplicative noise) using LLMVE.

(a)

(b)

Fig. 9. (u ) Farm I image degraded by both speckle and additive noise. (b)

Farm 1 image degraded by both speckle and additive noise.

tiplicative and additive noises. Fig. 9(a and b) shows

severely degraded images obtained by adding zero mean

WG noise to the speckled images in Fig. 4(a and b). The

variance of the noise is chosen so that a SNR of 0 dB is

achieved. The image in Fig. 10 is obtained by adding a

zero mean WG to image in Fig. 6 to achieve a SNR of 5

dB. The result of applying general LLMVE to the images

in Figs. 9(a and b) and 10 are shown in Figs. 11(a and b)
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Fig. 10. Boat image degraded by both multiplicative and additive noises.

(a)

(b)

Fig. II. (a) Processed Farm I image (speckle and additive noise) using

LLMVE (b) Processed Farm 2 imagc (speckle and additive noise) using

LLMVE.

and 12, respectively. The significant oversmoothing ef­

fect which has resulted in some loss of valid information

is clearly visible in these images.

Next, the 2-D ABKF developed in this paper is used to

remove the effects of the speckle and additive noise from

the relevant test images. In this process the initial esti­

mates for the model parameters are obtained based upon

Fig. 12. Processed boat image (multiplicative and additive noises) using

LLMVE.

(a)

(b)

Fig. 13. (a) Processed Farm I image (speckle only) using 2·D ABKF. (b)

Processed Farm 2 image (speckle only) using 2 ~ D ABKF.

the global statistics of the degraded image. These param­

eters are iteratively updated for every block via the recur­

sive identification scheme in (34) and (35). A second-or­

der ARmodel is used to model the image process. Thus,

the diagonal blocks are of size 3 x 6 and the effective

correlation distance in a processing window is 6 in one

direction and 18 in another. To reduce the computational
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Fig, 14, Processed boat image (multiplicative noise) using 2-D ABKF,

(a)

(b)

Fig, 15, (a) Processed Farm I image (speckle and additive noise) using 2­

D ABKF, (b) Processed Farm 2 image (speckle and additive noise) using

2-D ABKF.

effort considerably a steady-state Kalman gain matrix is

computed after approximately 15 iterations for the farm

images and 20 iterations for the boat image, The steady

state gains are then used throughout the entire processing,

A reasonable choice for <R(O) based upon a trial and error

procedure is found to be 10 for the farm images and 15

Fig, 16, Processed boat image (multiplicative and additive noises) using

2-D ABKF,

for the boat image. The results of applying 2-D ABKF to

the images in Figs, 4(a and b), 6, 9(a and b), and 10 are

shown in Figs. 13(a and b), 14, 15(a and b), and 16, re­

spectively. As can be seen clearly the 2-D ABKF provide

a compromise between the noise removal and the resultant

smearing artifacts, That is, the results of the LLMVE in­

dicate considerable smearing and some loss of valid in­

formation, although its noise removal capability is good,

The results of the 2-D ABKF, on the other hand, show

acceptable noise removal with very little smearing effects

which is more pleasing to the human eyes. The CPU time

for processing the entire image on a MieroVAX 3600

computer is found to be approximately 25 min.

VII, CONCLUSION

In this paper a new 2-D adaptive Kalman filter using

the block-processing method is proposed for removing

speckle and additive thermal noise from SAR imagery, A

2-D block state-space structure is derived when the image

is modeled by an AR process with NSHP region of sup­

port. To avoid the noncausality problem which is caused

by the direct use of the block processing, the pixels are

arranged in a diagonal fashion forming a so-called "di­

agonal block" structure. To account for the multiplicative

nature of the speckle noise a new modified Kalman filter­

ing scheme is developed in which the state vector propa­

gates in two directions. For the 2-D block state-space

model a new recursive parameter identification scheme is

proposed using the stochastic Newton approach. This al­

gorithm can be implemented on-line to compute the AR

model parameters for each new block of the image rather

than each new pixel, hence reducing the number of iter­

ations in the adaptation process. Using this method the

image model parameters are adjusted based upon the local

spatial activities within each processing window. As a re­

sult, the filtering operation would not perturb the edges

significantly. Simulation results on various images are

presented and a comparison with other local adaptive es­

timators is also provided.
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