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Background

Gaseous rarefied flows in microscale geometries have been studied extensively in the 

past 20 years due to their relevance to micromachined and MEMS devices or sensors. 

Additional research activities in this field was driven by the wide application of such 

devices and sensors in the aerospace industry, biomedical engineering, plasma appli-

cations in material processing (Karniadakis et  al. 2005; Bird 1994), latent energy stor-

age systems and transmission cable cooling systems. One important application for 

rarefied gaseous flows is found in the parabolic trough collectors (PTCs) used in solar 

power plants. Heat transfer analysis for PTCs plays an important role in determining 

heat losses and efficiencies of the power plant (Patnode 2006). �e problem rises in such 

application when complete evacuation in solar receivers is assumed. In fact, complete 

evacuation is either difficult or impractical to achieve. In many cases, complete evacu-

ation adds limitations on material used to fabricate the receiver (glass in solar energy 

applications). When complete evacuation is assumed, the convection heat transfer 
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is zero, while, if complete evacuation is not achieved, the value of the convection heat 

transfer is not zero. �is value depends on the pressure inside the space.

Another issue related to receivers in PTC is to determine the range of “low pressure” 

inside the receiver that minimizes the heat transfer losses. �is pressure is a related to 

the operating temperature and the mean free path (Karniadakis et al. 2005; Bird 1994):

where kB is the Boltzmann constant, T the temperature, P the pressure, d is molecular 

diameter of the gas under investigation and � is the mean free path.

�e main aim of this study is to establish and present the correlation between the heat 

transfer and the pressure in the space is a simple form. Such correlation will facilitate 

conducting the heat transfer calculations for design engineers.

Rarefied, micro and nano scale flows are characterized using the dimensionless Knud-

sen number (Kn). �is number is the ratio of the mean free path (�) to the characteris-

tic length (L) of the geometry of interest. It measures the degree of rarefaction of the 

flow. Based on the Knudsen number, the respective flow regimes are classified into four 

types according to Schaaf and Chambre (1961) and Cercignani and Lampis (1974). For 

Kn < 0.01 the flow is in the continuum regime in which the Navier–Stokes equations 

are used to describe the flow. If 0.01 < Kn < 0.1, the flow is in the slip regime in which 

the Navier–Stokes equations are used with velocity slip and temperature jump boundary 

conditions to describe the flow. Similarity method can be used to solve for the convec-

tion heat transfer in the slip flow regime; one example is the convection heat transfer 

over linearly stretched isothermal microsurface that was investigated by Kiwan and Al-

Nimr (2009). �ey presented correlations for skin friction coefficient and Nusselt num-

ber in terms of velocity slip and temperature jump parameters. Kiwan and Al-Nimr 

(2010) also showed that complete similarity solution is possible for boundary layer flows 

only for a stagnation flow over isothermal microsurfaces. �ey found that skin friction 

coefficient is inversely proportional to both the slip velocity parameter and local Reyn-

olds number. In the range of 0.1 < Kn < 10, the flow is in the transitional regime and for 

10 < Kn, the collision between particles is very rare and the flow is in the free molecular 

regime. Flow characteristics for transitional and free molecular regimes are solved pri-

marily utilizing particle simulation methods such as the direct simulation Monte Carlo 

(DSMC) method. For instance, the supersonic gaseous flows into nanochannels using 

the unstructured 3-D direct simulation Monte Carlo method is investigated by Gatsonis 

et al. (2010). In their study, slip, transitional and free molecular regimes are been inves-

tigated. �ey found that the flow and heat transfer characteristics are affected by inlet 

Mach number (Ma), inlet pressure and the aspect ratio of the channel.

�e flow and heat transfer for similar shapes (Annulus region between two concentric 

cylinders) in no-slip flows have been extensively studied and documented. A compre-

hensive literature review for the numerical and experimental investigations for the flow 

in the region of the annuli between two concentric cylinders was given by (Kuehn and 

Goldstein 1974; Kuehn and Goldstein 1976).

Free convection heat transfer in the annular space between long horizontal concentric 

cylinders are considered by Raithby and Hollands (1975). In their study, they presented 

(1)� =
kBT

√
2πd2P
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a correlation for the conductivity ratio that is valid for 0.7 ≤ Pr ≤ 6000 and Rac ≤ 10
7. 

�eir correlation is given as follows:

where keff is a fictitious thermal conductivity for a stationary fluid that will transfer the 

same amount of heat as the actual moving fluid, and k is the thermal conductivity of the 

fluid at atmospheric pressure. Whereas, the length scale Lc is given as follows:

�e free convection in the annulus region between two concentric cylinders is inves-

tigated by Mack and Bishop (1968). �ey used a truncated power series in terms of Ray-

leigh number to represent the stream function and the temperature variables. A summary 

for the experimental work and a correlation (using the conduction boundary layer model) 

to the flow in the annulus between two concentric horizontal cylinders are presented 

by (Kuehn and Goldstein 1974; Kuehn and Goldstein 1976). El-Sherbiny (2004) studied 

numerically the effect of Rayleigh number (102–106) and the radii ratio (1.25 and 10) on 

the characteristics of the flow in the annuli of two infinite concentric cylinders.

�e effect of Ra, Pr, the inclination angle as well as the thermal conductivity ratio on 

the velocity and temperature fields of a laminar natural convection in an inclined cylin-

drical enclosure having finite thickness walls was investigated by Sheremet (2012). �e 

study showed that it is possible to indicate two intervals with a maximum magnitude 

of the generalized heat transfer coefficient at various values of the inclination angle of 

the tube. Furthermore, it is found that when Rayleigh number is less than 1 × 105, the 

thermal component of the natural convection is dominant, while, when Rayleigh num-

ber is greater than 1 × 105, then the hydrodynamic component of natural convection is 

dominant.

In the work done by Fattahi et  al. (2010), mixed convection heat transfer in eccen-

tric annulus was simulated numerically by lattice Boltzmann model (LBM). �e effect of 

eccentricity on heat transfer at various locations was examined at Ra = 104 and annulus 

gap width ratio of 2. Velocity and temperature distributions as well as Nusselt number 

are obtained. It was shown that heat transfer improves when the inner cylinder moves 

downward regardless of the radial position.

�e effect of fin conductivity ratio, Darcy number and Rayleigh number on the heat 

transfer characteristics for porous fins attached to the inner cylinder of the annu-

lus between two concentric cylinders is investigated by Kiwan and Zeitoun (2008). 

�ey found reported enhancement in the heat transfer by using porous fins. �ey 

also reported that with porous fin, unlike the solid fins, the heat transfer decreases by 

increasing the inclination angle of the fin inside the annulus. Ghernoug et  al. (2013) 

numerically studied the effect of Grashof number on the natural convection character-

istics in the annular space between two eccentric horizontal cylinders. �ey found that 

(2)kr =
keff

k
= 0.386

(

Pr

0.861 + Pr

)1/4

Ra1/4c

(3)
Lc =

2[ln (r◦/ri)]
4/3

(

r
−3/5
i

+ r
−3/5
◦

)5/3
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conduction heat transfer is dominant for the case when Grashof number is less than 

5  ×  104. Whereas, for larger values Grashof number, the convection heat transfer is 

dominant.

In the work carried out by Bouras et al. (2013), velocity stream function formulation 

with Boussinesq approximation are used to investigate the effect of Prandtl number and 

Rayleigh number on the natural convection in the annulus space between two ellipti-

cal confocal cylinders. �ey concluded that for low Rayleigh numbers, there is no effect 

for Prandtl number on the heat transfer. While increasing Prandtl number increases the 

heat transfer at higher Rayleigh number flows.

Bouras et al. (2014) numerically investigated the double diffusive natural heat transfer 

convection in the annular space between confocal elliptic shape enclosures. It was found 

that both heat and mass transfer increase with increasing Rayleigh number. At large Ray-

leigh numbers, the iso-concentrations exhibit a plume similar to isotherms. However, it 

was found that this plume diffuses throughout the annular space when Lewis number is 

greater than one.

Cianfrini et al. (2011) investigated the natural convection heat transfer of nanofluids 

in annular spaces between horizontal concentric cylinders, two empirical equations 

based on a wide variety of experimental data are used for evaluation of the nanofluid 

effective thermal conductivity and dynamic viscosity, while the other effective proper-

ties are calculated based on the mixing theory. �e heat transfer enhancement due to 

the nanoparticles dispersion in the liquid is calculated for different conditions, such as 

the diameter of the particles. It is concluded that there exist an optimum particle load-

ing corresponding to the maximum heat transfer. In the numerical study conducted by 

Chmaissem et al. (2002) for the natural convection heat transfer in annular space, it is 

reported that the enclosure impedes movement of the fluid and there is a possibility to 

develop a multi-cellular regions even if Rayleigh number is small.

Padilla et al. (2011) analyzed the heat transfer of the parabolic trough solar receiver 

and presented correlations for the heat transfer coefficients. �ey used a receiver of 

inner diameter of 70 mm and outer diameter is 115 mm. Price et al. (2002) and �omas 

(1979) investigated the flow in the parabolic trough solar collector receiver. �ey evacu-

ated the annulus to pressure less than one Torr. �is operating pressure range is within 

the so called free molecular regime in which collisions between particles are very rare. 

�ey found out that the resulting pressure for the free molecular regime in which Knud-

sen number is greater than 10 is approximately 0.013 Pa. �e heat transfer coefficient of 

the flow in the annulus between two horizontal cylinders for the pressures that is less 

than 1 Torr or Free molecular regime, is derived and given by Dushman (1962). While 

for the case where the pressure is greater than 1 Torr, the conduction layer model has 

shown to be able to predict the heat transfer Rohsenow et al. (2006).

In this work, a finite volume numerical technique utilizing Boussinesq approxima-

tion is used to obtain the solution for the natural convection heat transfer characteris-

tics between two concentric horizontal cylinders. �e software package (FLUENT 16) is 

used to conduct the simulations. �e inner cylinder is subjected to a higher temperature 

than the outer cylinder. Prandtl number (Pr) is taken to be constant and is equal to 0.701. 

Effects of Knudsen number (Kn), modified Rayleigh number (Ram) and the annulus gap 

spacing on the flow and heat transfer characteristics is investigated and documented.
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Methods

�e problem under consideration is treated as steady-state, two dimensional, and 

laminar flow. All fluid properties are considered constant except the density where 

Boussinesq approximation is applied to account for the buoyancy force. Flow Slip and 

temperature jump boundary conditions are imposed at the fluid-solid interface.

Figure 1a shows the receiver used in the parabolic trough collectors, which is one of 

the most important industrial applications, that relates to our study. Figure 1b illustrates 

the computational domain in the annulus region between the two concentric cylin-

ders. Slip flow regime in which Knudsen number is greater than 0.01 and less than 0.1 is 

investigated.

�e governing equations that describe the problem are summarized below:

Continuity:

(4)
∂u

∂x
+

∂v

∂y
= 0

Fig. 1 a Parabolic trough receiver. b The geometry used for the computational domain, the annular regime 

between two concentric cylinders. c Geometry and boundary conditions integrated to the computational 

domain, the annular regime between two concentric cylinders
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x-momentum:

Note that the x component of the gravity is equal to zero.

y-momentum:

Energy:

To estimate the fluid density, the ideal gas state equation is provided as an input,

�e boundary conditions associated with the governing equations for the problem 

are: Velocity slip and temperature jump at the cavity walls; reported by Karniadakis et al. 

(2005), Lockerby et al. (2004) and Colin (2006) as follows

where uc is the tangential velocity of the first cell from the wall in the computational 

domain.

where Tc is temperature of the first cell from the wall in the computational domain.

In Eqs. (9a) and (9c), σv and σT represent the momentum and thermal accommodation 

coefficients and used as an inputs in the simulations, where:

where τi represents the tangential momentum of incoming particles to a certain surface 

(wall) and τr represents the tangential momentum of the reflected particles from that 

surface. While, τw is the tangential momentum of reemitted molecules from the surface 

with a temperature equal to the surface (wall) temperature (Karniadakis et al. 2005).

(5)ρu
∂u

∂x
+ ρv

∂u

∂y
= −

∂P

∂x
+ µ

[

∂2u

∂x2
+

∂2u

∂y2

]

(6)ρu
∂v

∂x
+ ρv

∂v

∂y
= −

∂P

∂y
− ρgy + µ

[

∂2v

∂x2
+

∂2v

∂y2

]

(7)ρCpu
∂T

∂x
+ ρCpv

∂T

∂y
= k

[

∂2T

∂x2
+

∂2T

∂y2

]

(8)ρ =

P

RT

(9a)uw − ug =

(

2 − σv

σv

)

�
∂u

∂n
≈

(

2 − σv

σv

)

Kn

(

ug − uc
)

(9b)vg = 0

(9c)Tw − Tg =

(

2 − σT

σT

)

2γ

γ + 1

k

µcv
�
∂T

∂n
≈

(

2 − σT

σT

)

2γ

γ + 1

k

µcv
Kn

(

Tg − Tc

)

(10)σv =

τi − τr

τi − τw

(11)σT =

dEi − dEr

dEi − dEw
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where dEi is the energy flux of the incoming particles on a surface per unit time, dEr 

represents the energy flux of the reflected particles per unit time, and dEw denotes the 

energy flux of all the incoming particles that had been reemitted with the energy flux 

corresponding to the surface temperature Tw.

�e corresponding Knudsen number (Kn) is defined as follows:

where Lg is the gap spacing between the inner and outer cylinders

Let’s define the dimensionless temperature θ, where

�e radial boundary conditions are imposed as follows:

where Ti is higher than To. Figure 1c shows the geometry under investigation integrated 

with the boundary conditions.

�e modified Rayleigh number was introduced by Alshahrani and Zeitoun (2005a, b) 

as:

�e modified Rayleigh number absorbs the geometrical effects that are related to the 

flow in the annulus region of two concentric horizontal cylinders.

�e values of kr are calculated as follows:

�e local heat flux at the inner cylinder wall is calculated using Fourier’s law of 

conduction,

Since the problem is steady, the heat transfer from the inner to the outer wall is calcu-

lated by integrating the local heat flux along the wall of the inner cylinder,

�en, the average heat transfer coefficient along the wall of the inner cylinder is calcu-

lated from:

�e average Nusselt number is calculated from

(12)Kn =

�

Lg

(13)θ =

T − T◦

Ti − T◦

(14)At r = ri, T = Ti, θ = 1

(15)At r = ro, T = To, θ = 0

(16)Ram = Ra
1/4
i

(

0.1389

(

1 −
Di

D◦

)

+ 0.0927

)

ln

(

D◦

Di

)

(17)qi = −k
∂T

∂n

(18)
Q =

∫

Ai

qidA

(19)h̄i =
Q

(Ti − T◦)Ai
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�e conduction heat transfer in cylindrical annuli for a stagnant fluid is obtained as 

follows:

�e combined effect of both conduction and convection in the annulus region is cal-

culated as follows:

Combining the above equations to obtain the expression:

�e method of solution used in this study is based on a finite volume analysis. �e 

SIMPLE algorithm adopted from Versteeg and Malalasekera (1995) and Patankar and 

Spalding (1972) is used to calculate the pressure field. To differentiate the convective 

terms, a hybrid scheme, which is a combination of the central difference, and upwind 

difference schemes is being used; the scheme is second order accurate. �e discretized 

equations are solved and the iterative solution is considered to be converged when the 

maximum of the normalized absolute residual across all nodes is less than 10−6.

 Figure 2 shows a sample of computational mesh for the domain under consideration. 

For the starting mesh, the grid step sizes are increasing in the radial and azimuthal direc-

tions with expansion factors of 1.06 and 1.15 respectively. A grid independency test is 

carried out by monitoring the heat transfer per unit length. �e number of grid nodes 

are increased until a point is reached where the solution does not change with further 

mesh refinement. �e results are summarized in Table 1 when Ra = 5.3 × 10
4. It is clear 

from the table that the solution is mesh-independent for a grid of 80 × 480 in the radial 

and azimuthal directions, respectively. �is grid size is used for all cases of Ra. 

To verify the numerical code, the results of the present code are tested and compared 

with the results obtained by (Kuehn and Goldstein 1974; Kuehn and Goldstein 1976). 

�e natural convection heat transfer of the steady state, laminar flow in a horizontal 

cylindrical annulus is solved numerically. Figure  3 illustrates a comparison between 

kr =

keff
k  obtained by the present code and that obtained by (Kuehn and Goldstein 1974; 

Kuehn and Goldstein 1976); it should be noted that the value of keff  is based on the inte-

grated heat transfer from the whole tube, the verification utilizes Ra = 5.3 × 10
4 and an 

enclosure aspect ratio of 5. �e comparison is excellent with maximum error less than 

1.3 %. It should be noted that (Kiwan and Khodier 2008) presented other validation stud-

ies involving porous medium using the same code where they simulated the steady-state, 

laminar, two-dimensional, natural convection heat transfer in an open-ended channel 

partially filled with an isotropic porous medium.

(20)Nui =
h̄iDi

k

(21)Qcond =

2πkL(Ti − T◦)

ln(D◦/Di)

(22)Q =

2πkeff L(Ti − T◦)

ln(D◦/Di)

(23)kr =

keff

k
= Nui

ln
(

Do

/

Di

)

2
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Fig. 2 Adaptive grid system technique used in the simulations

Table 1 Grid independent study

Mesh Q′ (W/m) Percentage change compared 
to 80 × 480 mesh

40 × 360 44.924 2.02

60 × 360 44.239 0.46

80 × 360 43.989 −0.10

80 × 480 44.034 0

Fig. 3 Comparison between current data and (Kuehn and Goldstein 1974)
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Results and discussion

�e effects of varying modified Rayleigh number (Ram), Knudsen number (Kn) and the 

spacing between the outer and inner cylinders (Lg) on the thermal conductivity ratio are 

investigated. �e results of these investigations will be presented and discussed next.

�e velocity stream function contours for Lg  = 2, Ram = 3.86 and different values of 

Kn are shown in Fig. 4. It is clear that for all cases a rotational cell is formed in the annu-

lus spacing. �e strength and location of this cell depend on the value of Kn. It is clear 

from the graph that as Knudsen number increases, the strength of the rotational cell 

decreases and its center shifts downward. �is can be attributed to the rarefaction effect; 

Fig. 4 Streamlines (dimensionless gap spacing Lg = 2, Ram = 3.86)
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the increase in rarefaction will increase the slip velocity at the walls. �is reduces the 

interaction between molecules and thus reduces their velocities.

�e isotherms of the dimensionless temperature for Lg  = 2, Ram = 3.86 and different 

values of Kn are drawn in Fig. 5. �e contours show that for all cases, the lower part of 

the annuli represents a case of a dominant conduction mode of heat transfer, while, in 

the upper part of the annulus (70–90 degree CW from the centerline) the convection 

mode is dominant. �is can be attributed to the recirculating fluid driven by the buoy-

ancy effect. In the region of 0 and 30 degrees counter clockwise from the centerline, the 

effect of convection heat transfer is minor. It is also clear from the graph that as Knudsen 

number increases then the distortion and mixing of the flow decreases and consequently 

the heat transfer decreases.

�e effect of modified Rayleigh number on the conductivity ratio (kr) for a range of 

Knudsen number that covers both slip and no-slip cases for the case of Lg  = 3 is illus-

trated in Fig. 6. It is seen in the graph that at fixed values of Ram, as Kn increases then the 

value of the conductivity ratio decreases. �is can be explained as follows: when Knud-

sen number increases then the temperature jump at the wall increases (see Eq. 9c). �is 

will reduce the temperature of the gas adjacent to the wall and, therefore, will reduce the 

temperature difference across the gap resulting in reducing the heat transfer from the 

inner to outer wall. �e figure also shows that as the modified Rayleigh number increases 

for the same Knudsen number then the value of the conductivity ratio increases. �is 

indicates that the convection mode of heat transfer becomes more effective, however, 

the effect of varying the modified Rayleigh number on kr diminishes and becomes of a 

small value as Knudsen number increases beyond Kn =  0.05. It should be noted that 

the value of the conductivity ratio is less than one for Knudsen number values greater 

than 0.05. �is does not mean that the heat transfer value is less than the value of heat 

transfer by conduction. �is happens because the value of k used in defining kr is taken 

at atmospheric pressure as a reference value. �us, when kr is less than one, it means that 

the heat transfer by convection is less than the heat transfer by conduction in a fluid hav-

ing the reference value of k.

Other cases where the values of Lg  = 1 and 2 were tested and the results were very 

similar to those of the case of Lg  = 3.

To isolate the geometrical effects (Lg ) included in the definition of Ram, Fig. 7 is drawn. 

It shows the effect of varying Kn on kr for two values Rayleigh number based on the 

inner diameter, Rai = 1 × 103 and 5 × 103 and different gap spacing (Lg ). It is clear from 

the graph that there is no consistent trend of varying the gap spacing on the conductiv-

ity ratio for the investigated range of gaps; this can be explained as one can get the same 

spacing by changing the inner or the outer diameters of the annuli. �e graph also shows 

that as Knudsen number increases then the conductivity ratio decreases. However, the 

effect of varying Knudsen number on the conductivity ratio diminishes as Knudsen 

number increases. �is graph also shows that for higher Knudsen numbers, the basic 

mode of heat transfer is conduction heat transfer. �e graph also shows that the conduc-

tivity ratio is below one for certain ranges of Knudsen numbers as explained earlier.

A correlation for the conductivity ratio (kr) as a function of Knudsen number (Kn) and 

the modified Rayleigh number (Ram) is proposed. �e correlation is obtained using the 
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least square regression using the simulation results. �is correlation takes the following 

form:

(24)
kr =

keff

k
= 0.0987(Kn)−0.619Ra1/4m

Fig. 5 Isotherms (dimensionless gap spacing Lg = 2, Ram = 3.86)
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It is obvious from Eq. (24) that the conductivity ratio is directly proportional to Ra1/4m  

and inversely proportional to (Kn)0.619. It should be noted that Eq. (24) is only applicable 

for the slip regime in which Kn is greater than 0.01 and less than 0.1 and for a fixed Pr of 

0.701.

Figure 8 shows a comparison between the simulation and the correlation results of the 

values of kr

Ra
1/4
m

 as a function of Knudsen number. Modified Rayleigh number was var-

ied to take the values of 2.25 and 8.16 while the dimensionless gap spacing was fixed 

(Lg  =  3). It is obvious from the graph that the curves are almost identical for Knud-

sen number values less than 0.05 and with an acceptable error of about 13 % for higher 

Knudsen number values.

�e dimensionless temperature is plotted in Fig. 9 versus the dimensionless axial dis-

tance (X) for various modified Rayleigh numbers (Ram). It is shown in the figure that as 

Ram increases then the dimensionless temperature at the inner boundaries decreases. 

�is results in decreasing the amount of heat transfers to the annular space. It is also 

Ra
m
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k
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7
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Fig. 6 Variation of the effective conductivity ratio for different Knudsen numbers for the case of the dimen-

sionless gap spacing Lg = 3 for different modified Rayleigh numbers
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Fig. 7 Variation of the effective conductivity ratio for different Knudsen numbers for Rai = 5×103, 

Rai = 1×103 and Lg = 1, 2 and 0.5
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seen in the graph and for the same modified Rayleigh number, the variation of the 

dimensionless temperature increases in wall boundary regions and nearly constant in 

the middle region of the annulus.

�e distribution of the dimensionless velocity magnitude along a horizontal centerline 

in the annulus space is plotted in Fig. 10 for different Kn that is covering the no-slip and 

slip boundary conditions, Ram = 2.25, and Lg  = 2. It is obvious from the figure and as 

expected, increasing Knudsen number will increase the velocity slip at the boundaries. 

In addition to that, in the middle region away from the boundaries the velocity drops 

and, consequently, this makes the conduction mode to be dominant. �e x velocity dis-

tribution along the centerline of the annuli for the same case is plotted in Fig. 11. While 

the y velocity component is plotted in Fig. 12. �e graphs demonstrates the presence of 

a convection cell in the annulus: the flow is upward close to the inner cylinder (hotter 

cylinder) and it is downward near the outer cylinder.

Figures  13 and 14 show respectively the velocity magnitude and the dimensionless 

temperature distributions along three different lines that correspond to three different 

Kn
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angles from the center of the annuli; namely (0°, 45° and 60°). �e graphs clearly show 

the slip and the temperature jump at the boundaries for the three different cases.

�e variation of the dimensionless temperature along a horizontal centerline across 

the annulus for different Knudsen numbers at Ram = 2.25 and Lg  = 2 is illustrated in 

Fig. 15. �e graph shows that there is no temperature jump at the walls for the case of 

Kn = 0. While, as indicated earlier, when Knudsen number increases then the tempera-

ture jump increases. Moreover, the figure shows that as Kn increases, the gradient of the 

temperature at the hot boundary decreases, and this leads to the reduction in heat trans-

fers to the annulus regime. �is explains the increase of the conduction zone (indicated 

by linear variation of temperature) as Kn increases. �e steep nonlinear variation of the 

temperature close to walls is an indication of the presence of convection heat transfer 

mechanism. �us, the dominant mode of heat transfer near the boundaries is convec-

tion and away from the boundaries is conduction.

For the case where the modified Rayleigh number (Ram = 4.59) and the dimensionless 

gap spacing between the two cylinders (Lg  = 3), Fig. 16 shows the dimensionless velocity 
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Fig. 13 Variation of the velocity magnitude for different dimensionless axial distance at different angles from 

the center point of the annuli for Lg = 2, Ram = 2.25
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variation with the dimensionless axial distance (X) plotted for different Knudsen num-

bers. It is very clear from the graph that there is no-slip at the boundaries for the case 

where Kn = 0. �e graph shows that as Knudsen number increases then the velocity slip 

increases at the boundaries. By contrasting Fig. 16 to Fig. 10 where (Lg  = 2), the merging 

of the boundary layers in Fig. 10 is obvious and the effect gets into the core of the flow 

while for the case of Lg  = 3, this effect does not get into the core of the flow where we 

have much lower velocities between (x′/ro = 0.3 to 0.6).

In Fig. 17, the modified Rayleigh number is Ram = 2.58 and in Fig. 18, this value was 

fixed to 4.59. �e dimensionless gap spacing between the inner and outer cylinders was 

fixed to (Lg  = 3) in the two graphs. �e dimensionless temperature distribution with the 

dimensionless axial distance (X) is plotted for different Knudsen numbers, the graphs 

show that as Knudsen number increases then the temperature jump increases due to 

the rarefaction effects. Also, both graphs show that there is no temperature jump at the 

boundaries for the case where Kn = 0. A comparison of the two figures will show that 

that the temperature jump for the same Knudsen number at the hot surface for the case 
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of Ram = 2.58 is less than the case where Ram = 4.59 and hence the heat transfer for the 

larger Ram is higher than the case of lower Ram.

Figure  19 shows the change of the pressure in the annulus region between the two 

concentric cylinders as a function of Knudsen number for different operating tempera-

tures. �e values are calculated based on the definition of the Knudsen number given 

in Eq. (1) for air. �e graph is a powerful tool that can guide and give valuable informa-

tion for the manufacturers of the receivers of parabolic trough collectors and the solar 

evacuated tubes. �e graph shows that as the temperature increases then the evacuation 

pressure increases for the same Knudsen number. �e graph also shows that as Knudsen 

number increases then the evacuation pressure decreases for the same operating tem-

perature. It is obvious from the graph that when the operating pressure in the annulus 

is in the range of (0.1–1.6 Pa) and the operating temperature is between 300 and 700 K, 

the flow is in the slip-flow regime. �e temperatures range (300–700 K) covers the actual 

operating range of the PTC’s. For example, if the case of Kn = 0.05 and T = 300 K and 

pressure is 0.1357 Pa is taken as a base case. Now, for the same Kn but with operating 
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temperature of T = 400 K, the resulting pressure is 0.1779. �e figure also shows that 

increasing Kn beyond 0.05 within the investigated operating temperatures, the change in 

the evacuated pressure is small and becomes almost constant compared to the range of 

Kn less than 0.05.

Finally, the values of the conductivity ratio kr with the conventional Rai for different 

values of Kn where Lg  = 3 are plotted to facilitate and investigate the effect of using Rai 

instead of Ram. �e results are shown in Fig. 20. It is obvious from the graph that the 

conduction is the dominant mode of heat transfer except for very low Knudsen number 

(Kn = 0.01) where the convection mode of heat transfer is the dominant.

Conclusions

A steady, two-dimensional analysis of gaseous flow in the annulus region between two 

concentric cylinders is carried out. �is type of flow has a wide variety of applications 

such as the receiver of the parabolic trough collectors and the evacuated tube collectors. 

It is found that both the slip velocity and temperature jump increase with increasing 

Kn
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Knudsen number (Kn). Hence, the rarefication effect results in increase of frictional 

losses and diminishing of the heat transfer rate that is presented by the thermal conduc-

tivity ratio (kr = keff/k) ratio. In addition, it is shown that as the modified Rayleigh num-

ber (Ram) increases then the heat transfer rate increases and the convection heat transfer 

mode becomes the dominant mode of heat transfer in the annulus. It is found that there 

is no consistent effect of the gap spacing on the heat transfer rate in the annulus region 

between the two concentric horizontal cylinders. A correlation for the thermal conduc-

tivity ratio (kr = keff/k) as a function of Ram and Kn is introduced.

List of symbols

Ai  surface area of inner cylinder (m2)
Cp  specific heat (J kg−1 K−1)
d  molecular diameter of the gas (m)
Di  inner annulus diameter (m)
Do  outer annulus diameter (m)
dE  energy flux on a surface per unit time
g  gravity acceleration (m/s2)
h̄  average heat transfer coefficient (W m−2 K−1)
k  thermal conductivity (W m−1 K−1)
kB  Boltzman constant = 1.38066 × 10−23 J K−1

keff  effective thermal conductivity (W m−1 K−1)
Kn  Knudsen number
kr  thermal conductivity ratio (keff /kf )
L  length of the cylinder (m)
Lg  gap spacing between the two cylinders (ro − ri) (m)
Lg   dimensionless gap spacing between the two cylinders (ro − ri)/ri

Nui  Nusselt number based on inner cylinder diameter
Nui  average Nusselt number based on inner cylinder diameter
P  pressure (Pa)
Pr  Prandtl number
Q  heat transfer (W)
Q′  heat transfer per unit length (W/m)
Qcond  conductive heat transfer (W)
R  gas constant (J kg−1 K−1)
ri  inner annulus radius (m)
ro  outer annulus radius (m)
Ra  Rayleigh number [gβ(Ti − To)L3/αν]
Rac  Rayleigh number based on Lc = [gβ(Ti − To)Lc

3/αν]
Rai  Rayleigh number based on the inner diameter
Ram  modified Rayleigh number
T  temperature (K)
Tc  temperature of the first cell from the wall in the computational domain (K)
Ti  temperature of annulus inner surface (K)
To  temperature of annulus outer surface (K)
u  velocity in x-direction (m/s)
uc  the tangential velocity of the first cell from the wall in the computational 

domain (m/s)
v  velocity in y-direction (m/s)
V  velocity magnitude (m/s)
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x, y  Cartesian coordinates (m)
x
′  line, starting from any point a on the inner cylinder and ending at any point 

b on the outer cylinder (m)
X̄  dimensionless x′

= x
′
/

ro

Greek symbols

α  thermal diffusivity (m2/s)
β  thermal expansion coefficient (1/K)
γ  ratio of the specific heats
λ  molecular mean free path (m)
μ  dynamic viscosity (kg m−1 s−1)
ν  kinematic viscosity (m2 s−1)
ρ  density of air, given by ideal gas equation (P/RT), (kg/m3)
σ  Lennard–Jones characteristic length (Å)
σT  thermal accommodation coefficient
σv  momentum accommodation coefficient
τ  tangential momentum
θ  dimensionless temperature

Subscripts

c  first cell from the wall in the computational domain
cond  conduction
eff  effective
g  gap
i  inner
m  modified
max  maximum
o  outer
r  ratio
w  wall
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