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A scheme for realizing two-dimensional atom localization in the sub-wavelength domain is proposed in a micro-
wave-driven five-level hyper inverted-Y atomic system in which the atom interacts with a weak probe field, two
control fields together with two orthogonal standing-wave fields. Because of the spatially dependent atom-field
interaction, the information about the position of the atom can be extracted directly from the absorption and gain
spectra of a weak probe field. It has been found that the probe detuning, the intensities of two control fields, and
the relative phase of the driving fields can significantly improve the localization precision. Moreover, the maximal
probability of finding the atom at an expected position in the sub-wavelength domain of the standing-wave field
can reach unity via properly adjusting the system parameters. © 2015 Optical Society of America
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1. INTRODUCTION

High-precision measurement of an atomic position through a
standing-wave field has been the subject of active research over
the past few decades because of its potential applications in laser
cooling and trapping of neutral atoms [1,2], such as atom nano-
lithography [3,4], Bose-Einstein condensation [5–7], the mea-
surement of the center-of-mass wave function of moving atoms
[8,9], and coherent patterning of matter waves [10]. It is a
well-known fact that many interesting optical phenomena have
been proposed on the basis of atomic coherence and quantum
interference such as four-wave mixing (FWM) [11–15], optical
bistability (OB), optical multistability (OM) [16–18], electro-
magnetically induced transparency (EIT) [19–21], optical
solitons [22], and giant Kerr nonlinearity [23–27]. More inter-
estingly, a variety of schemes for realizing one-dimensional
atom localization have been proposed on the basis of atomic
coherence and quantum interference effects [28–37]. These
schemes have demonstrated that the maximum probability
of finding an atom at a particular position in a unit of wave-
length of a standing-wave is 25%. Moreover, other techniques
including EIT [38], dark resonances [39], spatially dependent
spontaneous emission [40,41], probe absorption [42], and
coherent population trapping (CPT) [43] can also be used to
achieve one-dimensional atom localization. More recently,

two-dimensional atom localization, achieved by applying
two orthogonal standing-wave fields, has been studied exten-
sively for its better prospect for application and its unique
properties. For two-dimensional atom localization, Ivanov and
Rozhdestvensky [44] presented a scheme for two-dimensional
sub-wavelength localization in a four-level tripod system by
measuring the population of the atom. Another related two-
dimensional atom localization scheme was demonstrated in
[45] by controlled spontaneous emission in a four-level atomic
system with a closed loop. Since then, several high-precision
and high-resolution two-dimensional atom localization schemes
have been reported by Ding and coworkers [46,47] for a micro-
wave-driven cycle-configuration atomic system and a micro-
wave-driven four-level Y-type atomic system. The results of
[46,47] have shown that the external microwave-driven field
applied in a system plays an important role in improving the
precision of two-dimensional atom localization. Inspired by
these studies, we present a scheme for realizing high-precision
two-dimensional atom localization in a microwave-driven five-
level hyper inverted-Y atomic system.

In thepresent paper,we explore two-dimensional atom locali-
zation based on phase-sensitive probe absorption and gain in a
microwave-driven five-level hyper inverted-Y atomic system.
Since the microwave source is easier to obtain and manipulate
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than an extra laser field, an application of particular interest is the
microwave-driven field which is applied to drive the ground-
state hyperfine transition. With the proper adjustment of the
system parameters, a variety of localization patterns of an atom,
such as lattice-like, crater-like and spike-like, can be observed
under the joint actions of the standing-wave and microwave-
driven fields. Additionally, there are three important results:
(1) the atom can be localized at a particular position, and the
maximum probability of finding an atom at a particular position
within one period of standing-wave fields can reach 100%as long
as the probe detuning is adjusted to an appropriate value; (2) the
high-precision and high-resolution two-dimensional atom
localization can be obtained via the application of two appropri-
ate control fields; (3) the position of the localized atom is depen-
dent on the relative phase of the driving fields, and a 100%
probability of finding the atom at a particular position within
one period of the standing-wave fields can be achieved onlywhen
the relative phaseφ is equal to 0 or π. Furthermore, our scheme is
based on the measurement of the probe absorption gain, which
is much easier to carry out in the practical experiment than the
measurement of spontaneous emission [45,46]. The reason is
that spontaneous emission is a randomprocess and the frequency
of the spontaneously emitted photon is hard to control. At the
same time, it is worth noting that our scheme may improve the
localization precision and spatial resolution of the atom at an
expected position by varying the system parameters. Therefore,
our proposed scheme has more advantages than other schemes
for two-dimensional atom localization.

2. THEORETICAL MODEL AND BASIC

EQUATIONS

Let us consider a microwave-driven five-state atomic system in
a hyper inverted-Y configuration as shown in Fig. 1(a). A weak
probe field E p (with angular frequency ωp and a Rabi frequency

2Ωp) couples the electric dipole transition between levels j0i

and j2i (with transition frequency ω20). An extra microwave-
driven field (with a Larmor frequency 2Ωmw) is used to reso-
nantly couple the two hyperfine levels j0i and j1i through an
allowed magnetic dipole transition. The two control fields, E c

(with angular frequency ωc and a Rabi frequency 2Ωc) and Ed

(with angular frequency ωd and a Rabi frequency 2Ωd ), drive
the electric dipole transitions between levels j2i and j3i (with
transition frequency ω32) and between levels j3i and j4i (with
transition frequency ω43), respectively. The transition between
levels j1i and j2i (with transition frequency ω21) is coupled by
the composition of two orthogonal standing-wave fields with
position-dependent Rabi frequency 2G s�x; y� � 2Ωs �sin�κx��
sin�κy��, where κ � ωs∕c is the same wave vector of the two
laser fields. The probe field Ωp, as well as two control fields,

Ωc;d and microwave Ωmw, propagate along the z direction,
and an atom moves along the z direction and passes through
the intersectant region of the two orthogonal standing-wave
fields in the x–y plane. As a result, the interaction between the
atom and the standing-wave fields is spatial dependent on
the x–y plane. Inspecting the system, we find that states j0i,
j2i, j3i, and j4i are in a four-state cascade-type system, while
the transitions j0iΩmw

 �–�!

j1iG s�x; y�
 �——�!

j2iΩp
 !

j0i form a typical

three-state Λ-type cyclic configuration. Hence, the five-level

hyper inverted-Y system [shown in Fig. 1(a)] consists of two

subsystems.
Here we assume that the center-of-mass position distribu-

tion of the atom along the directions of the standing-wave
fields is nearly constant and we can ignore the kinetic energy
of the atom in the Hamiltonian via applying the Raman–Nath
approximation [48]. By choosing H 0 � �ωp − ωs�j1ih1j �
ωpj2ih2j � �ωp � ωc�j3ih3j � �ωp � ωc � ωd �j4ih4j and
taking level j0i as the energy origin, under the electric dipole
approximation (EDA) and the rotating-wave approximation
(RWA), the interaction Hamiltonian of the present atomic
system is given by (ℏ � 1)

H I � −Δsj1ih1j − Δpj2ih2j − Δc j3ih3j − Δd j4ih4j

− �Ωpj2ih0j �Ωc j3ih2j

�Ωd j4ih3j � G s�x; y�j2ih1j �Ωmwj1ih0j �H:c:�; (1)

where the symbol H.c. represents the Hermitian conjugation.
Δp � ωp − ω20 represents the single-photon detuning, Δs �

ωp − ωs − ω10 and Δc � ωp � ωc − ω30 are two separate two-
photon detunings, respectively, and Δd � ωp � ωc � ωd −

ω40 stands for the three-photon detuning. Ωp � μ20Ep∕�2ℏ�,
Ωc � μ32E c∕�2ℏ�, Ωd � μ43Ed∕�2ℏ�, and G s�x; y� �
Ωs�sin�κx� � sin�κy�� with Ωs � μ21E s∕�2ℏ� are the half
Rabi frequencies of the laser fields for the relevant driven tran-
sitions. It is worth noting that Ωmw � μ10Bmw∕�2ℏ� is the half
Larmor frequency for the respective driven transition, where
Bmw is the amplitude of the microwave-driven field and μij �
μ
⇀

ij · e
⇀

L (i; j � 0–4) denotes the dipole matrix moment for the
relevant optical transition from level jii to level jji with e

⇀

L

denoting the unit polarization vector of the corresponding laser
field. In the following calculations, we set Ωc and Ωd as real
parameters, while Ωp, Ωs, and Ωmw are set as complex param-
eters, i.e.,Ωp � jΩpje

iφp ,Ωs � jΩsje
iφs , andΩmw�jΩmwje

iφm ,
where φp, φs and φm are the phases of the weak probe field, the
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Fig. 1. (a) Energy-level diagram of a microwave-driven five-level
hyper inverted-Y atomic system interacting with a weak probe field
Ωp, two control fields Ωc;d and a combination of two orthogonal
standing waves G s�x; y�, where G s�x; y� is a combination of two
orthogonal standing waves, and Ωmw is the half Larmor frequency
for the respective driven transition. Δp represents the single-photon
detuning, Δs and Δc are two separate two-photon detunings, respec-
tively, and Δd stands for the three-photon detuning. (b) Two stand-
ing-wave fields, G s�x� and G s�y�, propagating in perpendicular
directions form the intersectant region in the x–y plane, while the
probe field Ωp, as well as two control fields, Ωc;d and microwave
Ωmw, propagate along the z direction.
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combination of two orthogonal standing-wave fields and the
microwave-driven field, respectively.

The dynamics of this system can be described by using the
probability amplitude equations. Then the wave function of
the present atomic system at time t can be expressed in terms
of the state vectors as

jψ�t�i �

ZZ

dxdyf �x; y�jxijyi�A0�x; y; t�j0i � A1�x; y; t�j1i

� A2�x; y; t�j2i � A3�x; y; t�j3i � A4�x; y; t�j4i�; (2)

where Ai�x; y; t� �i � 0–4� denotes the time- and position-
dependent probability amplitude for the atom in level jii,
and f �x; y� is the center-of-mass wave function of the atom.

Hence, the conditional position probability distribution,
i.e., the probability of finding the atom in the �x; y� position
at time t in the standing-wave fields when the atom is found in
its internal state j2i, can be given by

P�x; y; tj2� � jN j2jf �x; y�j2jA2�x; y; t�j
2; (3)

where N is a normalization factor. Here, we assume that the
center-of-mass wave function of the atom f �x; y� is nearly con-
stant over many wavelengths of the standing-wave fields in the
x–y plane, which remains unchanged, even after the interaction
with the optical fields. That is to say, the conditional position
probability distribution P�x; y; tj2� is mainly determined by
the term jA2�x; y; t�j

2. Therefore, the measurement of the pop-
ulation in level j2i can directly obtain the position information

of the atom when the atom passes through the standing-wave
fields.

By substituting the interaction Hamiltonian given by
Eq. (1) and the atomic wave function given by Eq. (2) into the
time-dependent Schrödinger wave equation i∂jψ�t�i∕∂t �
H I jψ�t�i, thecoupledequationsofmotionfor the timeevolution
of the atomic probability amplitudes can be given as

∂A0�t�

∂t
� iΩ	mwA1�t� � iΩ	pA2�t�; (4)

∂A1�t�

∂t
� i�Δs � iγ1�A1�t� � iG	s �x; y�A2�t� � iΩmwA0�t�;

(5)

∂A2�t�

∂t
� i�Δp � iγ2�A2�t� � iG s�x; y�A1�t� � iΩ	c A3�t�

� iΩpA0�t�; (6)

∂A3�t�

∂t
� i�Δc � iγ3�A3�t� � iΩ	dA4�t� � iΩcA2�t�; (7)

∂A4�t�

∂t
� i�Δd � iγ4�A4�t� � iΩdA3�t�; (8)

where γi are thedecay rates of states jii�i � 1–4�which are added
phenomenologically.

Under the weak-field approximation, i.e.,Ωp ≪ Ωc ,Ωd , we
can get A0�x; y; t� ≈ 1 for all of the time t in the condition of
considering the quasi-stationary-state solution of Eqs. (5)–(8).
Then, the probability amplitude A2�x; y; t� in the large time
limit can be derived as

A2�x; y�

�
�jG s�x; y�jjΩmwje

i�φs�φm�
− ajΩpje

iφp��cd − jΩd j
2�

abcd − cd jG s�x; y�j
2
− ad jΩc j

2
− abjΩd j

2�jG s�x; y�j
2jΩd j

2
;

(9)

where a � Δs � iγ1, b � Δp � iγ2, c � Δc � iγ3 and
d � Δd � iγ4.

On the other hand, we can also obtain the absorption of the
weak probe field from the imaginary part of the susceptibility
given as

χ
0 0
p �x; y� � Im�χp�x; y�� �

N jμ20j
2

2ℏε0
jf �x; y�j2Im�χ̃p�x; y��;

(10)

where the parameters N and ε0 present the atomic number
density and the vacuum dielectric constant, respectively, and

χ̃p�x; y� �
A2�x; y�A

	
0�x; y�

Ωp

�

�

jG s�x;y�jjΩmw j

jΩpj
eiφ − a

��

cd − jΩd j
2

�

abcd − cd jG s�x; y�j
2
− ad jΩc j

2
− abjΩd j

2 � jG s�x; y�j
2jΩd j

2
; (11)

where φ � φs � φm − φp denotes the relative phase of three
driving fields. The relative phase φ can effectively affect the
behavior of two-dimensional atom localization, which can also
be verified by the following section.

Giving insight into Eqs. (3) and (9)–(11), we find that they
are in direct proportion to the same factor, which presents that
the measurement of the probe field absorption spectra can also
directly provide the position information of the atom when the
atom passes through the standing-wave fields. In another words,
the peak position of the probe absorption denotes where the
atom is localized, and the peak number of the probe absorption
in one period of the standing-wave fields means the conditional
position probability of finding the atom at a particular position.
For convenience, we define the filter function given as

F�x; y� � Im�χ̃p�x; y��: (12)

Therefore, measuring the probe absorption spectra under
proper conditions can localize the atom at a particular position
within one period of standing-wave fields in the x–y plane.
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3. NUMERICAL RESULTS AND DISCUSSION

We now discuss the conditional position probability distribu-
tion of the atom via a few numerical calculations based on the
filter function in Eq. (12), and then achieve high-precision
two-dimensional atom localization via measuring the probe
absorption and gain spectra. Here, a realistic candidate for the
proposed atomic system can be found in 87Rb atoms with the
designated states chosen as follows [21,49]: j5S1∕2; F � 1;
mF � 0i as j0i, j5S1∕2; F � 2; mF � 0i as j1i, j5P1∕2i as
j2i, j5D3∕2i as j3i, and jnP3∕2i�n > 10� as j4i. The respective
transitions are j0i↔j2i at 795 nm, j2i↔j3i at 762 nm, and
j3i↔j4i at 1.3–1.5 μm [20]. Thus, the decay rates of excited
states j1i, j2i, j3i, and j4i are Γ1 � 2γ1 ≃ 11.2 kHz, Γ2 �

2γ2 ≃ 11.2 MHz, Γ3 � 2γ3 ≃ 1.52 MHz and Γ4 � 2γ4≃
0.16 MHz, respectively. To give a clear illustration, we select
Δc � Δd ≃ 3.92 MHz � 0.7γ2, and all the parameters used
in the following numerical calculations are in the unit of γ2.
Subsequently, as shown in Figs. 2–5, we obtain a few numerical
results for two-dimensional atom localization with different
values of the relevant parameters to illustrate that the high-
precision two-dimensional atom localization can be achieved
in the present five-level hyper inverted-Y-type atomic system.

In the absence of the relative phaseφ (i.e.,φ � 0), we analyze
how the frequency detuning of the weak probe field Δp modify
the behavior of two-dimensional atom localization. In Fig. 2, we
show the filter function F �x; y� versus the normalized positions
�κx; κy� in dependence on the detuning Δp of the probe field.
The corresponding density plots are illustrated in Fig. 3. From
Figs. 2(a) and 3(a), when the probe field is in resonance with the

corresponding transition (i.e.,Δp � 0), it’s shown that the peak
maxima of the probe absorption are distributed on the diagonal
in the second and fourth quadrants of the x–y plane with a
lattice-like pattern, where the atom localization peaks are deter-
mined by κx � κy � 2nπ or κx − κy � �2m� 1�π (n, m are
integers). As the probe detuning Δp increases with all other
parameters keeping fixed, the peak maxima of the filter function
F �x; y� are situated in the four quadrants but with different
probability, and are mainly localized in the third quadrant with
a crater-like pattern, which shows that the spatial resolution of
atomic position is very poor as shown in Figs. 2(b) and 3(b).
Interestingly, when the probe detuning is tuned to Δp � 14γ2,
the filter function exhibits a crater-like pattern in the first
and third quadrants with different localization precision as
shown in Figs. 2(c) and 3(c), where localization peaks in the
third quadrant have a higher precision and resolution than that
shown in the first quadrant. Furthermore, with the further
increase of the probe detuning Δp (i.e., Δp � 20γ2), it can be
seen from Figs. 2(d) and 3(d) that the atom is completely
localized in the third quadrant with the very sharp localization
peak. In this case, the atom is localized at the position �κx;κy��
�−π∕2;−π∕2�with a 100% probability of finding the atom at an
expected spatial position within one period of the standing-wave
fields. Thus, the high-precision and high-resolution of two-
dimensional atom localization is indeed achieved via adjusting
the probe detuning. What’s more, the spatial resolution of
atomic position is greatly improved compared to Figs. 2(a)–2(c).

In Fig. 4, we investigate the influences of intensities of two
control fields,Ωc andΩd , on the filter function F �x; y� without

Fig. 2. Filter function F �x; y� as a function of �κx; κy� with different frequency detuning Δp of the probe field. (a) Δp � 0, (b) Δp � 5.5γ2.
(c) Δp � 14γ2, and (d) Δp � 20γ2. Other values of the parameters were chosen as γ1 � 0.001γ2, γ2 ≃ 5.6 MHz, γ3 � 0.1357γ2, γ4 � 0.0143γ2,
Δs � 0.17γ2, Δc � Δd � 0.7γ2, Ωc � 1.1γ2, Ωd � 0.4γ2, Ωs � 0.8γ2, jΩmwj � 0.001γ2, Ωp � 0.01γ2, and φ � 0.
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considering the relative phase φ (i.e., φ � 0). From Fig. 4, we
present that the spatial distribution and the probability of
finding the atom at a particular position in one period of the
standing-wave fields is dependent on the two control fields. In
the case of �Ωc ;Ωd � � �1.1γ2; 0.3γ2�, the absorption peaks are
mostly distributed in the third quadrant of the x–y plane with a
crater-like pattern and, with little in the first quadrant, in which
the atom is localized at the circular edges of the two craters.
When the intensity of the control field Ωd increases to
0.8γ2 with keeping Ωc fixed as shown in Fig. 4(b), the probe-
absorption maxima are only situated in the third quadrant at
the expected position �κx; κy� � �−π∕2; −π∕2� with a spike-
like pattern, and the maximal probability of finding the atom
at an expected position in the sub-wavelength domain of the
standing-wave field is increased to unity. However, it can be
seen from Fig. 4(c) that with increasing Ωd from 0.8γ2 to
0.98γ2, the crater-like localization peaks appear again in the
first and third quadrants when all other parameters are kept
fixed, where the localization precision of the third quadrant
is much higher than that shown in the first quadrant. For fur-
ther investigation of how the intensity of another control field
Ωc affects the behavior of two-dimensional atom localization,
we plot the filter function F �x; y� versus the normalized posi-
tion �κx; κy� for different intensities of the control field Ωc as
shown in Figs. 4(d)–4(e). In the case that �Ωc ;Ωd � �
�0.8γ2; 0.9γ2�, the result is similar to the result of Fig. 4(c),
and the atom is localized at the circular edges of the craters with
a low-precision crater-like pattern in the first quadrant and an-
other high-precision crater-like pattern in the third quadrant.

More interestingly, when there is an increase in the intensity of
the control field Ωc , i.e., �Ωc ;Ωd � � �1.5γ2; 0.9γ2�, the peak
maxima of the absorption spectrum are completely localized at
position �κx; κy� � �−π∕2; −π∕2� in the third quadrant with a
sharp spike-like pattern, as illustrated in Fig. 4(e), which is
similar to Fig. 4(b). In such a case, the detecting probability
of the atom at an expected position in one period of the
standing-wave fields is 100%. From the above discussions, it
is demonstrated that the application of two appropriate control
fields, such as �Ωc ;Ωd � � �1.1γ2; 0.8γ2� and �Ωc ;Ωd � �
�1.5γ2; 0.9γ2�, leads to a 100% probability of finding the atom
at an expected position in one period of the standing-wave
fields. As a result, the high-precision and high-resolution two-
dimensional atom localization can be obtained via modulating
the appropriate intensities of the two control fields.

As a matter of fact, we are particularly interested in the
influence of the relative phase φ on the behavior of two-
dimensional atom localization, which is one of the most inter-
esting characteristics of the present atomic system. In Fig. 5, we
present numerical results for the analysis of the relative phase φ
on the filter function F �x; y� as a function of �κx; κy�. Because
the values of the system parameters in Fig. 5(a) are the same as in
Fig. 2(d), we can obtain the same results as Fig. 2(d). Then,when
φ � π∕3, another high-precision localization peak with a spike-
like pattern appears in the first quadrant, and the localization
peak in the third quadrant is greatly suppressed and becomes
smaller as shown in Fig. 5(b). As the relative phase is tuned to
φ � 2π∕3 in Fig. 5(c), the peak maxima of the probe gain-
absorption spectra are still localized at a certain position with
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Fig. 3. Density plot of filter function in the plane shown in Fig. 2.
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a spike-like pattern in the first quadrant and inverted-spike-like

pattern in the third quadrant. For this case, it is worth pointing
out that F �x; y� > 0 corresponds to absorption of the probe

field, whereas F�x; y� < 0 corresponding to the probe field is

amplified by the atom. In other words, it is sure that the atom
is passing through the standing-wave fields around the position

�κx; κy� � �π∕2; π∕2� in the first quadrant; however, the atom

must locate at the position �κx; κy� � �−π∕2; −π∕2� in the

third quadrant. Furthermore, for the case φ � π, the probe-
absorption maxima is completely situated in the first quadrant

at the position �κx; κy� � �π∕2; π∕2� with a spike-like pattern,

which is themirror reflection of the localization pattern observed
in Fig. 5(a). In a word, the behavior of two-dimensional atom

localization is sensitive to the relative phase φ, and we can obtain
a 100% probability of finding the atom at a particular position

within one period of the standing-wave fields via tuning the
relative phase to φ � 0 or φ � π. Finally, it is worth noting
that such high-precision and high-resolution two-dimensional
atom localization originates from the destructive quantum
interference induced by the microwave-driven field because
of the existence of two possible pathways from state j0i to state
j2i: the direct one j0iΩp

 !

j2i and the indirect one

j0iΩmw
 �–�!

j1iG s�x; y�
 �——�!

j2i.

4. CONCLUSIONS

In conclusion, we have analyzed in detail the behaviors of
two-dimensional atom localization in a five-level hyper
inverted-Y atomic system based on the measurements of the
probe absorption and gain spectra, in which the hyperfine

Fig. 4. Filter function F�x; y� as a function of �κx; κy� with different intensities of two control fields, Ωc and Ωd . (a) �Ωc ;Ωd � � �1.1γ2; 0.3γ2�,
(b) �Ωc ;Ωd � � �1.1γ2; 0.8γ2�, (c) �Ωc ;Ωd � � �1.1γ2; 0.98γ2�, (d) �Ωc ;Ωd � � �0.8γ2; 0.9γ2�, and (e) �Ωc ;Ωd � � �1.5γ2; 0.9γ2�. Other values of
the parameters are the same as in Fig. 2, except for Δp � 13γ2.
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transition between the two ground levels is resonantly coupled
by an extra microwave-driven field. Because of the spatial-
position-dependent atom-field interaction, two-dimensional
atom localization can be achieved by the measurements of
the probe absorption and gain spectra. It was clearly shown that
the precision of two-dimensional atom localization is extremely
sensitive to the detuning of the weak probe field, the intensities
of the two control fields, and the relative phase of the driving
fields. The main advantage of our proposed scheme is that the
maximum probability of finding the atom at an expected posi-
tion in one period of the standing-wave fields is 100%, which
originated from the joint quantum interference induced by the
combination of two orthogonal standing-wave fields, the two
control fields, and the microwave-driven field. Finally, it is
worth noting that our absorption-measurement scheme pro-
vides a possibility to observe two-dimensional atom localization
in the experiment, because the absorption measurement is
much easier to carry out in a laboratory compared to the mea-
surement of spontaneous emission.

Before ending, we should note that the present study focuses
only on the cold atomic system; the results of Doppler broad-
ening effects can be included by first rewriting the corresponding
detunings, i.e., Δp � ωp − ω20 − Δa1, Δs � ωp − ωs − ω10

−Δa2,Δc � ωp � ωc − ω30 − Δa3, andΔd � ωp � ωc � ωd −

ω40 − Δa4 with Δa1 ∼ kp, Δa2 ∼ kp − ks, Δa3 ∼ kp � kc , and
Δa2 ∼ kp � kc � kd the corresponding additional broadening
effects, which can be suppressed in the cold atomic system.
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