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Ahstrad-A new class of codes, called burst identification codes, is 

defined and studied. These codes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be used to determine the patterns of 
burst errors. Two-dimensional burst correcting codes can be easily con- 
structed from burst identification codes. me resulting class of codes is 
simple to implement and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas lower redundancy than other comparable 
codes. 

I. INTRODUCTION AND SUMMARY 

N MOST memory devices, information is stored in two I dimensions. In such cases, errors usually take the form 
of two-dimensional bursts. For example, VLSI RAM chips 
are sensitive to alpha particles and other radiation effects 
which can cause two-dimensional bursts of errors. Two- 
dimensional burst correcting codes can be used to combat 
such errors. Elspas [ l ]  has shown that the product of two 
cyclic codes is a burst correcting code. Later, Imai [2 ] ,  [3 ]  
has constructed a class of two-dimensional burst correcting 
codes based on generalizing one-dimensional Fire codes 
[4 ] .  Interleaving techniques were also used in [2 ]  to con- 
struct two-dimensional burst correcting codes. 

We construct a new class of two-dimensional burst 
correcting codes. The main idea behind this class is what 
we call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" burst identification codes." Two-dimensional 
codes, as well as burst identification codes, are defined in 
Section 11. A detailed study of one-dimensional and two- 
dimensional burst identification codes is given in Sections 
111, IV, and V. In Section VI two-dimensional burst cor- 
recting codes are constructed using burst identification 
codes. To compare our two-dimensional codes with other 
codes mentioned in the literature, a criterion, which we call 
the "excess redundancy," is used to estimate the re- 
dundancy in each class of codes. The codes constructed in 
Section VI are generally better, in terms of excess re- 
dundancy, than the other classes of codes. Although the 
codes constructed in Section VI are noncyclic, the com- 
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plexity of their encoders and decoders, which are described 
in Section VII, is comparable to the complexity of the 
encoders and decoders of cyclic codes. 

11. PRELIMINARIES AND DEFINITIONS 

An n, X n, array, where n, and n, are positive integers, 
is an array of n, rows and n, columns. A binary two- 
dimensional code of area n, X n 2  is a set of n, X n, binary 
arrays, whose elements are called codewords. A binary 
linear two-dimensional code V of area n, X n,  is a subspace 
of the nln ,-dimensional space of n, X n , arrays over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,. 
Let k be the dimension of V, and [ g,l')], . . , [ g;,k,)], where 
0 I i < n,, 0 I j < n,, be a basis for V. The n, X n 2  matrix 
G = [ g , , , ] ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,,, = (g,(,'!, . . . , g:,",) is called a generator 
matrix of V. The dual code of V, denoted by V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, is the 
null space of V. If the n , ~ n ,  matrix H = [ h , , , ]  is a 
generator for V I, then H is called a parity check matrix 
of the code V. The elements of H are elements in the 
r-dimensional vector space over F,, where r = nln2  - k is 
called the redundancy of the code. The syndrome 
of a binary array [ a , , , ]  of area n , ~  n,, with respect to 
the parity check matrix H of V, is defined as 
Zyi;'ZY2i1a,,,hl,,. Thus a binary array of area n, x n, is a 
codeword in V if and only if its syndrome is zero with 
respect to any given parity check matrix. 

The map [ a , , , ]  * a(x, y )  = Cy&lZ~%~lal,,x'y' defines 
an isomorphism between the n,n ,-dimensional vector space 
of n, X n, arrays over F, and the vector space of bivariate 

deg,p(x, y )  < n , } .  We will frequently identify each array 
with its image under this isomorphism. 

A binary two-dimensional linear code V is said to be 
cyclic if xc(x, y )  and yc(x, y ) ,  both mod(x"* + 1, y"2 +l), 
are in V for each c(x, y )  E V. Thus a cyclic code of 
area n, X n, is an ideal in the residue class ring F2[x, y ] /  

The pairs of positive integers will be partially ordered by 
saying that (b,, b,) is less than (n,, n,) if b, I n,, b, I n,, 
and b,b, # n1n2. We denote this by (b,, b,) < (n,, n,). A 
b, X b,-burst, (b,, b 2 ) s  (n,, n,), is a nonzero n, x n, bi- 
nary array whose nonzero components are confined to a 
rectangle of area b, X b,. Let {(i, j ) :  u1 I i < u1 + b;, u2 I 
j < u2 + b;}, where 0 I u1 s n, - b;, 0 I u,  I n, - b;, be 
the smallest rectangle containing the nonzero components 
of the b, X b,-burst B = [a , , , ] ,O I i < n,, 0 I j < n,. Then 

polynomials { P(X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv) E I.;[x, rl: deg,p(x, y )  < n,, 

(X"' + 1, y"2 + 1). 
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B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis said to have area b; x b;. For b; I b;' I b, and 
b; I b;' I b,, we say that B has the pattern [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, ,], u1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi < 
u1 + b;', u2 I j < u2  + by, starting at position ( u,, u,). In 
the following, it is more convenient to speak about "the" 
pattern of B by considering [a,,,], u1 I i < u1 + b;', u 2  I j 
< u, + b;', to represent the same pattern for all bi I 
b;' I b, and b; I b;' I b,. By this convention, it is to be 
noted that the pattern and the starting position of any 
burst are unique. Thus [a,,,] is a b, X b,-burst if and only 
if a(x,  y )  = C:L<~X~L~ 'U , ,  ,x'y' = xUlyU2b(x, y ) ,  for some 
0 I u1 I n, - b,, 0 I u, I n, - b,, and b(x, y )  E %hlh2, 

where 

In such case the burst pattern is given by the polyno- 
mial b(x, y )  and its starting position is (u,, u,). The 
array [a,,,],O I i < n,,O I J < n,, is called a b, x b,-cyclic 

(mod x"1+ 1, y"2 + l), for some 0 I u1 < n,,O I u2  < n,, 
and b(x, y )  E gbIb2. Thus a b, X b,-burst is a b, X b,-cyclic 
burst, but the converse does not always hold. The starting 
position (u, ,  u , )  of the cyclic burst and its pattern, whch 
is given by b(x, y ) ,  are not necessarily unique. This will be 
considered in the following lemma. 

Lemma 1: A necessary and sufficient condition for all 
b, x b,-cyclic bursts [a,,,.],O I i < n,,O I J < n,, to have 
unique patterns and starting positions is n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2b, - 1 and 

n, 2 2b, - 1. 

Proof: If n, < 2b, - 1, then the burst [a,,,], defined by 
a,., =1 if and only if ( I ,  J )  E {(O,O),(b,-l,O)} has start- 
ing positions (0,O) and (b, - 1,O) since 

burst if a(x,  y )  = C ~ ~ ~ ' C y ~ ~ l a , , , x r y '  xu' yU2b(x, Y )  

~ + X h l - ~ ~ X ~ l - ~ ( ~ + X " l - ~ l + ~  ) (mod x"1+ 1,  y"2 + 1) 

and deg, (1 + ~ ' l - ~ l + ' )  = n, - b, + 1 < b,. Thus n,  2 
2 6, - 1 is a necessary condition. By similarity, n , 2 2 6, - 1 
is also necessary. Conversely, suppose n, 2 2b, - 1, n 2  2 
2b, -1, and 

xUlyU2b'(x, y )  =xU1yU2b"(x, y )  (mod x"1+1, y"2+1) 

where 0 I u,, u1 < n,, 0 u,, u2 < n,, b'(x, y ) ,  b"(x, y )  E 

G?blh2. Multiplying both sides by ~"1-"~y"2-~2, we obtain 

b'(x, y )  + x U I - U I ~ U Z - U ~  b " ( x , y ) = O  

(mod x"l+l ,y"2+1).  

From b"(0, y )  # 0, it follows that 0 I u1 - u1 < b,. From 
b'(0, y )  # 0, it follows that u1 - u1 I 0 or u1 - u1 > n ,  - b,. 
Since nl  2 2b, - 1, we have u1 = u,. Similarly, u, = u2 and 

The following lemma gives the number of distinct 

Lemma 2: The number of distinct b, X b,-burst pat- 

hence b'(x, y )  = b"(x, y ) .  

b, x b,-burst patterns, wluch we denote by N (  b,, b,). 

terns N(b, ,  b2)  is given by 

N ( b , ,  b2)  = 2hihz-1+(261-1-1)(2hz-~ 

Hence 

2 h l h 2 - 1  - < N(b,, b,) < 2hlh2 

and the equality holds if and only if b, or b, is 1. 

Proof: From the definitions, it follows that N (  b,, b2) 
is the total number of binary b, x b,-arrays with the prop- 
erty that their first row and column are nonzero. The first 
and second terms give the number of arrays satisfying this 
property with "1" and "0" at position (O,O), respectively. 

0 

In t h s  paper, we will consider binary linear codes only. 
If n,  =1, we say that the code is a one-dimensional code of 
length n,. In such case, the first dimension will be sup- 
pressed. Hence, from Lemma 2, it follows that the number 
of distinct b-burst patterns is given by N(b) = 2h- ' .  
According to our notation, the parity check matrix of a 
one-dimensional code of length n and redundancy r is 
1 X n matrix [h , ;  . ., h n - , ] ,  where h,; . ., h , - ,  E E;'. 

A two-dimensional linear code %? is said to be a b, X b,- 
burst identification code if no codeword is a 6 ,  x b,-burst, 
or a sum of two b, x b,-bursts of different patterns. Equiv- 
alently, the code %? is a b, X b,-burst identification code if 
and only if the syndromes of the b, X b,-bursts with re- 
spect to any given parity check matrix of %? are nonzero 
and distinct for distinct burst patterns. 

If a b, x b,-burst identification code is used over a 
channel that may add to any transmitted codeword a 
b, X b,-burst, then the receiver can determine the burst 
pattern added by the channel. It is important to note that 
the receiver may not be able uniquely to determine the 
burst position. Hence the transmitted codeword may not 
be uniquely determined. Thus a b, X b,-burst correcting 
code is a b, X b,-burst identification code, but the converse 
does not always hold. In other words, a b, X b,-burst 
identification code may contain a codeword which is the 
sum of two b, X b,-bursts of the same pattern. 

We define rnl xn2(bl, b2) to be the minimum redundancy 
required to construct a b, X b,-burst identification code of 
area n, X n,. Clearly, rfll x,2(bl, b,) is a non-decreasing 
function in n, and n,. In Section IV, we will derive an 
upper bound on rnlxn2(bl, 6,) which is independent of n, 

and n,. Thus rnlX,,(b,,b2) is constant for n, and n ,  
sufficiently large. T h s  constant will be denoted by 
r(b,, b,). In the next section, we start studying burst 
identification codes by considering the one-dimensional 
case. 

111. ONE-DIMENSIONAL BURST IDENTIFICATION CODES 

A one-dimensional code is a b-burst identification code 
if and only if the syndromes of the b-bursts are nonzero 
and distinct for distinct burst patterns. Since the number 
of different burst patterns is N(b) = 2h-', it follows that 
the minimum redundancy required to construct a b-burst 
identification code of arbitrarily large length is bounded 
by r ( b )  2 [log, (1 +2'-')1, which implies r(b) 2 b. It is 
obvious that r(1) =1, which is aclueved by a code whose 
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parity check matrix is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [1,1; . .,1]. The bound r(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 b 
follows also from the following lemma which is an im- 

Combining Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  along with the 
fact that r ( l )  =1, Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 follows. 

identification code. Then, every b consecutive elements of 
H are linearly independent. 

The next lemma shows that a stronger bound holds for 
b 2 3. 

Lemma 4: Let H be a parity check matrix of a b-burst 
identification code of length n 2 2b -2. Then every 2b - 2 
consecutive elements of H are linearly independent. 

IV. TWO-DIMENSIONAL BURST IDENTIFICATION CODES 

A two-dimensional code is a b, x b,-burst identification 
code if and only if the syndromes of the b, X b,-bursts are 
nonzero and distinct for distinct burst patterns. Since the 
number of different patterns is N(b,, b2), as given in 
Lemma 2, it follows that the minimum redundancy re- 

Proof: If b I 2, the result follows from Lemma 3. So, 
we assume in the following that b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3. Let H = 

[h, ,  h,; . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  h, - , ]  and suppose that Cy:~alhl+, = 0, where 
a, E F,, a, = au- l  =1,1 I U I  26 -2, and 0 I 11 n - u. 
Lemma 3 implies that u 2 b + 1. The burst pattern (1, a, + 
l,ab,ab+l,~~~,a,_,)startingatposition l + b - 2  hassyn- 
drome h / + b - 2  +(a, + l ) h / + h - l  + C ~ ~ ~ U , h / + ,  = C ~ ~ ~ U , h / + ,  
+ ( a b - 2  + 1 ) h / + b - 2  + (a1 + a b - 1  + l ) h / + b - l .  However, the 
burst pattern (1, a,; e ,  abp3,  a b - 2  + 1, a, + a h - 1  + 1) 
starting at position 1 has the same syndrome, but obvi- 
ously a different pattern (compare the second coordinate 
in the burst patterns). This contradicts the assumption that 
the code is a b-burst identification code. 0 

It follows from this lemma that r(b) 2 2b -2. The 
following theorem gives a construction of b-burst identifi- 
cation codes, for b 2 2, of arbitrarily large lengths and 
with redundancy 2b - 2. First, we define e, = 

( e , , o , e , , l , ~ ~ ~ , e l , 2 b ~ 3 ) ,  O S i < 2 b - 2 ,  by e , , , = l ,  and 
el,, = 0 for i # j .  So e, is the ith canonical vector of length 

Theorem 5: Let b 2 2 and e, be the I th canonical vector 
of length 2b - 2. Then the code V of length n whose parity 
check matrix is given by H = [h, ,  h,; * *, h , - J  where 
h ,  = ermod(2b-2) is a b-burst identification code with re- 
dundancy 2b - 2. 

Proof: Consider a burst of length b' I b. Let (a ,  = 

1, a,; ., ab,- ,  =1) be its pattern and 1 its position, where 
0 I 1 I n - b'. The syndrome of this burst is 

2b -2. 

h ' -1  b f - 1  

= = are l+rmod(2b-2) .  
r = O  r = O  

The vectors e,,, m4(2,,-2) for 0 I i < b' are distinct since 
b' I b I 2b -2. Hence the weight of the vector s, i.e., the 
number of its nonzero components, is equal to the weight 
of the burst pattern. This ends the proof for b = 2 since the 
burst patterns are either (1) or (1,l). Now, let b 2 3. Then 
s = (so, s,; . -, s , ~ - ~ )  is a cyclic shift of the (2b -2)-tuple 
( a , , a , , ~ ~ ~ , a b , ~ , , O , ~ ~ ~ , O ) .  Henceif s hasauniquecyclic 
string of consecutive zeros of length 2 b - 2, then the 
burst pattern (a,, a,; -., ah'-l) can be uniquely deduced 
from s. If this is not the case, then s has two cyclic strings 
of b - 2 zeros each, which occurs if and only if b' = b and 
the burst pattern is (a, =1,0,0;. .,O, ab- ,  =1). Also in 
this case the burst pattern is uniquely determined from the 
syndrome. 0 

quired to construct a b, X 6,-burst identification code 
of arbitrarily large area is bounded by r(bl, b2) 2 
[log, (1 + N(b,, b,))], which implies r(b,, b,) 2 b,b2. In this 
section, we will prove that 2b,b, - 2 I r( b,, b2) I 2b,b,. 
The following two lemmas are the two-dimensional ver- 
sions of Lemmas 3 and 4. 

Lemma 7: Let H = [ h , , , ] ,  O ~ i < n , , O ~ j < n , ,  be a 
parity check matrix of a b, X b,-burst identification code. 
Then, for every pair of integers ( ul, u,), such that 0 I u1 I 
n ,  - b,,O I u, I n 2  - b,, the vectors hi, , ,  for u1 I i < 
u1 + b,, u2 I j < u2 + b, are linearly independent. 

The proof of the previous lemma follows immediately 
from the definition. 

Lemma 8: Let H = [ h , , , ] ,  O<i<n, ,  O I j < n , ,  be a 
parity check matrix of a b, X b,-burst identification code. 
Let 0 I u l ,  u1 I n ,  - b,, 0 I u2, u2 5 n 2  - b,, IUI,., = {(i, j ) :  
u1 I i < u1 + b,, u2 I j < u,  + b,}, and define ZUlrU2 simi- 
larly. If IIu1,u2n Iul,u,I 2 2, then the vectors h, , , ,  ( i ,  j )  E 

Iul, u2 U ZuI,u2 are linearly independent. 

Proof: Without loss of generality, assume that u1 < u1 
and u2 I u,. Let J = ZuL, ,, n Zul, u2 = {(i, j ) :  u1 I i < u1 + b,, 
u2 I j < u2 + b,}, and suppose IJI 2 2. We may assume 
that u1 + b, - u1 2 2, otherwise interchange i and j (see 

ai,, E F,, and not all are zero. 
Fig. 1). Now, suppose that x ( t , j )  E Iul,u2 u l ~ , I , ~ , ~ i ,  ,hi , ,  = 0, 

"7 v7 

Let x be an indeterminate. Define the array [ci,,], 
01i<b, ,  O < j < b , ,  by c0,,=1, cl,,=x, and c i , ,=  
a u1 + i ,  u1 +, otherwise. The array [ ci, ,] defines the pattern of 
a b, x b,-burst starting at position ( u l ,  u,). Let B,  be this 
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burst. The syndrome of B ,  is 

Ill 1 /IZ ~ 1 

, = 0  , = o  
c C l , / h l ~ l + l , l ’ 2 + J  

Define the array [d,,,], 0 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi < b,,O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI j < b,, as 

Q U I  + I .  u2 fJ 9 

1 + Q I ~ , , O > ~  i f ( u , + i , u , + j ) = ( u , , u , ) ;  

i f ( u , + i , u , + j ) E I , I . u Z - J ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x + + 1, L , z ,  if ( u ,  + i, ~2 + j )  = ( u ,  + 1 , ~ 2 )  ; I 0, otherwise. 

4.,= 

Let B,  be the burst whose pattern is defined by the array 
[d,.  , ] ,  0 I i < b,, 0 I j < b,, and whose starting position is 
( u ; ,  u ; ) ,  where u;  = u1 + t,, u ;  = u2 + t , ,  and t,, t ,  are the 
maximum values for which the rectangle {(i, j ) :  t ,  I i < b,, 
t ,  I j < b,} contains all the nonzero components of the 
array [ d , , , ] ,  0 I i < b,, 0 I j < b,. From Lemma 7, it fol- 
lows that (u ; ,  u ; )  E Iu l ,u2 - J .  The syndrome of B,, which 
is C~S,~C~L;~~,, Jh.I +,, u2 +,, is the same as the syndrome of 
B,.  Hence B ,  and B,  should have the same pattern. This 
implies that d,;+, ,u l+,  - - c,,, for O I i < b , - u i ,  01 
j < 6,  - u;  (see Fig. 2). In particular, it implies that 
dL, ;+ l ,u l  = x, independent of our choice of x! However, 
( u ; ,  u ; )  E Zul, u2 - J implies (u ;  + 1, u ; )  # ( u ,  + 1, u,). Since 

d,,l is the only element in the array [ d , , , ] ,  0 I i < b,, 
0 I j < b,, that depends on x, it follows that d u ~ + l , u l  does 
not depend on x. By choosing x =1+ du{+,,“$, we get a 
contradiction. 0 

It follows from the previous lemma that r(b,, 6,) 2 
2b,b2 -2. 

UP i 
U1 

\ 
U, 

0 1  0 
- - - I - - -  -- - - 

I 
I 

o 1 [di,il j: 
i 

[ci.jI 

1 

Fig. 2 .  Arrays [ c,, ,] and [ d,, , I .  

Before presenting a construction of a b,  X b,-burst iden- 
tification code with a redundancy 2b,b,, we have to say 
something about the notation that we shall use. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 be 
the set {O’,l’;. .,(bib, - l)’} u {0’’,1’’;. . ,(b,b, - l)”}. 

A vector h E F;hih2 can be represented as h = 

(Ao , ,  h,,; . -, h(h ,h2- l ) , ,  lzol,, A,,,,. . ., h ( h , h 2 - l ) f f } .  We associ- 

ate with every vector h E F;”1”2 its characteristic set A? = 

{ q E 9: h ,  = 1). In particular, the parity check matrix 
H = [ h i , , ]  can be represented by the sets A?,,, instead of 
the vectors h, , , .  

In the following constructi2n o,f burst identification 
codes, we define a matrix H =  [ h , , , ] ,  01i < 2b,, 0 I 
j < 2b,. The parity check matrix of a code of area 
n,Xn,, denoted by H = [ h , , , ] ,  O$i<n , ,  O I j < n , ,  is 

then defined periodically by h , , ,  = h ,  mod mod 2 b 2 ,  The 
matrix H is called the building block of the code. 

Theorem 9: Let the elements of the 2b, X2b,  building 
block 9 be defined as 

2 r . /  = { ( .  2b2+J)‘} 

$., j + h ,  = { (ib, + j ) ’ ,  (ib, + j ) ” )  

$.+ h , ,  = { ( ib, + j )’, (( ( i + 1) mod b, ) b, + j )” } 

$ + h l , , + h ,  = W2 + j ) ” )  

where 0 I i < b,, 01 j <  b,. Then, 2 is the building 
block of a b, x b,-burst identification code of redundancy 
2b1b,. 

Before giving the proof, the following is an example of 
the construction of the building block for b,  = b, =?. 

Example: With b, = 6, = 3, the building block 2 is 

(O’,,,’} { l’, 1”} { 2’, 2”} 

(3””) {4,4’} {5 ’ ” ’ ’ }  

{O”} (1”) (2 ” )  

(3 ” )  {4’} ( 5 ” )  

(6’,6”} { 7’, 7”} { 8’, 8”} 

(6 ” )  (7”) {S”} 
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Proof: It is clear from the construction that the re- 

dundancy is 2b,b,. Let B be a 6,  x b,-burst whose pattern 

is [ a , ,  , I ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< b,,O I j < b,, starting at position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u,, u,). 
Its syndrome is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b, - 1  b2-1 

r = O  ] = o  
’= c c a I , J h U l + I , U ~ t J .  

Let J =  { ( u ,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, u2 + j ) :  a,, =1} be the set of positions 
of the nonzero elements of B. The projectionAof the burst 

B on the building block is a cyclic burst B,  where the 
ppsitions of its nonzero components are given by the set 
J =  { i  mod 2b1, j mod 2b,: ( i ,  j )  E J } .  Since the area of 
building block is 2b1 X 2b,, it follows from Lemma 1 that 
the cyclic burst k has unique burst pattern and starting 
position. Hence, it suffices to show that the burst pattern 
of k can be uniquely determined from the syndrome zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. In 

fact, we will show that from s we can fven uniquely 
determine J ,  except for few cases in which J is determined 
up to a shift of b, and b,, in the vertical and horizontal 

directions, respectively. 
From the definition of 2, it follows that $ , J  and 

$,,, J r  are disjoint if ( i ,  j )  # (i’, j ’), Ii - i’l < b,, and 
l j  - j’l < b,. So, if Y denotes the characteristic set of the 
syndrome s, then from the construction of the parity check 

matrix of the code we have 

Y =  $ , J  (2) 
( 1 , J ) E j  

where U denotes the unicn of disjoiqt sets. It also follows 
from the definition of 2 that if contains I’ or I”, 
then 1 = j (mod b,). Let 4 = {(i, j )  E .f: j = 1 (mod b,) } ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9;’ = { s‘ E 9’: s = 1 (mod b,) } ,  Y/” = { s“ E 9’: s = 1 
(mod b,) } ,  and 9’/ = Y/’U”’’, where 0 I I < b,. Thus 4 is 

the restrittion of .f to columns 1 and I + b,. Hence, [= 

for 0 I 1 < b,, which follows from (2) .  It is sufficient to 
show that from each individual Y/, where 0 I I < b,, we 

can determine uniquely the burst pattern defined on 4, 
whch  is a b,  X 1-burst. This is demonstrated only for I = 0 
since the other values of 1 can be treated similarly. 

Notice from the construction of 2 that the number of 
elements contained in from the set {O’,l’;. - )  

(b,b, - 1)) is a,f least equal to the number of elements 

contained in from the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{O”, 1”; . . , ( b  b - l)”}. 

Of course, the same holds for disjoint unions of &,o. The 

converse holds for $,b2 .  Equality occurs only in $,o for 

b, I i < 2b,, and in @ , h 2  for 0 I i < b,. 
Hence we have the following set o,f rules for identifying 

the b,  X 1-burst pattern defined by J, from Yo. For other 
values of I ,  these rules are also applicable after obvious 
modifications. 

Rule I ,  If 19,’1> lY,’’l or IY;l= IY,”l and ?,”# 
{(ib,)”: (&)’ E Y,’}: In this case, the elements of J, are 
of the form ( i , O ) .  In fact, .(, = { ( i , O ) :  (ib,)’ E Y,’, ( ( ( i  + 1 )  
mod b,)b,)” 4 9,”) U { ( i  + b,,O): (ib,)’ E 94, (((i + 1 )  
mod b,)b,)” E 9,’’). 

UOs / <  b21/ and = UOc/< bZY/, where Y/ = u(r, J )  =A2,, J 

‘ 2 ,  

Rule 2, If IY,’l < IY;’l, or IY,’l= IY,”l and Y;’# 
{(((i+l) mod b,)b,)”: ( ib , ) ’EY, ’ } :  In thi; case, the 

elements of & are of the form ( i ,  b,). In fact, Jo = {(i, b,): 
(ib,)’ E Y,’, (ib,)” E 9;’) U { ( i  + b,, b,): (ib,)’ P Y,’, 
( ib,)” E 9,’’ }. 

Rule 3, If Y,”= {(ib,)”: ( i b , ) ’ ~ Y , ’ }  = {(((i+l)  mod 
b,)b,)”: (ib,)’ E Y,’}: In this case: either 9,’ = Y,” = Yo 
= +, the null set, which implies Jo = $I, or 9; = {(ib,)’: 
0 I i < b , }  an$ 9,” = {(ib,)”: 0 I i < b, } :  The latter case 
implies that Jo = { ( i , O ) :  b, I i < 2b1} or J, = { ( j ,  b,): 0 I 
i < b , } .  However, these two possibilities for Jo give the 
same pattern. 

By applying this algorithm to Sq for 1 =1,2; a ,  b, - 1, 
this ambiguity will be resolved unless when rule 3 is 

applicable for alivalues of 1. In the latter situation, two 
possibilities for J can be deduced from the syndrome 9’. 

0 However, both give the same burst pattern. 

Example (continued): Let Y =  {2’,  5‘, 6’, 7’, S’, 4”, 5”, 
6”, 7”, S”} be a syndrome with respect to the building 
block of the 3x3-burst identification code given in (1). 
Then 9; = {6 ’ } ,  9,’’ = (6”). Rule 2 applies, and we find 

& = {(2,3)}. Similarly, 9; = {7’}, 9’;’ = {4” ,7” } ,  and rule 

2 yields 4 = { (2,4), (4,4)}. Fi?ally, 9; = { 2’, 5‘, S ’ } ,  Y;’ = 

{ 5”, S”}, and ruk 1 yields 5, = { (2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz), (,3,2), (4,2)}. Thus 
the cyclic burst B deduced from J,, J,, 5, is 

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 1 1 1 0  
0 0 1 0 0 0  
0 0 1 0 1 0  

~ 0 0 0 0 0 0  

and its pattern is given by 

[i i]. 
Example (continued): Let Y = {ol, l’, 3‘, 6’, 0”, 3”) 4”, 

6”, S”} be a syndrome with respect to the building block 
of the 3x3-burst identification code given in (1). Tben 
9; = { O’, 3’, 6’} ,  Y,’’ = { O”, 3”, 6”}, and rule 3 yields J, = 

{ (3,0), (4, O), (5 ,O) )  or { (0,3), (1,3), (2,3)}; We also have 
9’; = { l’}, 9’;’ = {4”}, and rule 1 yields J1 = ((3, l)}. Since 

the burst is a:sumed to be confined to a rectangle of area 
3 X 3, then J, = {(3,0),(4,9,(5,0)}. Finally, 9;’ = $I, 9;’ 
= {S”}, and rule 2 yields 5, = { ( 5 , 5 ) } .  So, the cyclic burst 

k deduced from &, A,& is 

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
1 1 0 0 0 0  
1 0 0 0 0 0  

~ 1 0 0 0 0 1  

and its pattern is given by 
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The next theorem, which is the most important result of 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10: Let r(b,, b2) be the minimum redundancy 
required to construct a b, x b,-burst identification code of 
arbitrarily large area. Then 

2b,b2 -2 I r (  b,, b,) I 2b,b2. 

this section, follows from Lemma 8 and Theorem 9. 

V. SOME SPECIFIC BURST IDENTIFICATION CODES 

In this section we will consider b, X b,-burst identifica- 
tion codes for some specific values of 6, and b,. We note 
that if H is a parity check matrix of a b, X b,-burst 
identification code, then the transpose of H is a parity 
check matrix of a b, X b,-burst identification code, and so 

r(b19b2) = r(b23 b1). 

A.  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 6-Burst Identification Codes 

Obviously, r(1,l) =1 which is achieved by a code whose 
parity check matrix is composed of ones. So, in the follow- 
ing we take b > 1. The next theorem gives an explicit 
construction for 1 x b-burst identification code with 2b - 2 
redundant bits. 

Theorem 11: Let b > 1 and let e, be the I th canonical 
vector of length 2b - 2. Then, the code of area n, X n 2  

whose parity check matrix is given by H =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ h , , , ] ,  0 I 
I < n,,O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI j < n,, where h,,  = eJ mod ( 2 h - 2 ) ,  is a 1 x b-burst 
identification code of redundancy 2b - 2. 

Proof: The patterns of the 1 X b-bursts are the same as 
those of the one-dimensional b-bursts. In Theorem 5, a 
construction is given of a one-dimensional b-burst identifi- 
cation code. Hence the code defined in Theorem 11, which 
is simply the code defined in Theorem 5 repeated n, times, 
is a 1 X b-burst identification code. The redundancy is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

Combining this result with Theorem 10, we obtain the 

Theorem 12: r(1,l) = 1, and r(1, b) = r( b, 1) = 2b - 2 

obviously 2 b - 2. 

following theorem. 

for b >1. 

B. 2 X 2-Burst Identification Codes 

From Theorem 10, we know that 6 < r(2,2) I 8. Here, 
we will prove that r(2,2) = 7. First we will show that 
r(2,2) > 6. Suppose that H is a 3 X 4 submatrix of a parity 
check matrix of a 2x2-burst identification code with re- 
dundancy 6. By studying the structure of H ,  we will 
establish a contradiction. By Lemma 8, we may assume, 
without loss of generality, that H has the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P eo e, 

[: :: :: ,] 
where e, is the ith canonical vector of length 6, and p ,  q,  
t ,  u, u, and w are vectors of length 6. We shall write 
p = ( po, p , , .  . . , p 5 ) ,  and the same notation holds for the 

other vectors. 

Lemma 13: q, = q5 = uo = u4 = 1. 

Proof: Suppose that q, = 0. By Lemma 8, applied to 
{(i, j ) :  i =1,2, j = 0,1,2}, i t  follows that qo =l. The burst 

has syndrome (O,O, 1, q3, q4, q5),  as does the burst 

while obviously these two bursts have different patterns. 
This contradiction proves that q, = 1. For reasons of sym- 

0 metry, q5 = uo = u4 = 1. 

Lemma 14: p = e5, t =e, ,  u = e4, and w = e,. 

Lemma 13, it follows that the burst B,, given by 
Proof: Let x be an indeterminate. Since q l = l  by 

0 0  

has syndrome (O,O, p 2  + p1q2  + x, p3  + plq3, p4 + plq43 

p 5  + p145), as does the burst B, given by 

0 0 

p4+plq4 pS'plq5 

Hence these two bursts should have the same pattern. By 

taking x =1, it follows that p 2  + plq2 = 0, po + plqo = 

B,= [o X Po+Piqo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:I. 
If we now take x = 0, and compare B, with B,,  it follows 
that p ,  = po = 0. Substituting t h s  in the previous equa- 
tions, we get p 2  = p 3  = p4 = 0 and p 5  = l. Hence p = e5. 

0 

P3 + plq3, P1 = p4 -k plq4, and p5 + p145 Hence 

0 0  0 

0 P1 1 0 

By symmetry, we get t = e,, u = e4, and w = eo. 

By Lemma 14, H has the form 

eo e, 

e, e4 e5 eo 

Furthermore, by Lemma 13 we have q, = q5 = 1 and uo = 

u4 =l. The proof of the next lemma contradicts the as- 
sumption r(2,2) = 6. 

Lemma 15: r(2,2) > 6 .  

Proof: By Lemma 8, applied to { ( i ,  j ) :  i = 0,1, j = 

0,1,2}, { ( i , j ) :  i = l , 2 ,  j=O,1,2}, and { ( i , j ) :  i=O,1,2, 
j = O , l } ,  weget q4=qo=q3=1.  Henceq=(1,1,q2,1,1,1). 
By symmetry, u = (1,1,1, u3,1,  1). However, the burst 
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has syndrome (0,1,1,1,1, l), as does the burst p?ttern of can now be easily determined from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H( u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Combining Lemma 15 and Theorem 16, we arrive at the 

following theorem. 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17: r(2,2) = 7. 
while, obviously, these bursts have different patterns. This 
contradiction proves the lemma. 0 

C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3X 2-Burst Identification Codes 
The following theorem gives a 2 X 2-burst identification 

code with redundancy 7. As in Theorem 9, the parity check 

matrix H = [h , .  ,], 0 I i < n,, 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj < n,, is defined periodi- 

The following theorem is stated here without its lengthy 
proof which can be found in [ 5 ] .  

., 
cally by the 4 x 4 Puilding block I? = [k,, ,I, 0 < i < 4, 
0 I j < 4, as h,,  , = h,  

Theorem 18: 11 I r(3,2) 512.  

4, , mod 4, where h,, , E F;. 
Theorem 16: Let VI. BURST CORRECTING CODES 

eo e1 e2 e3 

where e, is the ith canonical vector of length 7, and 
l = ( l , l , l , l , l , l , l ) .  Then H is the building block of a 
2 x 2-burst identification code of redundancy 7. 

Proof: It is clear from the construction that the re- 

dundancy is 7. Since the building block has size 4 x 4 ,  it 
suffices, as we have demonstrated in the proof of Theorem 
9 by using Lemma:, to show that the burst pattern of any 

2 x 2-cyclic burst B on the building block can be uniquely 

determined from its syndrome. 

Let l? be a 2x2-cyclic burst, and let s be its syndrome, 

whose weight is denoted by w ( s ) .  Let J be the set of 

positions of the npnzero components of B. From the 
construction of H ,  it follows tkat each vector U E  

{e , ,  e,, . . . , e6, l} occurs twice in H ,  namely at positions 
(i,  j )  and ( i  + 2  mod 4, j + 2  mod 4), for some 0 5 i, j < 4. 
Since h is assumed to be of area 2 x 2 ,  or less, it follows 
that no vector u can contribute twice to s. The weight 

w ( s )  = 4 if and only if the pattern of l? is . For all 

other burst patterns, w ( s )  > 4 if and only if J contains 
(1,3) or (3,l). So we may replace 1 by e7 in the burst 
identification algorithm, where we now view the e, as the 
canonical vectors of length 8. The weight of the burst is 
now equal to w ( s ) .  Let u be one of the vectors tha! 

contributed to s. The nonzero components of the burst B 
are contained in a 3 X 3 subarray, which corresponds to the 

3 x 3 submatrix 

[1 11 

where the vectors ui ,  0 I i I 5, and u are all different and 
from the set {e , ,  el,- . 0 ,  e7}. Note that this 3 X,3 submatrix 
is the same for the two positions of u in H .  The burst 

A two-dimensional linear code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is said to be a b, X 6,- 
burst correcting code if no codeword, except the all-zero 
codeword, is a b, X b,-burst or a sum of two b, X b,-bursts. 
Equivalently, the code % is a b, x &-burst correcting code 
if and only if the syndromes of the b, X b,-bursts with 

respect to any given parity check matrix of 9 are nonzero 
and distinct. 

We are mainly interested in b, X b,-burst correcting 
codes whose areas are much larger than b, X b,. In this 

section, we will construct a class of burst correcting codes 
using burst identification codes. To compare this class of 
codes with other classes mentioned in the literature, the 
following measure is used to estimate the redundancy 
required in each class. Consider an infinite class 9’ of 
b, X b2-burst correcting codes, and suppose that for every 

positive integer n, the subset Y ( n )  of codes in Y of area 
n, X n 2  for some (n,, n2)  > (n ,  n)  is nonempty. For each 
% E 9, let nlw X n2w and re denote the area and re- 
dundancy of %, respectively. Then, we define the excess 
redundancy of the class Y as 

yy(b1 ,b2)  = lim inf (re-10g2(n,,n,,)), 
n-+w W € E ( f l )  

if such limit exists. The concept of excess redundancy is a 

modified version of an earlier measure of efficiency of 

one-dimensional burst correcting codes developed by 
Fire [4]. Note that Ty(bl, b,) exists if and only if 

infOPESP(”) (rol -log2(nlgnZOP)) is bounded as a function of 
n since it is a nondecreasing function. If this function is 

unbounded, we take FSP(bl, b,) = 00. The definition of 
excess redundancy may need some clarification. A b, X b,- 
burst correcting code of area n, X n 2  and redundancy r 

must have distinct syndromes for all distinct 1 X 1-bursts. 
Since there are n1n2 such bursts, it follows that r should 
be at least log,(n,n,). This explains the term “excess” 
used to describe fy( b1,62). It follows from the definition 
of excess redundancy that if F,(b,, b,) is finite, then for 
every c > 0 and every positive integer n, there exists a 
6, X b,-burst correcting code in Y of area n,  X n,, for 

some (nl,  n 2 )  > (n ,  n), whose redundancy is less than 

fY(bl3 b2)+1og,(n,n,)+ 
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For a code of area n,  X n,, it can be easily shown that 

the total number of b, X b,-bursts is 

h2 

hi = I  
( n ,  - b J n ,  - b,)N(b, ,  b2) + (n1-  bl) c N(b1, b i )  

+(n,-bb,)  c N ( b ; J , ) +  c c N ( b ; J ; ) ,  
hl hl 9 

h[ = I  h [ = l  & = I  

where N(b, ,  6,) is the number of distinct patterns of 
6, x b,-bursts. Hence if the code is a b, X b,-burst cor- 
recting code of redundancy r ,  then 2' - 1 should be at least 
equal to this number. This implies the following result. 

Theorem 19: Let ?(b,, b,) denote the excess redun- 
dancy of the class of all 6, X b,-burst correcting codes. 
Then, 

Y(b,, b2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 log,N(b,, b2). 

Our main aim is to develop two-dimensional burst cor- 
recting codes whose excess redundancy is small. Before 
doing that, i t  may be illuminating to consider one-dimen- 
sional codes whose theory is better understood. 

Hamming codes are 1-burst correcting codes whose 
excess redundancy is 0. For 2-burst correcting codes, 
Abramson codes [6] have excess redundancy 1. The excess 
redundancies of these two classes of codes satisfy the 
minimum bound of the one-dimensional version of Theo- 
rem 19 with equality. For b-burst correcting codes, with 
b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3, the best known class until recently in terms of excess 
redundancy was Fire codes [4]. The excess redundancy of 
this class is (26 - 1) -log, (2b - 1). However, it has been 
shown recently [7] that for every positive integer b 2 3, a 
class of cyclic b-burst correcting codes exists whose excess 
redundancy is b - 1. This class satisfies the lower bound of 
the one-dimensional version of Theorem 19 with equality. 

We return to two-dimensional burst correcting codes. 
The first class of such codes ever reported in the literature 
is due to Elspas [1]. The codes in this class are products of 
cyclic codes. The excess redundancy of these codes is 
infinite for all values of b, and b,. However, note that 
these codes have other error correcting capabilities, in 
addition to correcting two-dimensional bursts. Moreover, 
the excess redundancy is useful in measuring the efficiency 
of a b,  x b,-burst correcting code only if its area is much 
larger than b, x b,. For example, codes obtained by inter- 
leaving have infinite excess redundancy. However, some of 
these codes are asymptotically optimum as b, and b, tend 
to infinity [2]. 

The y,B-codes developed by Nomura et al. [8], are cyclic 
1 x 1-burst correcting codes whose excess redundancy is 0, 
which meets the lower bound of Theorem 19 with equality. 
The class of two-dimensional Fire codes [2], [3] has excess 
redundancy (26, - 1)(2b, - 1) - log, (2b, - 1)(2b2 - 1). 
Apart from the codes developed in this paper, this excess 
redundancy is the best known value in case (b, ,  b,) t (1,l). 

be a b, X b,-burst identification code of area 
n ,  x n,. Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVf has no nonzero codeword which is a 

b,  x b,-burst or a sum of two b, X b,-bursts of different 

Let 

patterns. Suppose that %'L is a code of area n,  x n ,  that 
has no nonzero codeword whch is a b,  X b,-burst or a sum 
of two b, X b,-bursts of the same pattern. Then the sub- 
space V = VI n VL is a code of area n ,  X n 2  that has no 
nonzero codeword which is a b, X b,-burst or a sum of two 
b, x b2-bursts. In other words, V is a b, x b,-burst cor- 
recting code. The code VL is called a b, X b,-burst locating 
code since it can determine the location of any single burst 
if its pattern is known. The redundancy of %' is at most 
equal to the sum of the redundancies of VI and VL. A 
code whose redundancy is the sum of the redundancies of 

and VL and which is a subspace of will be 
called a burst identification and locating (BIL) code. 

Starting with the one-dimensional burst identification 
codes of Theorem 5, it is possible to construct a family of 
one-dimensional BIL codes whose excess redundancy is 
r ( b )  as given in Theorem 6. The required burst locating 
codes are simply Hamming codes. One-dimensional BIL 
codes have a simple structure although they are not cyclic. 
However, their excess redundancy, which is 26 - 2 for 
b 2 2, is slightly larger than the excess redundancy of the 
class of cyclic Fire codes which is (26 - 1) -log, (2b - 1). 

Obviously, the redundancy r of a b, X b,-burst locating 
code of area n , X n ,  must satisfy 2 ' - l 2n1n , .  In the 
following theorem, a technique which is due to Nomura 
et al. [8] is given to construct burst locating codes which 
satisfy this bound with equality. 

Theorem 20: Let m, and m, be positive integers. Let LY 

be a primitive element in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2n,,nj2. Let n,  and n ,  be positive 
integers such that the following conditions are satisfied: 

1) n n = 2nItfi12-1. 
1 2  

2) 
3) GCD(n, ,  n,) =1. 

m ,  is the multiplicative order of 2 modulo n,. 

Let y = an, and ,B = L Y " ~ .  Then, 

i) 
ii) 

The orders of y and ,B are nl and n,, respectively. 
The minimal polynomial of y over F, is of degree 
ml ,  and the minimal polynomial of p over F2",1 is of 
degree m ,. 

iii) The elements y'p', for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I  < m,, 0 I J < m,, are 
linearly independent over F,. 

iv) y ' p J  = 1 if and only if n,(i and n,lj. 
v) The matrix [ y ' p ' ] ,  0 I I < n,, 0 I J < n,, is a parity 

check matrix of a cyclic rn, X m,-burst locating 
code of area n,  x n ,  and redundancy m,m,. 

Proof: Part i) immediately follows from condition 1). 
From condition 2) it follows that the minimal polynomial 
of y over F, is of degree m,. The degree of the minimal 
polynomial of ,B over F2"11 is the least positive integer d 
such that 2mld =1 (mod n,). Conditions 1), 2), and 3) 
imply that for such d ,  we have 2mld = I  (mod 2"'ln12-1) 
and hence d = m,. This proves ii). 

Now, suppose that 

niz ~ 1 nil ~ 1 

/ = o  r = O  
c c a,, ,Y'p '=O 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,. The fact that the minimal polynomial of /3 
over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2ml is of degree 112, implies X~i;'a,, / y l  = 0 for all 
0 I j < m,, which implies a,, = 0 for all 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i < m, and 
0 I j < m2 as the minimal polynomial of y over F2 is of 

Corollary 22: If b,, b,, and n are positive integers, then 
there exists a b, X b,-burst locating code which is a yp-code 
of area greater than n X n with parameters (m,, m,) for all 
sufficiently large m, and m2. 

degree m,. This proves iii). 
To prove iv), note that n,li and n,lj implies y;6J=1 

from i). On the other hand, if y'pJ = 1, then y'"2 = p - J n 2  = 1, 

which gives n,lin,. This implies n,li by (3). Hence p J  = 1, 
which gives n,l j .  

Next, we prove v). Let [c,, ,I, 0 5 i < n,, 0 I j < n,, be 
an array over F,. The syndrome of t h s  array is given by 

n , - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,-1 

'= cI,JY;((J' 
r = O  J = o  

Thus the array [c,, is a codeword if and only if c(y, p )  = 

0, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ( x ,  y )  = Zy&'Zy~;'c,, Jx ' yJ .  Hence the code is 
an ideal in F2[x,  y ] / ( x " l +  1, y"2 + l), and thus is cyclic. 
Hence to show that it is an m, X m,-burst locating code, it 
suffices to prove that if 

c ( x ,  y )  = b ( x ,  y ) + x U 1 y " 2 b ( x ,  y )  (mod x n ~ + 1 , y n 2 + 1 )  

is a codeword, where b ( x , y ) E ~ Z ? ~ ~ ~ ~ ,  then nllul and 
n,lu2. Suppose c ( x ,  y )  is a codeword. Then b(y, p)+ 
y "$"2b( y, p )  = 0. However, from part iii), it follows that 
b(y,P)  # 0, which implies y u ~ p u 2  =l. Part iv) gives nllul 
and n,lu,. 

Thus the code is indeed a cyclic m1 X m,-burst locating 
code of area n , X n 2  and redundancy ~ m , m , .  However 
from iii), it follows that the redundancy is exactly m1m2. 

0 

A code whose construction is as given in Theorem 20 
will be called a yp-code with parameters (m,, m,). The 
yp-codes presented here are the duals of the codes studied 
in [8], which are called yp-array codes. 

In the following, we will show that for all positive 
integers b, and b,, there exists an infinite number of 
b, x b,-burst locating codes within the class of yp-codes. 
The basic argument in the proof is due to Gordon 191. 

Proof: If (b,, b,) s (m,, m,), then an m, x m,-burst 
locating code is a b, x b,-burst locating code. The corollary 
now follows from Theorem 21 and conditions 1) and 2) of 
Theorem 20. 0 

Some practical applications may require the areas of the 
burst locating codes to be squares or close to squares. In 
the construction given in Theorem 20, it follows that 
n, I 2"1- 1 and 

Thus, if n, and n 2  are required to be large and close in 
value, then 172, is restricted to be less or equal to 2. 
However, this may restrict the $-code to be a b, X b,-burst 
locating code with b, = 1 or 2 only. 

In the following, we construct b, X b,-burst locating 
codes of square areas for all positive integers b, and b,. 

Theorem 23: Let b,, b,, t,, t,, and m be positive in- 
tegers, m > 1. Let a and /3 be primitive elements in F,",, 
not necessarily distinct. Suppose that the following condi- 
tions hold. 

1) The elements a"l+J, 0 I i < b,, 0 I j < b,, are lin- 
early independent over F,. 

2)  The elements p1+Jr2, 0 I i < b,, 0 I j < b,, are lin- 
early independent over F,. 

3) GCD( t l t2  - 1,2" - 1) = 1. 

Then the code with parity check matrix [ h , , ! ] ,  0 I I ,  j < 2" 
- 1, given by h,,  = (a"l+J, p1+J12), is a cyclic b, X b,-burst 
locating code of area 2" - 1 X 2" - 1, and redundancy 2m.  

Proof: Let n = 2" - 1. An array [c,, ,I, 0 I I ,  j < n,  
over F, is a codeword if and only if its syndrome is zero, 
i.e., if and only if 

Theorem 21: For every pair of positive integers (m,, m,) n - 1  n - 1  n - 1  n - 1  
such that m, # 6 and ml 2 m,, there exists a yp-code with C , , / a l f ' + J =  c,, / p l + J t 2  = 0. 

r = O  / = o  

Let C ( X ,  y )  = ~ykilZy~<'c,, J x l y J ,  then it follows that 
C ( X ,  y )  is a codeword if and only if c(a'1, a )  = c ( p ,  p'2) = 

0. Thus the code is an ideal in F2[x,  y ] / ( x "  + 1, y" + I), 
and hence is cyclic. To prove that the code is a b, x b,-burst 
locating code, it suffices to show that if 

c ( x , y )  = b ( x , y ) + x " ~ y U 2 b ( x , y )  (mod x " + l , y " + l )  

is a codeword, where b ( x ,  y )  E g h I h 2 ,  then u1 = u2 = 0 
(mod n). Suppose c ( x ,  y )  is a codeword, then 

b(a"9 a)+ auL'1+u2b(a11, a) 

parameters (m,, m,). 1 - 0  J = o  

Proof: Let m, # 6 and m, 2 m,. From a result in [ l o ] ,  
it follows that a prime p exists such that mi is the 
multiplicative order of 2 modulo p .  This implies m, I p - 1 
by Fermat's theorem. Let p"112"1- 1 for some positive 
integer a ,  Le., p"12"1- 1 but p"+' + 2"1- 1. Assume that 

p1(2"1"2 - 1)/(2"1- 1). Then 

2(m2-1)m1 + 2(m2-2)m1 + + 2"l+ 1 0 (mod p ) .  

m , terms 

Since 2"1=1 (mod p ) ,  it follows that plm,. Hence m, 2 p 
2 m, + 1, which contradicts m, 2 m,. Thus p + (2"lm2 - 
1)/(2"1- l), which implies p + (2"lrn2 - l)/p". Let n, = p" 
and ,,, = (2m1m2 - Then, conditions 1)-3) of Thee- 
rem 20 are satisfied, and hence there is a yb-code with 

parameters (m,, m,). 0 

= b ( p , p f Z ) + p U I + U 2 ' 2 b ( P , p ' 2 )  = 0. 

From conditions 1) and 2), it follows that b(ar l ,  a) and 
b(p7 P I 2 )  are nonzero, which implies 

ult, + u, = u1 + u2 t ,  = 0 (mod n). 
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From condition 3) it follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 = u ,  0 (mod n) .  
Thus the code is a b, X b,-burst locating code of area 
2"' - 1 x 2 "  -1, and redundancy 2m at most. Since the 
redundancy of a burst locating code of area n X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn should 
be at least log, ( n2 + l), it follows that the redundancy is 

A code whose construction is as given in Theorem 23 
will be called an &code. These codes have the largest 
possible areas among all burst locating codes of square 
areas. 

Conditions 1) and 2) of Theorem 23 may be tedious to 
check. In the following, we will give a systematic technique 
to satisfy these conditions if m is large with respect to b, 
and b,. 

Lemma 24: Let b,, b,, t,, t,, and m be positive integers 
such that 

exactly 2m. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

i) t , 2 b 2  and m2(b , - l ) t1+b , .  

ii) t ,  2 b, and m 2 (b ,  - l ) t2  + b,. 

Then, the following holds for any primitive elements a and 
/3 in F,": 

1) The elements affl+J, 0 < i < b,, 0 5 j < b,, are lin- 
early independent over F,. 

2) The elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ 3 r + J r 2 ,  0 < i < b,, 0 5 j < b,, are lin- 
early independent over F,. 

Proof: It suffices, by symmetry, to prove that condi- 
tion i) implies 1). From i), it follows that the numbers 
i t ,  + J ,  where 0 I i < b,, 0 5 j < b,, are distinct and lie 
between 0 and m - 1. Since the minimal polynomial of a 

0 

The following is an immediate corollary of the previous 

lemma. 
Corollary 25: If b, and 6, are positive integers, then a 

b, x b,-burst locating code exists which is an &code of 
area 2" - 1 x 2" - 1, for all sufficiently large m. 

In the beginning of this section, we have shown a 
technique to construct BIL codes which are burst cor- 
recting codes using burst identification codes and burst 
locating codes. Using the class of #-codes or the class of 
@-codes, it can be shown easily that the excess re- 
dundancy of the class of BIL codes is given by 

has degree m, then condition 1) holds. 

TBIL(b13 b 2 )  = r ( b l ,  '2)3 

which is the minimum redundancy required to construct a 
6, X b,-burst identification code of arbitrarily large area as 
defined in Section 11. From Theorem 10, it follows that 

2b1b2 -2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ?BIL(b,, 62) 5 2blb2. 

From Section V, we also have rBIL(l, b) = 2b - 2 for b > 1 
and FBIL(2,2) = 7. It follows that the excess redundancy of 
the class of BIL codes is less than the excess redundancy of 
the class of two-dimensional Fire codes for all values of b, 
and b, except if b, or b, is 1, or 6, = b, = 2, and possibly 

(b,, b2) = (2,3) or (3,2). 
The excess redundancy TBIL(bl, b,) is about twice the 

lower bound of Theorem 19 which is log, N(b,, b,). It is 

shown in [5] that a class of cyclic burst correcting codes 
exists whose excess redundancy is [log, N (  b,, b2)1. The 
proof of the existence of this class of codes is a two-dimen- 
sional generalization of the proof of the existence of the 
one-dimensional optimum cyclic burst correcting codes as 
given in [7]. This proof depends on some results from 
algebraic geometry, namely, Weil's estimates for character 
sums. However, these codes are hard to find and may not 
exist unless the areas are very large. 

VII. ENCODING AND DECODING BIL CODES 

A BIL code, as explained in the previous section, is 
constructed from a burst identification code and a burst 
locating code. Now we will assume that the burst locating 
codes are cyclic. As explained in Section VI, the classes of 
$-codes and &codes are cyclic burst locating codes 
which can be used to construct BIL codes whose excess 
redundancy is minimum. We do not assume that the BIL 
codes considered in this section are necessarily cyclic. 

The techniques presented here are generalizations of 
encoding and decoding techniques of one-dimensional 
cyclic burst correcting codes. Both one-dimensional encod- 
ing and decoding techniques were generalized by Imai in 
[3], [ll] to two-dimensional cyclic codes. We will briefly 
describe these techniques and modify them to be suitable 
for BIL codes. 

Let H = [h,,,], 0 I i < n,, 0 I j < n,, be the parity check 
matrix of a b, X b,-burst correcting code of redundancy r. 
Let 52 = {(i, j ) :  0 5 i < n,, 0 I j < n, } .  From the defini- 
tion of 6, X 6,-burst correcting codes, it follows that no 

codeword is a b, X b,-burst. Hence a set of parity check 
positions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI3 of cardinality r exists such that { ( i ,  j ) :  0 I i 
< b,, 0 5 j < b, } c rl. 

A .  Encoding and Decoding Cyclic Burst Correcting Codes 

Shift registers are commonly used to encode and decode 
one-dimensional cyclic codes [ 121. A two-dimensional shift 
register is described by Imai [ll] in which IIIl storage 
devices are arranged in the form of the parity check 
positions given by rl. The connections of the register are 
determined according to the parity check matrix of the 
cyclic code. We represent the contents of the shift register 
by the polynomial a( x, y )  = E(,, J )  E nu,, ,x 'y/,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf, E 

F, is the content of the storage device at position (i, j ) .  
The register can be shifted in the x and y directions. 

First, we will describe the encoding of two-dimensional 
cyclic codes. Let m,,,, where ( i ,  J )  E 52 - rI, be the infor- 
mation bits. Let m(x, y )  = C ~ r , J ) E n m f , , ~ f y J ,  where m,,, 
= 0 for ( i ,  j )  E II. The coefficients of m(x, y )  are fed into 

the register. After a number of shifts in the x and y 
directions, the contents of the register, represented by 
a(x, y ) ,  give the parity check bits of the codeword c(x, y )  
corresponding to the information polynomial m(x, y ) ,  i.e., 

Now, we describe the decoding process. Consider a 
cyclic b, X b,-burst correcting code. Let u ( x ,  y )  = c(x, y )  
+ e ( x ,  y )  be the received word, where e ( x .  y )  is a b, x b,- 

c(x, Y )  = m(x, r )+ d x ,  y ) .  
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burst of error added to the transmitted codeword zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ) .  
Then e ( x ,  y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= xulyu2b(x, y )  for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u,, u,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C? and 

Imai [ l l ]  has given a two-dimensional version of the 
error trapping algorithm which is well-known for decoding 
one-dimensional cyclic burst correcting codes [ 121. The 
received word u ( x ,  y )  is fed into the two-dimensional shift 
register. The register is then shifted in the x and y direc- 
tions without an input until its contents, represented by 
u(x, y ) ,  display a pattern of a b, X b,-burst, i.e., u ( x ,  y )  E 

.%?b,,b2. In this case, b ( x ,  y )  = u ( x ,  y )  and the burst posi- 
tion ( ul, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 2 )  is determined by the number of shifts in the x 
and y directions. Hence e ( x ,  y )  = x”1yU2b(x, y )  is de- 
termined. 

b(x? y )  E gbl ,b2.  

B. Encoding and Decoding BIL Codes 

Consider a b, X b,-burst correcting code which is a BIL 
code. Its parity check matrix can be written as (h; , , ,  /I;,’,), 
0 I i < n,, 0 I j < n2, where [hi,,] is the parity check 
matrix of a cyclic burst locating code, and [IZ;,’~] is the 
parity check matrix of a burst identification code. 

Let II be parity check positions for the BIL code such 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i ,  j )  E II for 0 I i < b,, 0 I j < b,. The information 
bits are represented by the polynomial m ( x ,  y )  = 

C( r , , )Esam, , , x ’ y ’ ,  where ml,J  = O  for ( i ,  j )  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII. Let 
m ( x ,  y )  be encoded for the cyclic burst locating code using 
the two-dimensional shift register described before. Let 
c’(x, y )  be the codeword corresponding to m ( x ,  y )  in the 
burst locating code. Naturally, c’(x, y )  may not be a 
codeword in the burst identification code. Let sB denote its 
syndrome with respect to the burst identification code. We 
will obtain a codeword c”(x ,  y )  = C ( I , j )  Enc,’,’,x’y’ in the 
cyclic code whose syndrome with respect to the burst 
identification code is sB. The polynomial c”(x ,  y )  is de- 

termined by 

C ~;, ‘ jh;, j  = 0 
( 1 .  J )  E n 

From the definition of II, it follows that the elements 
(h;,’,, h;,’,), where ( i ,  j )  E II, are independent. Hence these 
equations can be solved to obtain c”(x, y ) .  Now, c ( x ,  y )  

= c ’ (x ,  y )  + c”(x ,  y )  is the codeword in the burst cor- 
recting code corresponding to the information bits repre- 
sented by the polynomial m ( x ,  y ) .  

Now, we describe a technique to decode BIL codes. We 
use the burst identification code to determine the burst 
pattern b ( x , y ) .  Then we use the two-dimensional shift 
register applied to the cyclic burst locating code until the 
contents of the register display the burst pattern, i.e., 
u ( x ,  y )  = b ( x ,  y ) .  The burst position (u,, u 2 )  is de- 
termined by the number of shifts in the x and y direc- 
tions. 

Note that in many cases encoding and decoding of BIL 
codes are not computationally difficult. The reason is that 
the burst identification codes as given in Section V and VI 
are periodic with periods in order of 6, x 6,. 
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