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Fluids with competing short range attraction and long range repulsive interactions between the parti-

cles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised

Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with

density functional theory (DFT). The DFT predictions for the structures formed are in good agreement

with the results from the simulations, which occur in the portion of the phase diagram where the the-

ory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly

describe the transitions between the different morphologies, which the simulations show to be

analogous to micelle formation. We determine how the heat capacity varies as the model parameters

are changed. There are peaks in the heat capacity at state points where the morphology changes occur.

We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability

analysis of the uniform fluid. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937941]

I. INTRODUCTION

When the forces between colloidal particles suspended

in a liquid are sufficiently strongly attractive, they can exhibit

phase separation into a high density colloidal fluid, referred as

a colloidal “liquid”, and low density suspension, a colloidal

“gas.”1 However, in some circumstances, the interactions can

be attractive at short ranges when the particle cores are close

to one another, but at longer ranges be repulsive. These short-

range attractive, long-range repulsive (SALR) potentials can

arise in certain suspensions of charged colloids and polymers2

and also in protein solutions.3 Self-consistent Ornstein-

Zernike approximation (SCOZA) integral equation theory for

a model of such systems4,5 showed that when the long range

repulsion is not too strong, there is a large region of the phase

diagram where the correlations in the fluid show significant

fluctuation effects and where the compressibility increases

significantly. The SCOZA theory (which is sophisticated and

rather accurate) was also compared with results from density

functional theory (DFT),6 which showed good agreement

between the theories for the liquid structure. When the long

range repulsion is further increased, the SALR interaction

between the particles gives rise to pattern formation in the fluid

state, such as gathering to form clusters, stripes (lamellas), and

holes (bubbles), referred to as microphase separation. In Ref. 7,

Monte Carlo (MC) computer simulations and integral equation

theory were used to understand the details of the relation

between the liquid-vapour transition line and the occurrence

of any microphase separated phases. As the repulsion strength

is increased, starting from the critical point, the gas-liquid

phase separation is replaced by microphase separation. In

Ref. 8, a study of the cluster formation showed that it is very

similar to micelle formation in aqueous surfactant solutions.

However, for the system considered in Ref. 9, discontinuities

in thermodynamic quantities were observed at the onset of

cluster formation, suggesting it is indeed a phase transition.

Further understanding of the phase ordering in SALR

systems was recently gained by Pekalski and co-workers10 by

studying a simple one-dimensional lattice model in which the

SALR interaction was modelled using an attractive interaction

between neighbouring particles, repulsion between the third

neighbours, and no interaction between second neighbours

or any other neighbours. An exact solution was presented

using the transfer matrix method. The same SALR system

was then extended to two-dimensions (2Ds) on a triangular

lattice,11,12 where microphase separated phases and also a

reentrant uniform liquid are observed in the phase diagram.

This approach, based on using lattice models to elucidate the

nature of the structure formation in systems with competing

interactions, has a long track record, going back to seminal

works, such as Refs. 13 and 14. There are several advantages of

using lattice models stemming from the fact that they are much

more straightforward to analyse than the equivalent continuum

models and also the computations are much simpler, allowing

larger systems to be simulated over longer times. Due to the

fact that the clusters and other structures formed can be more

than an order of magnitude larger than the size of the individual

particles, to properly observe the microphase formation, the

system size generally needs to be much larger than that

one would use for studying simple gas-liquid systems. There

have also been other (field) theoretical and simulation studies

considering aspects of the phase behaviour of a variety of

fluids interacting via SALR potentials.15–18

The more recent interest in SALR systems in 2D stems

from the experimental observation of microphase-ordering

of nanoparticles at a water-air interface,19,20 which led to

theoretical and simulation work to understand the nature of

the structures that are formed. Imperio and Reatto21–23 made a

detailed study of the phase diagram using parallel-tempering

MC simulations to determine the location in the phase diagram

of the microphase separated states for a 2D fluid of particles

interacting via the double-exponential pair potential,

0021-9606/2015/143(24)/244904/11/$30.00 143, 244904-1 © 2015 AIP Publishing LLC
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u(r) =



∞, if r < σ

−
εaσ

2

R2
a

e−r/Ra +
εrσ

2

R2
r

e−r/Rr, otherwise
, (1)

where r is the distance between the centres of the particles,

which have a hard-core of diameter σ. The short range attrac-

tion has strength determined by εa and range Ra. Similarly, the

repulsion strength is determined by εr and has range Rr . When

Ra = σ, Rr = 2σ, and εa = εr = ε, microphase ordering is

observed for temperatures kBT/ε . 0.6, where kB is the

Boltzmann’s constant. At lower densities, this takes the form of

clusters or “droplets,” whilst at higher densities, striped struc-

tures were observed. At even higher densities, a hole phase

is observed, although here the simulations can be difficult to

perform. Imperio and Reatto21–23 showed that at the onset of

microphase ordering, one observes a peak in the heat capacity

and this was used to identify the location in the phase diagram

of the microphase ordered states. Following this, a DFT model

for this system was developed,24 (See also Ref. 25), which

is in good qualitative agreement with simulation results with

regard to the topology of the phase diagram and the structure

of the fluid and inhomogeneous phases. The DFT also predicts

that the transitions from the uniform to the modulated fluid

phases are all either first or second order phase transitions.24

However, the DFT is a mean-field theory and so one should

be cautious about accepting this prediction of the theory.

The aim of the work described here is to study the

formation of patterns using both MC computer simulations and

also DFT for a 2D lattice model in order to determine the nature

of the transitions to and between the different microphase

ordered structures and also to compare between the methods

in order to elucidate what aspects of the microphase ordering

the mean-field DFT are able to describe. We fix the strength

of the repulsion between the particles to a particular value and

we also fix the temperature and then calculate the properties

of the fluid as the density and the strength of the attractive

interactions between the particles are varied. In particular, we

calculate the heat capacity and determine the phase diagram.

We also map the lattice model onto a continuum DFT that

allows a simple calculation of roughly where in the phase

diagram, one can expect to find the microphase ordering. This

takes the form of a linear stability analysis.

This paper is laid out as follows: In Sec. II, we define

the model fluid and in Sec. III, we present MC computer

simulation results, including for the heat capacity, for the ratio

of particles in the system within the clusters as the total density

in the system is increased and for the static structure factor.

In Sec. IV, we present the lattice DFT results, compare with

the MC results and calculate the phase diagram. In Sec. V, we

map onto a continuum DFT and discuss the linear stability of

the fluid. Finally, in Sec. VI, we draw our conclusions.

II. THE MODEL FLUID

We assume that the colloids interact via the pair potential

u(r) =


V (r) r ≥ σ,

∞ r < σ,
(2)

where r is the distance between the centres of the two particles

and the tail of the potential is given by the double-Yukawa

potential,7

V (r) =



−
εe−z1(r−σ)/σ

r/σ
+

Ae−z2(r−σ)/σ

r/σ
r ≥ σ

0 r < σ

, (3)

where ε is the attraction strength coefficient and A is

the repulsion strength coefficient. The parameters z1 and

z2 determine the range of the attraction and repulsion,

respectively. σ is the diameter of the particles, which we

set to be our unit of length. We fix the coefficients z1 = 2

and z2 = 0.2 so that the potential is of the form illustrated in

Fig. 1.

In order to simplify the analysis and to reduce the

computational costs, we assume that the positions of the

particles are discrete variables and represent the fluid via a

2D lattice model, containing M lattice sites and with periodic

boundary conditions. We use a square lattice of size L × L,

with lattice spacing equal to the diameter of the particles σ

and we assume that each lattice site can be occupied by at most

one colloid. We denote a particular configuration of particles

by a set of occupation numbers {ni}, such that, if the site i

is empty, then ni = 0 and ni = 1, if it is occupied. Note that i

here is used as a short form for the position on the 2D lattice,

at point ( j, k). We treat the system in the grand canonical

ensemble and so the Hamiltonian of our lattice model can be

written as26

E ({ni}) =

M


i=1

ni(Φi − µ) +
1

2



i, j

Vi, jnin j, (4)

where Φi is the external potential at the lattice site i and

µ is the chemical potential which determines the number

of particles in the system N . The final term is the energy

contribution due to the interactions between particles, where

Vi, j is the pair interaction potential between two particles

at sites i and j, which is the discrete lattice version of the

potential in Eq. (3), i.e., evaluated by taking r in Eq. (3) to

be the distance between sites i and j. We also assume that

there are no three-body or higher-body interactions between

the particles. Since here we only consider the ordering in the

bulk fluid, we henceforth assume that Φi = 0, ∀i. Also, in all

our MC and DFT results below, we truncate the tail of the

pair potential beyond r = rc = 16σ. It is also worth noting

that lattice model Hamiltonian (4) has a symmetry between

particles and vacancies (i.e., replacing ni → 1 − ni) that, as

FIG. 1. The double-Yukawa pair interaction potential between the particles,

in the case when the parameters are βA= 1.5, z1= 2, z2= 0.2, and βε = 4.
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FIG. 2. Snapshots of typical configurations for a 40σ×40σ size system with βA= 1.5, z1= 2, and z2= 0.2, obtained from grand-canonical MC simulations

for various values of the average density and varying values of (βε)−1.

we show below, results in the phase diagram of the system

being symmetric around the density ρ = ⟨ni⟩ = 1/2.

III. MONTE CARLO

We study the system using standard Metropolis MC

simulations.27 The lattice is initiated in a state where all the

sites are randomly occupied by a particle with probability 0.5.

At each step during the simulation, a random lattice site i

is selected and we then calculate the change in energy ∆E

using Eq. (4) when the occupation number for that lattice

site is replaced by ni → (1 − ni). Thus, if the site is already

occupied, the trial change is to remove the particle and if the

site is unoccupied, the trial moves it to insert a particle at that

site. If ∆E is negative, then we keep the change. Otherwise,

we only keep the change with probability, e−β∆E.

In Fig. 2, we display typical snapshots from our MC

simulations for a range of state points for various average

densities ρ = ⟨N⟩/M (determined by the value of the chemical

potential µ) and several values of the inverse attraction

strength parameter, (βε)−1. At low values of (βε)−1, as the

average density is increased, the system exhibits a sequence

of microphase separated structures. At very low densities, the

system forms a gas phase. Increasing ρ, when the value of

(βε)−1 is low enough, we see that the particles are arranged

into clusters of a characteristic size. Further increasing ρ, we

observe stripe like patterns for ρσ2 ∼ 0.5. At even higher

densities, we observe a fluid containing “bubbles,” again with

a characteristic size. Finally, for large ρ, the system is almost

entirely full of particles, forming a dense liquid. Increasing

(βε)−1 leads to the particles becoming less correlated, making

it difficult to identify what microphase separation occurs, if

any.

A. Heat capacity

We calculate the heat capacity as the chemical potential

µ is varied, in order to identity the regions of the phase

diagram where the microphase separation occurs. At a phase

transition, in the thermodynamic limit, there is normally either

a discontinuity or a divergence in the heat capacity. For finite

size systems, these show up as peaks in the heat capacity.

Recall also that a “bump” in the heat capacity was observed

at the onset of microphase ordering in the simulations of

Imperio and Reatto.22 The heat capacity at constant volume

can be obtained from the following derivative with respect to

temperature:28

CV =

(

∂U

∂T

)

V

, (5)

where the internal energy U = ⟨E⟩. Alternatively, it can be

calculated by measuring the energy fluctuations within the

system,29

CV =
⟨E2⟩ − ⟨E⟩2

kBT2
. (6)

A plot of the heat capacity of a system of size 40σ × 40σ

as a function of µ and for various values of (βε)−1 calculated

via Eq. (6) is shown in Fig. 3 (Note that Fig. 12 allows to

FIG. 3. Heat capacity versus chemical potential, µ, for different values of

(βε)−1, obtained from Monte Carlo simulations for a 40σ×40σ size system

with βA= 1.5, z1= 2, and z2= 0.2.
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FIG. 4. Ratio of lone particles in the system, R, for different values of (βε)−1, as a function of (a) the chemical potential and (b) the average density. The solid

line labelled “Random” corresponds to the value of R for the entirely random uncorrelated configurations that the system with ε = 0 and A= 0 exhibits. All

other results are for the system with βA= 1.5, z1= 2, and z2= 0.2.

relate the value of µ to the average density in the system.).

The heat capacity tends to zero when the system is completely

empty or fully filled. This is as expected, since the system

contains hardly any particles to give rise to energy fluctuations

at lower values of the chemical potential, µ→ −∞, and in the

opposite limit µ→ ∞, the system is almost completely full

of particles, so that the energy of the system, E, also does not

fluctuate much in value.

For higher values of (βε)−1, we see in Fig. 3 that the heat

capacity varies smoothly as µ is increased. However, for lower

values of (βε)−1, we see four clear peaks in the heat capacity.

These peaks correspond to changes in the structure of the

fluid (see Fig. 2). Increasing µ, the first peak corresponds

to a change from a low density gas to a clustered structure.

The second peak corresponds to the change from the cluster

to the stripe morphology. The third peak corresponds to the

change from stripe to bubble and then the final fourth peak to

the change from a liquid containing bubbles to a dense liquid

without bubbles. As (βε)−1 is increased, these peaks become

smaller in height, eventually being so small that they cannot

be identified.

The overall energy fluctuations in the system also get

larger as one increases (βε)−1. The large (peak) values of the

heat capacity CV corresponds to state points where there are

large fluctuations in the energy of the system. Hence, the peak

in CV identifies state points where there are multiple types of

typical configurations, each with different energy E.

The presence of these peaks in the heat capacity at state

points where the fluid changes morphology naturally leads to

the question: are these phase transitions, or just changes in the

nature of the fluid correlations? For the low density and high

density peak, this question is addressed in Sec. III B.

B. Cluster formation

To answer the question just posed above: no, the cluster

formation is not a phase transition, it is a continuous change

analogous to micellisation in surfactants.

Recall that N is the total number of particles in the

system, which changes over time in a grand canonical system.

We denote the average total number of particles to be ⟨N⟩, and

⟨N1⟩ be the average number of particles that have no nearest or

next nearest neighbours, which we refer to as “lone particles.”

We also calculate the ratio of lone particles to the total number

of particles, R = ⟨N1⟩/⟨N⟩, and how this quantity depends on

the average density and chemical potential of the system.

In Fig. 4, we see that at lower values of chemical potential

(i.e., low density), almost all the particles are lone particles

and so R ≈ 1. This is because when we have a small overall

number of particles in the system, we are likely to find them

all to be alone. As the attraction strength is increased (i.e.,

as (βε)−1 is decreased), we see that the drop in value from

R ≈ 1 for low µ, to a value R ≪ 1, becomes much steeper.

For example, we see in Fig. 4(a) that when (βε)−1 = 0.2,

there is a very sudden drop in the value of R at βµ ≈ −5.

This corresponds to the change in morphology of the system

from being mostly full of lone particles to the cluster phase.

However, as can be seen in Fig. 4(b), where we display the

variation of R with the average density ρ on a logarithmic

scale, we see that actually the change in R is continuous. The

results in Fig. 4 were calculated for a 40σ × 40σ size system,

but these results do not change as the system size is increased

(see also Section III C).

As we increase (βε)−1, we see the ratio of lone particles,

R tends towards the value that one would obtain for a system

with ε = 0 and A = 0, i.e., where the particles are randomly

distributed in the system. This is due to the decrease in particle

correlations at higher values of (βε)−1, where the structure

is essentially that of a highly supercritical fluid. Since the

change in the ratio of lone particles is smooth and continuous

as we increase the chemical potential (density) of the system,

it is clear that the transition that we observe is not a phase

transition, instead it is a structural change in the fluid much like

micellisation at the critical micelle concentration (CMC).30

Micellisation is the spontaneous self assembly of

amphiphilic molecules in fluids. The forces that hold the

amphiphiles together are generally weak, so that the structure

within the micelles is fluid-like. Varying the solvent in

which the micelles are suspended changes the interactions

and so determines the structure and size of the micelles.30

The clusters we see are equivalent to spherical micelles, the

bubbles are analogous to inverted micelles and the stripes to
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FIG. 5. In (a) we display the static structure factor S(k) for fixed (βε)−1= 0.18 and for a range of different values of the chemical potential µ where the cluster

morphology is observed. The gas to cluster morphology change occurs at βµ ≈−6, where there is a peak in the heat capacity (cf. Fig. 3). In (b) we display S(k)

over a smaller range of values of µ, going from the gas to the cluster morphology. We see that S(k) varies smoothly as µ is varied—see also Fig. 6.

lamellar bilayer micelles. The similarities between the self-

assembly of colloids and amphiphilic molecules have been

observed in many experimental, simulation, and theoretical

studies.2,7,18,22,31 Indeed, Ciach and co-workers were able to

describe both the SALR colloidal system and amphiphilic

systems using the same functional,32 highlighting the many

parallels between these systems.

Further support for the above conclusion about the nature

of the structural changes in the system can be garnered from

noting that the static structure factor S(k) varies smoothly as

µ is changed, taking the system from the low density gas state

to the cluster morphology. S(k) is a non-local quantity and so

is sensitive to any onset of long range order, in contrast to R,

which characterises only local (nearest neighbour) ordering.

The static structure factor we compute is1,21

S(k) = N−1 ⟨ρkρ−k⟩

= N−1
� N



j=1

cos(k · r j)
�2
+
� N


j=1

sin(k · r j)
�2

, (7)

where ρk =
N

j=1 exp(ik · r j), N is the number of particles in

the system, and r j is the position on the lattice of each of

the particle. In our calculations presented here, we fix the

wavevector k = (k,0).

In Fig. 5(a), we display results for S(k) for a range of

state points where the cluster phase is observed, for fixed

(βε)−1 = 0.18. At lower densities (i.e., lower values of the

chemical potential µ), the peak in S(k) is fairly broad with a

maximum at kσ = 0.15π ≈ 0.47, but for higher densities, the

peak is sharper, with a maximum at kσ = 0.2π ≈ 0.63. This

is because at the higher densities, the clusters interact more

strongly with one another and the cluster-cluster correlations

become significant. When (βε)−1 = 0.18, the peak in the heat

capacity for the gas to cluster transition occurs at βµ ≈ −6

(see Fig. 3). Fig. 5(b) shows that as µ is varied around this

value, S(k) varies smoothly, indicating that there is no phase

transition. This can also be seen from the plot in Fig. 6, where

we plot S(k) for fixed values of k as the chemical potential

µ is varied, going from the low density gas state to deep in

the region of the phase diagram where the cluster morphology

occurs. One further interesting feature of the results in Fig. 6

is that in the cluster phase, the value of S(kσ = π/4) is almost

constant.

We also calculate the histogram of the probability

of finding a given instantaneous density ρ = N/M (not

displayed). This has a single peak for all values of the chemical

potential βµ ≈ −6, where the heat capacity peak occurs. This

is in contrast to the three dimensional system considered in

Ref. 7, where a double peaked histogram is observed at the

onset of cluster formation.

C. Changing box size

Our MC simulations are performed in a finite size box

with periodic boundary conditions to approximate an infinite

system. However, for some of the transitions, it turns out that

the box size is significant in determining the properties of the

system. In Fig. 7, we plot the heat capacity for (βε)−1 = 0.18,

calculated for simulations in a box of size 40σ × 40σ and

compare with results for a larger box of size 60σ × 60σ.

In Fig. 7, we do not observe any effect of the finite

box size on the value of the heat capacity at the peaks

corresponding to the gas to cluster transition and also the

bubbles to liquid transition. This confirms the conclusion in

Sec. III B that this transition is akin to micellisation, and

that there are no discernible effects in the above results due

to a finite system size. However, for the heat capacity peaks

FIG. 6. The static structure factor S(k) for a range of different wavevec-

tors k , as the chemical potential µ is varied, for fixed attraction strength

(βε)−1= 0.18.
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FIG. 7. The heat capacity versus chemical potential µ, for two different box

sizes for (βε)−1= 0.18 (cf. Fig. 3).

corresponding to the cluster to stripe and the stripe to bubble

transitions, in Fig. 7, we do see significant finite size effects.

These peaks shift and become sharper and higher as the

system size is increased. This might be seen as indicative that

these are second order phase transitions, with a heat capacity

divergence in the thermodynamic limit. However, recall that

at a phase transition, in a small finite size simulation box,

the system fluctuates between the two phases. This leads to

a double peak in the density histogram at that state point (or

indeed the histogram of any other quantity that is a suitable

order parameter for the transition). However, as can be seen in

Fig. 8, where we display the density histogram calculated at

the value of µ corresponding to the peak in the heat capacity,

there is a single peak (the corresponding chemical potential

values are βµ ≈ 4.0 and βµ ≈ 3.1 for L = 40σ and L = 60σ,

respectively). We obtain very similar distributions for state

points either sides of where the heat capacity peak occurs. An

alternative order parameter that is more sensitive to periodic

ordering is the density Fourier mode amplitude,

|ρk| =







(

N


j=1

cos(k · r j)
)2
+

(

N


j=1

sin(k · r j)
)2
. (8)

FIG. 8. Probability of finding a certain instantaneous density ρ = N/M

calculated at the cluster to stripe transition (i.e., at the second peak in the

heat capacity) for two different box size for (βε)−1= 0.18.

FIG. 9. Probability distribution for the density Fourier mode amplitude |ρk|,

with kσ = 0.2π, calculated at the cluster to stripe transition (i.e., at the second

peak in the heat capacity) for two different box sizes L and for (βε)−1

= 0.18.

In Fig. 9, we display the histogram of |ρk| for the wavevector

k = (kp,0), where kpσ = 0.2π, which is the value where there

is a peak in S(k); see Fig. 5. This order parameter histogram

also has a single peak for values of µ where the heat capacity

exhibits a peak.

From the fact that there is only a single peak in Figs. 8

and 9, we infer that the transition from the cluster to striped

state is simply a change in morphology, much like the

micellisation process. We infer the same for the transition

from the stripe to the bubble morphology. For low values

of (βε)−1, we believe that the large heat capacity peak at

the transition to the stripe phase and the strong finite-size

effects are due to the fact that the stripes that are formed

span the simulation box (see Fig. 2). The finite size box

stabilises the stripes, damping some of the long wavelength

fluctuations.

IV. LATTICE DFT

We now present results for the structure and thermo-

dynamics of the fluid, which are calculated using density

functional theory, and compare with the MC simulation

results. The mean-field DFT that we use is a generalisation of

the theory presented in Ref. 26 (see also references therein for

other applications of the theory). The thermodynamic grand

potential is approximated by

Ω = kBT

M


i=1

[ρi ln(ρi) + (1 − ρi) ln(1 − ρi)]

+
1

2



i, j

Vi, jρiρ j +

M


i=1

(Φi − µ)ρi. (9)

The equilibrium density profile is that which minimises

Ω, i.e., is the solution of

∂Ω

∂ρi
= 0, for all i. (10)

Thus, from Eqs. (9) and (10), we obtain
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FIG. 10. A series of density profiles for varying values of (βε)−1 calculated using the lattice DFT for a 40σ×40σ size system with random initial conditions,

for βA= 1.5, z1= 2, and z2= 0.2 (cf. Fig. 2). The colours associated with each density value can be deduced from the top row of profiles, which are for

(βε)−1= 0.5.

ρi = (1 − ρi) exp

β
�
−



j

Vi, jρ j − Φi + µ
�
. (11)

This set of coupled equations is solved by Picard

iteration.26 In order to make sure ρi does not fall outside

the interval (0,1) during the iteration process, we introduce a

mixing parameter, α. The idea is that after each iteration, we

mix the new density value with the previous one,

ρi = αρnew
i + (1 − α)ρold

i . (12)

The mixing parameter α typically takes a value in the range

(0.01,0.2). Too large a value of α leads to instabilities in the

iteration, whilst if α is too small, it leads to slow convergence.

A. DFT results and comparison with MC

In Fig. 10, we display examples of density profiles

calculated using the lattice DFT for various values of the

attraction strength parameter (βε)−1. These are obtained by

initiating the Picard iteration with a flat density profile to which

is added a small amplitude random value at each lattice site.

The density profiles show the same sequence of structures as

observed in Fig. 2 from the MC simulation, namely, uniform,

cluster, stripe, bubble, and uniform as the chemical potential

(density) is increased. The agreement between Figs. 10 and

2 is rather good. Within the DFT, each of these different

structures corresponds to different solution branches of the

grand potential. The global minimum structure for a given

state point contains no defects. Thus, in Fig. 10, the vast

majority of the structures displayed are not global minima of

Ω. To calculate the phase diagram, we calculate the free energy

for defect-free structures, which are obtained by initiating the

Picard iteration from profiles with the required structure,

rather than from random initial conditions. As µ is increased,

there are points where these branches cross. At these points,

the solutions on the different branches have the same µ, T ,

and pressure p = −Ω/V , where V = Mσ2 is the area of the 2D

system. Thus, the (incorrect) prediction from the mean-field

DFT is that there are first order phase transitions between all

the different structures.

We calculate the lines of thermodynamic coexistence in

the phase diagram predicted by the DFT by selecting an initial

lattice with a certain microphase separation and then change

the chemical potential µ and follow that particular branch of

solutions. For example, to find the coexistence curve for the

gas to cluster transition, we start the DFT iteration with a

uniform gas profile and increase µ with the new guess being

the minimised density profile from the previous value of µ.

While doing this, we record the grand potential Ω. Also,

we start with an initial density profile corresponding to the

cluster structure at a higher value of µ and then decrease

µ following this branch of solutions. Coexistence is found

when the pressure, temperature, and chemical potential of

the two structures are equal. The lines of coexistence define

the boundaries in the phase diagram of where the different

microphase separated structures occur.

As shown in Fig. 11, we see that at the highest values

of (βε)−1 (weak attraction), there is no microphase separation

and the system exhibits a single uniform fluid phase. The DFT

predicts microphase separation for values of (βε)−1 < 0.45.

For the higher values in this range, e.g., (βε)−1 = 0.4, the heat

capacity from MC simulations in Fig. 3 has no discernible

peaks. Nonetheless, comparing Figs. 10 and 2, we see that the

DFT is correctly predicting the structures formed, it is solely

failing to describe the nature of the transition to the modulated

structures.

We also see a general shift of the occurrence of

microphase ordering to higher values of µ as we increase

(βε)−1. In Fig. 11, we also display as green dotted lines the

locations of the peaks in the heat capacity, from the MC

simulations for a system of size 40σ × 40σ. We see that

these peaks lie close to the DFT coexistence lines for the gas

to cluster transition and also the bubble to liquid transition.

However, for the transitions to the stripe state, they are further

away. We should emphasise, however, that these are subject

to significant finite size effects. For a larger system, these are

much closer to the DFT coexistence line.
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FIG. 11. Phase diagram showing the instability threshold (spinodal, dis-

played as the blue dashed line) and the coexistence lines (red solid lines)

obtained from DFT for varying values of the chemical potential µ and

attraction strength (βε)−1. The location of the peaks in the heat capacity

determined from the MC simulations for a 40σ×40σ system is also shown,

as the green dotted line. Note that these lines terminate where the peaks

disappear (cf. Fig. 2).

The linear instability threshold line in Fig. 11 is calculated

numerically by starting from an initial density profile with

the given average value of the density, but with small

amplitude random fluctuations. We then determine whether

the fluctuations grow over time as we iterate. The boundary

of the region where they do grow is referred to as the

spinodal in Fig. 11. We can also see that the instability

line is completely inside the coexistence line. An alternative

(but entirely equivalent) way to calculate the spinodal is to

determine when the uniform density solution to Eq. (9) ceases

to be a minimum. Consider a small amplitude harmonic

density perturbation of the form

ρi = ρ + aeik·ri, (13)

where the amplitude a is a small parameter, ri is the location

of lattice site i, and k is any wavevector that is commensurate

with the lattice. Substituting Eq. (13) into Eq. (9) and then

requiring that there is no solution except when a = 0 is

equivalent to the requirement that

1

1 − ρ
+ ρβVd(k) > 0, (14)

where Vd(k) =


j Vi, je
−ik·ri, j is the discrete Fourier sum of

the potential, where ri, j = ri − r j. The quantity on the left

hand side of Eq. (14) is equal to 1/SDFT(k), where SDFT(k)

is the static structure factor predicted by the DFT. Within the

spinodal displayed in Fig. 11, Eq. (14) is no longer true for all

k and thus the uniform density profile is no longer a minimum

of the free energy.24

In Fig. 12, we compare how the average density varies

with chemical potential in the MC simulations with the results

from DFT. We see that the MC simulation results show a

smooth increase in the density. However, for sufficiently low

values of (βε)−1, the DFT gives jumps in the density as

we increase µ. The jumps are plotted as dots in Fig. 12,

which corresponds to the values of µ where microphase

separation occurs. The magnitude of the jumps decreases as

we increase (βε)−1. The jumps in the DFT occur because

FIG. 12. Top: a comparison of the average density as a function of µ for two

different values of (βε)−1 from the MC simulations (dashed lines) and DFT

(solid lines). The dotted line in the DFT curves shows the jumps at which the

transitions between the different morphologies occur. Bottom: DFT density

profiles showing the discontinuous changes in the stripes as we vary µ for

fixed (βε)−1= 0.18, resulting in the non-smooth curves in the density plot

above.

of various local minima in the free energy. Hence, the DFT

has a tendency to stick to the initial density profile (local

minimum) that we start from. Thus, the initial density profile

is important for determining if the grand potential minimum

that the iteration goes to is actually the global minimum.

Different initial density profiles give us different local minima,

which also depends on the box size, as expected. The DFT

results are closer to the MC simulation results at higher

values of (βε)−1 where there are more fluctuations in the

system and the structural changes that occur in the system are

smoother.

For example, when (βε)−1 = 0.18 (typical of low values

of (βε)−1), the DFT exhibits many discontinuities as we

increase the chemical potential. This can be easily noticed in

the middle portion of the curve in Fig. 12 which corresponds

to the stripe region. This is due to discontinuous changes in

the width of the stripes that arise as we change the chemical

potential. This is illustrated in the lower plots in Fig. 12,

where we see that the width of individual stripes varies with

changing chemical potential—i.e., not all stripes in Fig. 12

have the same width. This confirms that the pattern formed

is not necessarily the global equilibrium, since we expect the

width of all the individual stripes to be identical at a global

minimum.

Plotting the value of (βε)−1 at which the transitions occur

as a function of density, we see that in this representation, the

phase diagram is symmetric around ρσ2 = 0.5 (see Fig. 13).

The instability line is fully within the region of the phase

diagram where the uniform liquid is metastable. The shaded

regions are the regions of coexistence between the two phases.
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FIG. 13. Phase diagram showing the instability line (blue) and the coexis-

tence lines (red) from DFT for varying values of the density ρ and attraction

strength ε, for fixed βA= 1.5, z1= 2, and z2= 0.2.

We also see that the density range over which there is

coexistence decreases as we increase (βε)−1.

V. CONTINUUM DFT APPROXIMATION

We now approximate the discrete lattice model by treating

it with a continuum DFT that enables a more straightforward

calculation of quantities such as the linear instability threshold

(spinodal) and other related quantities. This mapping from the

lattice to a continuum assumes that the density profile ρi
varies slowly enough that we can treat it as a discretised

representation of a continuous profile ρ(r). This also enables

us to convert the sums over lattice sites into integrals. Hence,

the Helmholtz free energy F = Ω + µ⟨N⟩ [cf. Eq. (9)] can be

written as the following functional:

F =


f (ρ(r)) dr +

1

2


ρ(r)ρ(r′)V (|r − r

′|) dr dr
′

+


ρ(r)Φ(r) dr, (15)

where V (r) is the pair potential in Eq. (3), Φ(r) is the external

potential, and f is a local free energy per unit area given by

f (ρ) = kBT [ρ ln (ρ) + (1 − ρ) ln (1 − ρ)] −
χ

2
ρ2. (16)

The first term is the free energy for a non-interacting

(ε = A = 0) lattice gas. The second term involving the

parameter χ is a term to correct for the effect of the mapping

from the lattice to the continuum, so that the continuum model

gives the same free energy for the uniform fluid as the lattice

model. The parameter χ is the following integrated difference

between the continuum pair potential and the lattice potential:

χ = 2π

 rc

σ

rV (r) dr −


⟨i, j⟩

Vi, j . (17)

The reason for mapping to a continuum model is that

the following linear stability analysis is made somewhat more

simple. The aim of the linear stability analysis is to determine

where in the phase diagram, the uniform fluid state becomes

unstable, i.e., we locate the region of the phase diagram in

which the microphase ordering occurs.

Consider a uniform fluid with density ρ0. We wish to

know whether any small amplitude density modulation will

grow over time (fluid is unstable) or whether the amplitude

will decrease (fluid is stable). Specifically, we consider a

density fluctuation of the form [cf. Eq. (13)]

ρ = ρ0 + δρ(r, t)

= ρ0 + ξeik·r+ωt, (18)

where ξ is the initial amplitude of the sinusoidal perturbation

that has wavenumber k. The growth/decay rate of this mode

is given by the dispersion relation ω = ω(k), where k = |k|.33

To determine the time evolution of this non-equilibrium

density profile, we require a theory for the dynamics of the

colloids. This is supplied by dynamical density functional

theory (DDFT), which shows that for Brownian colloidal

particles, the time evolution of ρ(r, t) is governed by1,33,34

∂ρ

∂t
= D∇ ·


ρ∇

δ βF

δρ


, (19)

where D is the diffusion coefficient of the colloids. Note that

for an equilibrium fluid, the chemical potential1,35,36

µ =
δF

δρ
(20)

is a constant. Thus, in Eq. (19), it is gradients in the chemical

potential of the non-equilibrium fluid that drives the dynamics.

Substituting Eq. (18) into Eq. (19) together with Eq. (15) with

the external potential Φ = 0, and then linearising in δρ, we

obtain the following expression for the dispersion relation:33

[cf. Eq. (14)]

ω = −Dk2

(

1

1 − ρ0

− β χρ0 + βρ0V̂ (k)

)

, (21)

where V̂ (k) is the 2D Fourier transform of the pair potential

V̂ (k) = 2π


∞

0

rV (r)J0(kr) dr, (22)

where J0(x) is the Bessel function of order 0. In Fig. 14,

we display the dispersion relation for the uniform fluid with

density ρσ2 = 0.5, for various values of ε.

FIG. 14. Dispersion relation (21) for varying attraction strength ε, for

the uniform fluid with density ρσ2= 0.5, for fixed βA= 1.5, z1= 2, and

z2= 0.2.
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FIG. 15. Phase diagram showing the linear instability threshold line for the

lattice DFT (blue solid line) and also the instability line for the continuum

DFT (red dashed line), calculated from dispersion relation in Eq. (21).

From the dispersion relation, we can find the linear

instability threshold line. Since we know that the system

becomes unstable whenω > 0, the instability line is calculated

for values of ε and ρ0, where ω(kc) = 0, where kc is the value

at which ω(k) is a maximum, i.e.,

dω(k)

dk

�����k=kc
= 0. (23)

The linear instability line is thus easily obtained from the

dispersion relation and is displayed in Fig. 15. In this figure,

we also display the linear instability line for the original lattice

DFT model.

Comparing the two instability lines in Fig. 15 shows that

the maximum value of (βε)−1 where the system is linearly

unstable is predicted to be a little higher in the continuum

theory, compared to the lattice model. Comparing with Figs. 2

and 10, we see that this simple calculation does indeed

identify the region of the phase diagram where microphase

separation is observed. Of course, it does not specify which

structures (cluster, stripe, or bubble) are formed, but it does

allow one to narrow down to the relevant region of the phase

diagram.

We find the above analysis rather instructive: mapping

from a lattice to continuum theory or vice-versa is a “trick”

that is often performed to aid the analysis of a system. This

procedure is clearly an approximation, but the fact that the

two curves in Fig. 15 are reasonably close to one another

gives confidence that in the present situation the mapping is

justified.

VI. CONCLUSION

In this paper, we have studied a lattice model for 2D

colloidal fluids where the colloids have attractive interactions

at short separations, but repel at longer range. We model

this by using a double-Yukawa pair potential between

the particles. This SALR system self assembles to form

different microphase separated structures. Using MC computer

simulations and by calculating the heat capacity of the

system as the chemical potential µ and the attraction strength

coefficient ε are varied, we determine where in the phase

diagram, the different morphology changes occur. At lower

values of (βε)−1, the heat capacity exhibits peaks at the

transitions between the different structures. The height of

the peaks decreases as we increased (βε)−1, eventually

disappearing. The peak at the transition from the gas to

the cluster state and also for the bubble to liquid shows no

system size dependence for systems greater than or equal to

40σ × 40σ in size. However, the peaks for the transitions

to the stripe phase do change with system size, for the

system sizes we were able to consider. By calculating how

the number of lone particles and the static structure factor

varies through the transition between the gas and the cluster

phase, we conclude that this transition is a structural transition

entirely akin to micellisation. The transition from the cluster

to the stripe phase is very similar, except here occurring on a

larger scale, by the gathering of clusters to form stripes. This

behaviour is also observed in living polymerisation, where a

peak in the heat capacity is also observed.37–39

Due to the fact that pair potential Eq. (2) between the

particles is fairly long ranged, the MC simulations can

be computationally expensive. Recall that we cut off our

slowly decaying potential at a range of rc = 16σ, which is

much longer ranged than the potentials considered, e.g., in

Refs. 10–14. We only implemented the simple Metropolis MC

algorithm, so correctly sampling for system sizes greater than

60σ × 60σ and for many state points was not feasible. To

simulate efficiently for larger systems, a more sophisticated

MC incorporating, e.g., cluster moves is required. This

simple MC also limited what temperatures (i.e., values of

(βε)−1) we could go down to. For (βε)−1 = 0.18, we are

confident that our MC simulations are correctly sampling

the system. However, for lower temperatures, the algorithm

struggles to sample a representative set of states in the time

available. The low temperature properties of the model are

interesting as it may be the case that at very low temperatures,

the structural transitions we observe become genuine phase

transitions. It is certainly the case that other lattice models

with competing interactions11–14 do exhibit phase transitions

at low temperatures. We leave investigating this aspect to

future work.

We also used a simple lattice DFT to calculate density

profiles for the system. Comparing Figs. 2 and 10, the

agreement between simulation and the mean-field DFT is

rather good. Pair potential Eq. (2), with the parameter values

that we use, is fairly long ranged and slowly varying—see

Fig. 1. In the case of purely attractive systems, when the pair

potentials are long ranged and slowly varying (the classic

mean-field situation), then one would not be surprised to

find that mean-field DFT is accurate. However, given that the

present system exhibits microphase ordering and is strongly

fluctuating, it was not a priori clear that the agreement between

the DFT and the MC is as good as it is.

We also used the DFT to calculate the phase diagram

and found that the heat capacity peaks in the MC simulations

are close to the transition lines predicted by the DFT for the

gas to cluster transition and the bubble to liquid transition.

For the cluster to stripe and stripe to bubble transitions, they

are somewhat further away. One aspect of the DFT is that at
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lower values of (βε)−1, the model exhibits many local free

energy minima. This means that to use the DFT to calculate

the phase diagram, one needs to ensure that one has a good

choice of initial density profile. Starting from a density profile

that is not a good approximation, the iteration can go to a

local minimum with a free energy value above that of the

global minimum. Such behaviour is often observed in pattern

forming systems. Thus, great care is required to determine

the system sizes in which the system arranges in a state

that is close in free energy value to the global minimum

value.

Mapping the lattice model onto a continuum DFT yields a

theory from which determining the linear instability threshold

line using the dispersion relation is straightforward, enabling

us to easily and rapidly determine the range of parameter

values where the microphase ordering occurs. This provides

a useful starting point if future analysis of the behaviour

of systems with different pair potential parameter values is

required.
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