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Abstract Decomposing multidimensional signals, such as

images, into spatially compact, potentially overlapping

modes of essentially wavelike nature makes these com-

ponents accessible for further downstream analysis. This

decomposition enables space–frequency analysis, demod-

ulation, estimation of local orientation, edge and corner

detection, texture analysis, denoising, inpainting, or cur-

vature estimation. Our model decomposes the input signal

into modes with narrow Fourier bandwidth; to cope with

sharp region boundaries, incompatible with narrow band-

width, we introduce binary support functions that act as

masks on the narrow-band mode for image recomposition.

L1 and TV terms promote sparsity and spatial compactness.

Constraining the support functions to partitions of the signal

domain, we effectively get an image segmentation model

based on spectral homogeneity. By coupling several sub-

modes together with a single support function, we are able to

decompose an image into several crystal grains. Our efficient
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algorithm is based on variable splitting and alternate direc-

tion optimization; we employ Merriman–Bence–Osher-like

threshold dynamics to handle efficiently the motion by mean

curvature of the support function boundaries under the spar-

sity promoting terms. The versatility and effectiveness of our

proposed model is demonstrated on a broad variety of exam-

ple images from different modalities. These demonstrations

include the decomposition of images into overlapping modes

with smooth or sharp boundaries, segmentation of images

of crystal grains, and inpainting of damaged image regions

through artifact detection.

Keywords Image decomposition · Image segmentation ·
Spatio-spectral decomposition · Microscopy · Crystal

grains · Artifact detection · Threshold dynamics · Variational

methods · Sparse time–frequency analysis

Mathematics Subject Classification 68U10

1 Introduction

In this paper, we are interested in decomposing images

f : R
n → R into ensembles of constituent modes (compo-

nents) that have specific directional and oscillatory charac-

teristics.1 Put simply, the goal is to retrieve a small number

K of modes uk : R
n → R that each have a very limited

bandwidth around their characteristic center frequency ωk .

As with most partitioning models, K is assumed to be known

a priori. However, in analogy to methods used in other con-

texts, one can think of ways to include a model complexity

1 Throughout this paper, we will be using notation pertaining to images

defined over continuous domains, albeit it is implicitly understood that

numerical implementations will always make use of appropriate com-

monplace discretization and quantization.
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term (prior) in our variational model to determine the “opti-

mal” K from data, instead. These modes are called intrinsic

mode functions (IMF) and can be seen as amplitude- and

frequency-modulated (AM–FM) n-D signals, which essen-

tially approximate “plane” waves. Such a mode can have

limited spatial support, its local (instantaneous) frequency

and amplitude vary smoothly, several modes can overlap in

space, and together, the ensemble of modes should recon-

struct the given input image up to noise and singular features.

Many fields use signal decomposition as a fundamental

tool for quantitative and technical analysis. In remote sens-

ing, decomposing images based on frequency content and

signal priors, such as housing lattices and terrain structures,

is useful for segmentation, identification, and classification

[16]. In oceanography, a combination of baroclinic modes

helps model density profiles of seasonal cycles and other

geophysical phenomena such as thermal or solar variation

[23,64]. Similarly, in seismology, modes with differing fre-

quency components help highlight different geological and

stratigraphic information [35]. In holography, mode decom-

position allows reducing speckle [46]. In the fields of energy

and power engineering, mode decompositions are used for

vibration analysis and fault detection, e.g., [27,65]. Multi-

variate mode decomposition and mode entropy analysis are

useful tools in neural data analysis [41].

In crystallography, because the crystal lattice exhibits

multiple spatial periodicities, interpretable as a superposi-

tion of multiple different cosine waves, we wish to couple

several “submodes” into a single phase. This coupled-mode

decomposition enables robust estimates of mesoscopic prop-

erties such as crystal defects, rotations, and grain boundaries.

Recent work in crystal orientation detection includes varia-

tional methods based on tensor maps in conjunction with a

regularization scheme [19] and 2D synchrosqueezed trans-

forms [75]. In nanoscale imaging, segmentation enables

analyses and comparisons of surface regions of different

structures as well as directed measurements of function, spec-

tra, and dynamics [63,67]. Ultimately, efficient segmentation

will enable directed data acquisition and parsing acquisi-

tion time between different modalities to assemble and to

converge complementary structural, functional, and other

information.

Independent of the scientific discipline, sparse signal

decomposition provides expansive utility and a more

advanced podium from which to elucidate greater under-

standing.

1.1 Recent and Related Work

The problem is inspired by the one-dimensional empirical

mode decomposition (EMD) algorithm [43] and its more

recent derivates, such as [24,38–40,48,54–56,61,66,71]. We

are interested in the two-dimensional (2D) and higher n-

dimensional analogs and extensions of such decomposition

problems. The 2D extension of EMD [53] similarly uses

recursive sifting of 2D spatial signals by means of interpolat-

ing upper and lower envelopes, median envelopes, and thus

extracting image components in different “frequency” bands.

This 2D-EMD, however, suffers from the same drawbacks

in robustness as the original EMD in extremal point finding,

interpolation of envelopes, and stopping criteria imposed.

More recent work, such as the Prony–Huang transform [59],

has only partially improved on some of these drawbacks

using modern variational and transform methods.

Classical decomposition methods include the discrete

Fourier transform (DFT) and the continuous wavelet trans-

form (CWT), where a fixed basis can yield a sparse represen-

tation for appropriate signals. Using more general bases or

frames, extended methods such as matching pursuit decom-

position (MP), method of frames, best orthogonal basis

(BOB), and basis pursuit (BP) are more robust and, in prin-

ciple, decompose a signal into a superposition of dictionary

elements. Though these methods have had success with sim-

ple signals, they are still not fully robust to non-stationary

waves and may require a large, redundant dictionary of ele-

ments.

More specific methods for directional image decom-

position work by mostly rigid frames, decomposing the

Fourier spectrum into fixed, mostly or strictly disjoint,

(quasi-)orthogonal basis elements. Examples include Gabor

filters [45], wavelets [13,15,47], curvelets [5], or shearlets

[34,44]. More recently, Riesz–Laplace wavelets have been

proposed for multiresolution monogenic signal analysis [69].

All these methods, however, are not adaptive relative to the

signal, and can attribute principal components of the image

to different bands, as well as contain several different image

components in the same band. Adaptivity and tuned spar-

sity concerns have been addressed through synchrosqueezed

wavelet transforms [9,14,72,74], where unimportant wavelet

coefficients are removed by thresholding based on energy

content. In pursuit of the same goal, the 2D empirical wavelet

transform (EWT) [29,30] decomposes an image by creating

a more adaptive wavelet basis.

In previous work [17], Dragomiretskiy and Zosso defined

a fully variational model for mode decomposition of 1D sig-

nals. The so-called variational mode decomposition (VMD)

in 1D is essentially based on well-established concepts such

as the 1D Hilbert transform and the analytic signal, het-

erodyne demodulation, and Wiener filtering. The goal of

1D-VMD is to decompose an input signal into a discrete

number of subsignals (modes), where each mode has lim-

ited bandwidth in the spectral domain. In other words, one

requires each mode uk : R → R to be mostly compact (spec-

trally concentrated) around a center pulsation ωk , which is

to be determined along with the decomposition. In order

to assess the bandwidth of a mode (its degree of spectral

123



296 J Math Imaging Vis (2017) 58:294–320

concentration), the following scheme was proposed [17]:

(1) For each mode uk , compute the associated analytic sig-

nal by means of the Hilbert transform in order to obtain

a unilateral frequency spectrum. (2) For each mode, shift

the mode’s frequency spectrum to “baseband,” by mixing

with an exponential tuned to the respective estimated cen-

ter frequency. (3) Estimate the bandwidth through the H1

smoothness (Dirichlet energy) of the demodulated signal.

The resulting constrained variational problem is the follow-

ing:

min
uk : R→R, ωk

{

∑

k

αk

∥

∥

∥

∥

∂t

[{(

δ(·) + j

π ·

)

∗ uk(·)
}

(t)e− jωk t

]
∥

∥

∥

∥

2

2

}

s.t. ∀t ∈ R :
∑

k

uk(t) = f (t), (1)

where the norm is understood as

‖ · ‖2
2 :=

∫

R

| · |2dt

and ∗ denotes convolution.

In [17], it was shown that this variational model can be

minimized efficiently and it outperforms empirical mode

decomposition algorithms in various respects, most notably

regarding noise robustness and mode cleanliness.

1.2 Proposed Method

In this paper, we propose a natural two-dimensional (or

higher-dimensional) extension of the (1D) variational mode

decomposition algorithm [17] in the context of image seg-

mentation and directional decomposition. The 2D-VMD

algorithm is a non-recursive, fully adaptive, variational

method that sparsely decomposes images in a mathemati-

cally well-founded manner.

Here, we are interested in making the advantages of the

variational model accessible for the 2D case (and higher

dimensions equally so). The first order of business is thus

to generalize the 1D-VMD model to the multidimensional

case, as sketched in [18]. Second, we want to address an

intrinsic conflict of the VMD model, namely the inverse rela-

tion between spatial and frequency support: in 1D VMD, it

was noted that the algorithm had difficulties whenever sig-

nals exhibited sudden onset and amplitude changes, since

these effectively represent a violation of the assumptions of

Bedrosian’s theorem, a key element of the VMD model. In

this work, we address this issue by further introducing a sep-

arate amplitude function that masks the underlying mode

spatially, which allows decoupling spatial from spectral sup-

port. In 2D, this approach allows extraction of modes with

sharp boundaries. We then introduce various priors on the

shape of the amplitude function. Requiring the amplitude

function to be binary and penalizing its total variation reg-

ularize the mode boundaries. Restricting the ensemble of

amplitude functions associated with the various modes to the

probability simplex at each pixel leads to non-overlapping

modes, effectively segmenting the image. Coupling sev-

eral modes to share a single support function further allows

extraction of multi-wave textures, such as lattice patterns.

The remainder of this paper is organized as follows. In

Sect. 2, we provide a short definition and description of the

1D Hilbert transform and the directional Hilbert transform,

which is one of its generalizations to higher dimensions.

We formulate our proposed 2D-VMD model and present a

strategy to solve it numerically. We then introduce a sepa-

rate term for compact spatial support in Sect. 3, by defining

binary support functions, and provide a detailed algorithm for

this second, compact decomposition model with potentially

overlapping modes. In Sect. 4, we can then restrict the sup-

port of the modes to form a partition of the image domain,

resulting in spectrum-based image segmentation. We pro-

vide a complete, third algorithm for this modified problem.

Then, in Sect. 5, we couple several submodes together (joint

support) to model domains with non-trivial spectral distri-

butions. Finally, we include an artifact detection term to

eliminate outlier pixels, as described in Sect. 6. Decompo-

sition and segmentation results on synthetic and real data are

provided in Sect. 7, and we discuss the implications of and

prospects for this work in Sect. 8.

2 Two-Dimensional Variational Mode

Decomposition

We design the 2D model analogously to its 1D predeces-

sor, minimizing the constituent subsignals’ bandwidth while

maintaining data fidelity. While derivatives in higher dimen-

sions are simply generalized by gradients, and modulation is

also straightforward, the generalization of the analytic sig-

nal is less obvious. To complete the analogy, we must first

define the appropriate “analytic signal”-equivalent in the n-D

context.

2.1 n-D Hilbert Transform /Analytic Signal

In the 1D time domain, the analytic signal is achieved by

adding the Hilbert transformed copy of the original signal

f : R → R as imaginary part [25]:

f AS : R → C

t �→ f (t) + jH{ f }(t),
(2)

where j2 = −1, and the 1D Hilbert transform is defined as:
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H{ f }(t) :=
{

1

π · ∗ f (·)
}

(t) = 1

π
p.v.

∫

R

f (s)

t − s
ds, (3)

where ∗ denotes convolution. We note that the real signal is

recovered simply by taking the real component of the analytic

signal.

In the spectral domain, this definition of analytic signal

corresponds to suppressing the negative frequencies, thus

giving it a unilateral spectrum:

f̂ AS : R →C

ω �→

⎧

⎪

⎨

⎪

⎩

2 f̂ (ω), if ω > 0,

f̂ (ω), if ω = 0,

0, if ω < 0,

(4)

where

f̂ (ω) := F{ f (·)}(ω) = 1/
√

2π

∫

R

f (t)e− jωt dt

is the unitary Fourier transform in 1D.

Single-sidedness of the analytic signal spectrum was the

key property motivating its use in the 1D case, since this

property allowed for easy frequency shifting to baseband by

complex exponential mixing. Therefore, to mimic this spec-

tral property in 2D, one half-plane of the frequency domain

must effectively be set to zero2; this half-plane is chosen

relative to a vector, in our case to ωk . Thus, the 2D ana-

lytic signal of interest can first be defined in the frequency

domain by generalizing the concept of half-space spectrum

suppression:

f̂ AS : R
n →C

ω �→

⎧

⎪

⎨

⎪

⎩

2 f̂ (ω), if 〈ω,ωk〉 > 0,

f̂ (ω), if 〈ω,ωk〉 = 0,

0, if 〈ω,ωk〉 < 0,

(5)

or, shorthand,

f̂ AS(ω) = (1 + sgn(〈ω,ωk〉)) f̂ (ω), (6)

where the n-D Fourier transform is defined as

f̂ (ω) := F{ f (·)}(ω) = (2π)−n/2

∫

Rn

f (x)e− j〈ω,x〉dx.

The 2D analytic signal in the time domain with the afore-

mentioned Fourier property is given in [4]. In particular, we

note that the underlying higher-dimensional generalization of

Hilbert transform employed here is known as the directional

2 Similarly, in higher dimensions, a half-space of the frequency domain

needs to be suppressed.

Hilbert transform [33]. It is easy to see how the generalized

analytic signal reduces to the classical definition in 1D.

2.2 n-D VMD Functional

We are now able to put all the generalized VMD ingredients

together to define the two-dimensional extension of varia-

tional mode decomposition. The functional to be minimized,

stemming from this definition of n-D analytic signal, is:

min
uk : Rn→R, ωk∈Rn

{

∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

}

s.t. ∀x ∈ R
n :
∑

k

uk(x) = f (x), (7)

where u AS,k denotes the generalized analytic signal obtained

from the mode uk according to (5) using its associated center

frequency ωk . The coefficient αk allows to convey different

weights to the k modes, a degree of freedom that we do not

currently explore, yet. Here, the squared norm is understood

as

‖ · ‖2
2 :=

∫

Rn

| · (x)|2dx,

a generalization to higher dimensions of the previous usage

in 1D. Note that the argument can be complex and/or vector-

valued, in which case the term | · (x)|2 refers to the squared

magnitude.

The model thus minimizes the Dirichlet energy of the

modes after half-space spectrum suppression (uk → u AS,k)

and demodulation to baseband (e− j〈ωk ,x〉), subject to col-

lective signal fidelity. This model specifically includes the

desired two-dimensional case n = 2, and reduces to the ear-

lier 1D-VMD for n = 1.

Analogous to the 1D-VMD model, the reconstruction con-

straint is addressed through the introduction of a quadratic

penalty and Lagrangian multiplier (the augmented

Lagrangian, AL, method), and we proceed by a scheme rem-

iniscent of alternate direction minimization (ADMM) for

optimization [2,17,52]. It is to note that while the model

is convex in each argument uk : R
n → R and ωk ∈ R

n ,

separately, the objective is not convex, jointly.3

2.3 Augmented Lagrangian and Optimization

To render the constrained minimization problem (7) uncon-

strained, we include both a quadratic penalty and a Lag-

rangian multiplier to enforce the fidelity constraint. We thus

define the augmented Lagrangian:

3 To be more precise, the objective is convex in ωk if we consider the

analytic signal construction for u AS,k fixed while optimizing for ωk .
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L({uk} , {ωk} , λ) :=
∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+
∥

∥

∥
f (x) −

∑

k

uk(x)

∥

∥

∥

2

2
+
〈

λ(x), f (x) −
∑

k

uk(x)

〉

. (8)

where λ : R
n → R is the Lagrangian multiplier. We can now

consider the unconstrained saddle point problem instead of

(7):

min
uk : Rn→R, ωk∈Rn

max
λ : Rn→R

L({uk} , {ωk} , λ). (9)

The solution thereof is now found as the saddle point of

the augmented Lagrangian L in a sequence of iterative

suboptimizations similar to Gauss–Seidel and the alternate

direction method of multipliers (ADMM) for convex prob-

lems [2,37,57]. The idea is to iterate the following sequence

of variable updates:

ut+1
k ← arg min

uk : Rn→R

L

({

ut+1
i<k

}

, uk,
{

ut
i>k

}

,
{

ω
t
i

}

, λt
)

(10a)

ω
t+1
k ← arg min

ωk∈Rn

L

({

ut+1
i

}

,

{

ω
t+1
i<k

}

,ωk,
{

ω
t
i>k

}

, λt
)

(10b)

λt+1 ← λt + τ

(

f −
∑

k

ut+1
k

)

(10c)

for some τ ≥ 0.

For simplified notation while considering the submini-

mization problems (10a) and (10b) in the following para-

graphs, we incorporate the Lagrangian multiplier term λ into

the quadratic penalty term. Simply by completing the square,

we rewrite the objective expression equivalently as follows:

L({uk} , {ωk} , λ) =
∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+
∥

∥

∥
f (x) −

∑

k

uk(x) + λ(x)

2

∥

∥

∥

2

2

−
∥

∥

∥

λ(x)

2

∥

∥

∥

2

2
(11)

Since updates happen sequentially, we note that when updat-

ing uk preceding modes i < k will have been updated to

ut+1
i already, while subsequent modes i > k still only have

ut
i available. We will omit iteration superscripts in the fol-

lowing to unclutter the notation, and simply refer to ui , for

i �= k, instead; but it is understood that we always use the

most recent estimate of a variable.

2.4 Minimization w.r.t. the Modes uk

The relevant update problem derived from (10a) and (11) is

ut+1
k = arg min

uk : Rn→R

{

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+
∥

∥

∥
f (x) −

∑

i

ui (x) + λ(x)

2

∥

∥

∥

2

2

}

(12)

Since we are dealing with L2-norms, we can make use of the

L2 Fourier isometry and rewrite the subminimization prob-

lem in spectral domain (thus implicitly assuming periodic

boundary conditions):

ût+1
k = arg min

ûk |uk : Rn→R

{

αk

∥

∥ jω
[

û AS,k(ω + ωk)
]
∥

∥

2

2

+
∥

∥

∥
f̂ (ω) −

∑

i

ûi (ω) + λ̂(ω)

2

∥

∥

∥

2

2

}

. (13)

Here, ûk | uk : R
n → R restricts the minimization to

Hermitian spectra, ûk(ω) = −ûk(−ω), corresponding to

real-valued modes uk . The ωk term in the spectrum of the

analytic signal is due to the modulation with the complex

exponential and justified by the well-known transform pair:

f (x)e− j〈ω0,x〉 F←→ f̂ (ω) ∗ δ(ω + ω0) = f̂ (ω + ω0), (14)

where δ is the Dirac distribution and ∗ denotes convolution.

Thus, multiplying an analytic signal with a pure exponential

results in simple frequency shifting. Further, we can push the

frequency shift out of the analytic signal spectrum through a

change of variables, to obtain:

ût+1
k = arg min

ûk |uk : Rn→R

{

αk

∥

∥ j (ω − ωk)
[

û AS,k(ω)
]
∥

∥

2

2

+
∥

∥

∥
f̂ (ω) −

∑

i

ûi (ω) + λ̂(ω)

2

∥

∥

∥

2

2

}

. (15)

We now plug in the spectral definition of the n-D analytic

signal (5),

û AS,k(ω) = (1 + sgn(〈ω,ωk〉))ûk(ω).

Also, the second term contains spectra of real signals only,

which makes it Hermitian and lets us split the norm into two

equal parts. To this end, let

	k ⊂ R
n : 	k := {ω | 〈ω,ωk〉 ≥ 0}

denote the frequency domain half-space to which the n-D

analytic signal is restricted. We rewrite both terms as integrals
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over these frequency domain half-spaces:

ût+1
k = arg min

ûk |uk : Rn→R

{

2αk

∫

	k

|ω − ωk |2|ûk(ω)|2dω

+
∫

	k

∣

∣

∣
f̂ (ω) −

∑

i

ûi (ω) + λ̂(ω)

2

∣

∣

∣

2
dω

}

. (16)

This subminimization problem is now solved by letting the

first variation w.r.t. ûk vanish.4 The optimal mode spectrum

thus satisfies:

0 = 2αk |ω − ωk |2ûk −
(

f̂ (ω) −
∑

i

ûi (ω) + λ̂(ω)

2

)

,

∀ω ∈ 	k . (17)

With this optimality condition, solving for ûk yields the fol-

lowing Wiener filter update:

ût+1
k (ω) =

(

f̂ (ω)−
∑

i �=k

ûi (ω)+ λ̂(ω)

2

) 1

1 + 2αk |ω − ωk |2
,

∀ω ∈ 	k . (18)

The full spectrum ût+1
k can then be obtained by symmet-

ric (Hermitian) completion. Equivalently, we can decide to

update the half-space analytic signal of the mode, ût+1
AS,k , on

the entire frequency domain, instead:

ût+1
AS,k(ω) =

(

f̂ (ω)−
∑

i �=k

ûi (ω)+ λ̂(ω)

2

) 1+ sgn(〈ω,ωk〉)
1 + 2αk |ω − ωk |2

,

∀ω ∈ R
n, (19)

from which the actual mode estimate is recovered as the real

part after inverse Fourier transform. The term in parentheses

is the signal’s k-th residual, where f̂ (ω) −
∑

i �=k ûi (ω) is

the explicit current residual, and λ̂ accumulates the recon-

struction error over iterations (see below). The second term

is identified as a frequency filter tuned to the current esti-

mate of the mode’s center pulsation, ωk , whose bandwidth

is controlled by the parameter αk .

2.5 Minimization w.r.t. the Center Frequencies ωk

Optimizing for ωk is even simpler. Indeed, the respective

update goal derived from (10b) and (11) is

ω
t+1
k = arg min

ωk∈Rn

{

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

}

. (20)

4 Note that the spectrum of uk is complex-valued, so the process of

“taking the first variation” is not self-evident. However, the functional

is analytic in ûk and complex-valued equivalents to the standard deriva-

tives do indeed apply.

Again we may consider the equivalent problem in the Fourier
domain:

ω
t+1
k = arg min

ωk∈Rn

{

αk

∥

∥ j (ω − ωk)(1 + sgn(〈ωk ,ω〉))ûk(ω)
∥

∥

2

2

}

= arg min
ωk∈Rn

{

4αk

∫

	k

|ω − ωk |2
∣

∣ûk(ω)
∣

∣

2
dω

}

. (21)

The minimization is solved by letting the first variation w.r.t.

ωk vanish, leading to:

∫

	k

(ω − ω
t+1
k )

∣

∣ûk(ω)
∣

∣

2
dω = 0. (22)

The resulting solutions are the centers of gravity of the

modes’ power spectra, |ûk(ω)|2, restricted to the half-space

	k :

ω
t+1
k =

∫

	k
ω|ûk(ω)|2dω

∫

	k
|ûk(ω)|2dω

=
∫

Rn ω|û AS,k(ω)|2dω

∫

Rn |û AS,k(ω)|2dω

, (23)

where the second form is given for implementation purposes,

based on the analytic signal spectrum and involving the entire

frequency domain.

2.5.1 Maximization w.r.t. the Lagrangian Multiplier λ

Maximizing the λ is the simplest step in the algorithm. The

first variation for λ is just the data reconstruction error,

f (ω)−
∑

k ut+1
k (ω). We use a standard gradient ascent with

some fixed time step τ ≥ 0 to achieve this maximization:

λt+1(x) = λt (x) + τ

(

f (x) −
∑

k

ut+1
k (x)

)

. (24)

It is important to note that choosing τ = 0 eliminates the

Lagrangian update and thus reduces the algorithm to the

penalty method for data-fidelity purposes. Doing so is useful

when exact data fidelity is not appropriate, such as in (high)

noise scenarios, where reconstruction error actually allows

capturing noise separately. Effectively the proposed model

is capable of denoising.

Note also that the linearity of the Euler–Lagrange equa-

tion allows an impartial choice in which space to update the

Lagrangian multiplier, either in the time domain or in the

frequency domain. In our implementation, we perform our

dual ascent update in the frequency domain, since the other

appearance of the Lagrangian multiplier in (19) is in spectral

terms, as well. Thus:

λ̂t+1(ω) = λ̂t (ω) + τ

(

f̂ (ω) −
∑

k

ût+1
k (ω)

)

. (25)
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2.5.2 Complete 2D VMD Algorithm

The entire proposed algorithm for the 2D-VMD functional

optimization problem (7) is summarized in Algorithm 1.

Variables are trivially initialized at 0, except for the center

frequencies, ωk , for which smart initialization is of higher

importance; initial ω
0
k can, e.g., be spread randomly, radially

uniform, or initialized by user input. Further, we choose to

assess convergence in terms of the normalized rate of change

of the modes. Typical thresholds ǫ > 0 range in orders of

magnitude from 10−4 (fast) down to 10−7 (very accurate).

Algorithm 1 2D-VMD

Input: signal f (x), number of modes K , parameters αk , τ , ǫ.

Output: modes uk(x), center frequencies ωk .

Initialize {ω0
k}, {û0

k} ← 0, λ̂0 ← 0, n ← 0

repeat

n ← n + 1

for k = 1 : K do

Create 2D mask for analytic signal Fourier multiplier:

H
t+1
k (ω) ← 1 + sgn(〈ωt

k ,ω〉)

Update û AS,k :

ût+1
AS,k(ω) ← H

t+1
k (ω)

⎡

⎢

⎢

⎣

f̂ (ω) −
∑

i<k

ût+1
i (ω) −

∑

i>k

ût
i (ω) + λ̂t (ω)

2

1 + 2αk |ω − ω
t
k |2

⎤

⎥

⎥

⎦

Update ωk :

ω
t+1
k ←

∫

R2 ω|ût+1
AS,k(ω)|2dω

∫

R2 |ût+1
AS,k(ω)|2dω

Retrieve uk :

ut+1
k (x) ← ℜ

(

F
−1
{

ût+1
AS,k(ω)

})

end for

Dual ascent (optional):

λ̂t+1(ω) ← λ̂t (ω) + τ

(

f̂ (ω) −
∑

k

ût+1
k (ω)

)

until convergence:
∑

k ‖ût+1
k − ût

k‖2
2/‖ût

k‖2
2 < ǫ.

An example of image decomposition achieved with 2D

VMD according to Algorithm 1 is shown in Fig. 1.

3 VMD with Compact Spatial Support

A main assumption regarding the intrinsic mode functions

considered so far is that their amplitude (spatially) varies

much more slowly than the wavelength of the carrier. Indeed,

IMFs can be defined as signals (in time or space) that are both

amplitude- and frequency-modulated [14]. In [17], we have

defined the total practical IMF bandwidth of such an AM–

FM signal, as an extension to Carson’s rule for FM signal

bandwidth [6]:

BWAM–FM := 2(� f + fFM + fAM), (26)

where � f and fFM represent the frequency swing and mod-

ulation bandwidth, respectively, of the FM part, while fAM

denotes the bandwidth of the amplitude modulation. The last,

AM bandwidth, conflicts with signals composed of modes

having sudden signal onset, in particular those with compact

spatial support. Indeed, this inverse relation between spatial

and spectral compactness is well known and stated by the

Heisenberg uncertainty principle.

3.1 Introducing Binary Support Functions Ak

To make our “modes have limited bandwidth” prior compati-

ble with signals of limited spatial support, it is thus necessary

to deal with the spatial and spectral compactness of the

modes, separately. To this end, we introduce a binary support

function for each mode, in order to capture the signal onset

and offset disconnected from the smooth AM–FM modula-

tions.

We consider signals and modes f, uk : R
n → R (thus

including both the 1D-VMD and higher-dimensional signals

such as 2D-VMD stated above). Let

Ak : R
n → {0, 1}

denote the binary support functions for each mode uk . The

mode decomposition problem can then formally be stated as

find uk, Ak s.t. f =
∑

k

Ak · uk,

i.e., we want the modes uk , now masked by their binary sup-

port function Ak , to reproduce collectively the given input

signal. Note that the modes uk can extend arbitrarily into

their inactive regions where Ak = 0; in particular, they can

decay smoothly or oscillate ad infinitum, thus keeping small

spectral bandwidth.

3.2 Sparsity Promoting VMD Functional

It is important to introduce sparsity promoting regularity

constraints on the support function to achieve reasonable

compact local support. Here, we consider both total variation

(TV) and L1 penalties on Ak , thus effectively penalizing sup-

port area and boundary length (through the co-area formula).

We incorporate the binary support functions Ak and their

regularizers in the n-D VMD functional as follows:
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Fig. 1 Synthetic overlapping texture a Input image f . b 2D-VMD

reconstruction
∑

k uk . c Compactly supported 2D-TV-VMD recon-

struction
∑

k Akuk . d Support boundaries overlaid onto original image.

e 2D-VMD modes uk . f 2D-TV-VMD modes uk . g Detected supports

Ak . h Masked modes Akuk . See Sect. 7.1 in text for explanation and

discussion
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min
uk : Rn→R, Ak : Rn→{0,1}, ωk∈Rn

{

∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+βk‖Ak‖1 + γk TV(Ak)

}

s.t. ∀x ∈ R
n :
∑

k

Ak(x)uk(x) = f (x), (27)

where total variation is defined as

TV(Ak) := sup
|φ|≤1

〈Ak, divφ〉, for φ : R
n → R

n,

and the L1-norm is understood as

‖Ak‖1 :=
∫

Rn

|Ak(x)|dx.

The L1 and TV penalties on Ak ensure that an individual

mode is only active in places where it is “sufficiently justi-

fied” (i.e., the increased data fidelity outweighs the incurred

friction cost), and represent the prior that modes have limited

spatial support and regular outlines.

3.3 Model “Relaxation”

Due to the introduction of the binary support functions Ak

in the fidelity constraint, and the L1- and TV-based prior

terms, the functional is no longer directly translatable to the

spectral domain. We want to restore spectral solvability of the

modes uk . Currently, the masks Ak prevent this, since in the

quadratic penalty addressing the reconstruction constraint,

the spatial multiplication translates to spectral convolution.

To avoid this, we introduce a splitting of the modes uk = vk ,

and apply spectral bandwidth penalty and reconstruction over

the separate copies:

min
uk : Rn→R, Ak : Rn→{0,1}, ωk∈Rn

{

∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+βk‖Ak‖1 + γk TV(Ak)

}

s.t. ∀x ∈ R
n :
{

uk(x) = vk(x),
∑

k Ak(x)vk(x) = f (x).
(28)

While (28) is equivalent to (27), the important difference for

our purposes will appear in the coordinate-wise optimiza-

tion steps. Similar splitting techniques [11,12,31] have been

applied to L1-based and related optimization problems with

great success, such as [22,32]. The splitting constraint can

be addressed, e.g., with a quadratic penalty (proximal split-

ting, [12]), or using an augmented Lagrangian [31]. The full

saddle point functional (augmented Lagrangian) incorporat-

ing both equality constraints through quadratic penalty and

Lagrangian multipliers, in analogy to (8), is as follows:

L({uk}, {vk}, {Ak}, {ωk}, λ, {λk})

:=
{

∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+βk‖Ak‖1 + γk TV(Ak)

+ ρ

∥

∥

∥
f (x) −

∑

Ak(x)vk(x)

∥

∥

∥

2

2

+
〈

λ(x), f (x) −
∑

Ak(x)vk(x)

〉

+
∑

k

ρk ‖uk(x) − vk(x)‖2
2

+ 〈λk(x), uk(x) − vk(x)〉
}

, (29)

where λk are the Lagrangian multipliers associated with the

K equality constraints uk = vk , and ρ, ρk are parameters

weighting the different quadratic penalties.

3.4 n-D-TV-VMD Minimization

We now proceed to solve the constrained, sparsity promoting

n-D VMD functional (27) through its augmented Lagrangian

(29). Consider the following saddle point problem:

min
uk ,vk : Rn→R, Ak : Rn→{0,1}, ωk∈Rn

max
λ,λk : Rn→R

{

L({uk}, {vk}, {Ak}, {ωk}, λ, {λk})
}

. (30)

This saddle point problem is an extended version of the 2D

VMD saddle point problem (9) (there, without spatial spar-

sity promoting terms) and is again efficiently solved through

alternate direction minimization and dual ascent scheme sim-

ilar to ADMM:

ut+1
k ← arg min

uk : Rn→R

L

({

ut+1
i<k

}

, uk,
{

ut
i>k

}

,
{

vt
i

}

,
{

At
i

}

,

{

ω
t
i

}

, λt ,
{

λt
i

})

(31a)

vt+1
k ← arg min

vk : Rn→R

L

({

ut+1
i

}

,

{

vt+1
i<k

}

, vk,
{

vt
i>k

}

,
{

At
i

}

,

{

ω
t
i

}

, λt ,
{

λt
i

})

(31b)

At+1
k ← arg min

Ak : Rn→{0,1}
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L

({

ut+1
i

}

,

{

vt+1
i

}

,

{

At+1
i<k

}

, Ak,
{

At
i>k

}

,

{

ω
t
i

}

, λt ,
{

λt
i

})

(31c)

ω
t+1
k ← arg min

ωk∈Rn

L

({

ut+1
i

}

,

{

vt+1
i

}

,

{

At+1
i

}

,

{

ω
t+1
i<k

}

,

ωk,
{

ω
t
i>k

}

, λt ,
{

λt
i

})

(31d)

λt+1 ← λt + τ

(

f −
∑

At+1
k vt+1

k

)

(31e)

λt+1
k ← λt

k + τk

(

ut+1
k − vt+1

k

)

(31f)

where τk ≥ 0 is the update step size for the Lagrange mul-

tipliers associated with the newly introduced mode splitting

constraint. We provide details on the individual subminimiza-

tion problems in the following paragraphs, some of which

closely relate to the steps given in Sect. 2.

3.4.1 n-D-TV-VMD Subminimization w.r.t. uk

The relevant minimization problem (31a) with respect to the

modes uk reads

ut+1
k = arg min

uk : Rn→R

{

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+ ρk

∥

∥

∥

∥

uk(x) − vk(x) + λk(x)

ρk

∥

∥

∥

∥

2

2

}

. (32)

In full analogy to the problem without spatial sparsity terms,

(12), the update is most easily computed in spectral domain,

like (18). Unsurprisingly, the update rule on the frequency

half-space 	k = {ω | 〈ω,ωk〉 ≥ 0} is found to be:

ût+1
k (ω)=(ρk v̂k −λ̂k)

1

ρk +2αk |ω − ωk |2
, ∀ω∈	k . (33)

From this half-space update, the full spectrum can again be

obtained by Hermitian completion, or by updating the mode’s

half-space analytic signal instead:

ût+1
AS,k(ω) = (ρk v̂k − λ̂k)

1 + sgn(〈ω − ωk〉)
ρk + 2αk |ω − ωk |2

. (34)

3.4.2 n-D-TV-VMD Subminimization w.r.t. vk

The update (31b) of vk reduces to the following minimization

problem:

vt+1
k = arg min

vk : Rn→R

{

ρ

∥

∥

∥

∥

f (x)−
∑

Ai (x)vi (x)+λ(x)

ρ

∥

∥

∥

∥

2

2

+ ρk

∥

∥

∥

∥

uk(x) − vk(x) + λk(x)

ρk

∥

∥

∥

∥

2

2

}

(35)

This problem admits the following pointwise optimality con-

ditions:

−ρ Ak(x)

(

f (x) −
∑

Ai (x)vi (x) + λ(x)

ρ

)

−ρk

(

uk(x) − vk(x) + λk(x)

ρk

)

= 0, ∀x ∈ R
n (36)

yielding the simple update rule

vt+1
k (x)

=
ρ Ak(x)

(

f (x) −
∑

i �=k Ai (x)vi (x) + λ(x)
ρ

)

+ ρkuk(x) + λk(x)

ρ Ak(x)2 + ρk

,

∀x ∈ R
n . (37)

This update is interpreted as a balance between fidelity to the

split mode uk (enforced through Lagrangian multiplier λk),

and the reconstruction-fidelity constraint where Ak is active

(enforced through λ).

3.4.3 n-D-TV-VMD Subminimization w.r.t. Ak

As outlined above, the minimization problem with respect

to the binary support functions Ak involves the L1- and TV-

based priors5:

At+1
k = arg min

Ak : Rn→{0,1}

{

βk‖Ak‖1 + γk TV(Ak)

+ ρ

∥

∥

∥

∥

f (x) −
∑

Ai (x)vi (x) + λ(x)

ρ

∥

∥

∥

∥

2

2

}

. (38)

The first variation associated with the TV term typically

involves div(∇·/|∇ ·|). One must expect difficulties with this

term when used with binary functions such as Ak : at edges

the gradient is not defined, and in flat regions |∇ Ak | = 0.

Moreover, if such a gradient descent PDE were integrated

explicitly, then the time step is also heavily limited by the

stiffness constraint [62]. Further, since Ak is binary we opt

for schemes other than split Bregman/shrinkage or dual min-

imization [7,32,77]. We refrain from convex relaxation and

instead are inspired by the Merriman–Bence–Osher (MBO)

scheme for motion my mean curvature of interfaces [50]. This

choice performed most promisingly in our experiments.

The fundamental idea is to reproduce the motion by mean

curvature due to the boundary length term TV(Ak) by more

efficient means than direct gradient descent, namely the alter-

nation between heat diffusion and thresholding. For recent

comprehensive work on this type of threshold dynamics, see

5 Again we omit iteration superscripts for Ai , but it is understood that

we always use the most recent estimate of a variable, At+1
i for i < k

and At
i for i > k.
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[20]. These MBO-type schemes have already been success-

fully integrated with imaging data terms, such as [21,78],

where in addition to the heat diffusion and thresholding steps,

a data-driven gradient descent step is included in the itera-

tions. We propose a similar structure here, to account for the

balloon force and reconstruction-fidelity term contributions

to the Ak minimization.

To this end, we devise a threefold time split gradient

descent-emulating iteration: the first step is gradient descent

based on the support area and reconstruction-fidelity penalty

(all terms involving Ak but the TV(Ak) term). The second

step is diffusion by the heat equation, followed by thresh-

olding as a third step, to deal with the boundary length term

TV(Ak) and the projection onto the admissible set {0, 1}.
Since Ak is non-negative, it is safe to drop the absolute

value and relax the L1-area term to βk

∫

Rn Ak , making the

functional smoothly differentiable in the area and reconstruc-

tion term.

We thus propose to update the binary support functions

At+1
k in MBO-like fashion by iterating over the following

three evolution equations resulting from time splitting6:

1. Area penalty and reconstruction-fidelity ODE:

∂ Ak(x)

∂t
=−βk+2ρvk(x)

(

f (x)−
∑

Ai (x)vi (x)+ λ(x)

ρ

)

,

(39)

2. Heat equation PDE for diffusion:

∂ Ak(x)

∂t
= γk∇2 Ak(x), (40)

3. Rectification by thresholding:

Ak(x) =
{

0 if Ak(x) ≤ 1
2

1 if Ak(x) > 1
2

∀x ∈ R
n . (41)

The differential equations are each propagated forward in

time for a total time T . Note that to this end, the ODE prob-

lem can be addressed through an implicit (backward) Euler

scheme and the heat equation is efficiently solved, e.g., based

on convolution or spectral transforms [58].

3.4.4 n-D-TV-VMD Subminimization w.r.t. ωk

The last, remaining subproblem of the saddle point problem

(30) is the update of the mode’s central frequency, ωk . The

6 Here, t is understood as an artificial time introduced for the sole

purpose of differential equation notation, but quantized into the discrete

iterates of the scheme.

relevant portion of the functional (29) is identical to the non-

sparse 2D-VMD model (8). Therefore, the corresponding

subminimization problem here is identical to (20), and thus,

the update is equally given by (23).

The complete algorithm for the alternate direction (Gauss–

Seidel-like) optimization of the 2D-TV-VMD model is

shown in Algorithm 2, and illustrative examples of its use

are given in Figs. 1 and 4.

4 Spectral Image Segmentation

Up to now, we have considered modes whose spatial sup-

port was mutually independent. In particular, this means that

VMD and TV-VMD modes can be spatially overlapping and,

conversely, that not all parts of a signal are necessarily cov-

ered by an active mode. Here, we want to consider the case

where modes are restricted to be non-overlapping while cov-

ering the entire signal domain. In other words, the modes’

support functions Ak form a partition of the signal domain.

For example, such a model includes the image segmentation

problem.

4.1 Introducing the Partition Constraint

In terms of the binary support functions, Ak : R
n → {0, 1},

this means imposing the following constraint:

∑

k

Ak(x) = 1, ∀x ∈ R
n . (42)

In return, the area penalty βk‖Ak‖1 can become obsolete,

of course, unless not all modes incur the same area penalty

due to different size priors, corresponding to βi �= β j for at

least some i �= j ∈ {1, . . . , K } (this is a degree of freedom

that we have not exploited in the examples in this manuscript,

however).

We propose the following spatially disjoint n-D-SEG-

VMD model, as a modification of (27):

min
uk : Rn→R, Ak : Rn→{0,1}, ωk∈Rn

{

∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+βk‖Ak‖1 + γk TV(Ak)

}

s.t. ∀x ∈ R
n :
{

∑

k Ak(x)uk(x) = f (x),
∑

k Ak(x) = 1.
(43)

It is important to note that the extra constraint only affects

the updates of Ak , while all other steps of the algorithm

remain unchanged.
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Algorithm 2 2D-TV-VMD (sparsity promoting)

Input: signal f (x), number of modes K , parameters αk , βk , γk , ρ, ρk , T , τ , τk , ǫ.

Output: modes uk(x), support functions Ak(x), center frequencies ωk .

Initialize {ωk}, {u0
k} ← 0, {v0

k } ← 0, {A0
k} ← 1, {λk}0 ← 0, λ0 ← 0, n ← 0

repeat

n ← n + 1

for k = 1 : K do

Create 2D mask for analytic signal Fourier multiplier:

H
t+1
k (ω) ← 1 + sgn(〈ωt

k ,ω〉)

Update û AS,k :

ût+1
AS,k(ω) ← H

t+1
k (ω)

[

ρk v̂
t
k(ω) − λ̂t

k(ω)

ρk + 2αk |ω − ω
t
k |2

]

Retrieve uk :

ut+1
k (x) ← ℜ

(

F
−1
{

ût+1
AS,k(ω)

})

Update vk :

vt+1
k (x) ←

ρ At
k(x)

(

f (x) −
∑

i<k

At
i (x)vt+1

i (x) −
∑

i>k

At
i (x)vt

i (x) + λt (x)
ρ

)

+ ρkut+1
k (x) + λt

k(x)

ρ At
k(x)2 + ρk

Update Ak through modified MBO:

A
t+1/3
k (x) ←

At
k(x) + T

(

−βk + 2ρvt+1
k (x)

(

f (x) −
∑

i<k

At+1
i (x)vt+1

i (x) −
∑

i>k

At
i (x)vt

i (x) + λt (x)
ρ

))

1 + 2Tρ(vt+1
k (x))2

Â
t+2/3
k (ω) ←

Â
t+1/3
k (ω)

1 + T γk |ω|2

At+1
k (x) ←

{

0 if A
t+2/3
k (x) ≤ 1

2

1 if A
t+2/3
k (x) > 1

2

Update ωk :

ω
t+1
k ←

∫

R2 ω|ût+1
AS,k(ω)|2dω

∫

R2 |ût+1
AS,k(ω)|2dω

Dual ascent u-v coupling:

λt+1
k (x) ← λt

k(x) + τk

(

ut+1
k (x) − vt+1

k (x)
)

end for

Dual ascent data fidelity:

λt+1(x) ← λt (x) + τ

(

f (x) −
∑

k

At+1
k (x)vt+1

k (x)

)

until convergence

4.2 Multiphase MBO and Rearrangement

While the extra partitioning constraint could be addressed

through another augmented Lagrangian to be included in

the saddle point problem, here we seek to impose the con-

straint by modifying the current rectification step included

in the MBO-like diffusion and threshold dynamics. Indeed,

the partitioning problem corresponds to a multiphase inter-

face problem. The fundamental idea is to propagate the data

ODE (39) and the heat diffusion PDE (40) on each support

function Ak individually, but to replace the individual thresh-

olding step (41) by a single, common “winner-takes-it-all”

rectification. This idea has been discussed more rigorously in

[20]. For an application of a similar strategy to graph-based

image processing, see [26,42,49].

The projection-based partitioning update for Ak becomes:

1. Area penalty and reconstruction-fidelity ODE propaga-

tion for each mode k, according to (39).

2. Heat diffusion PDE for each mode k according to (40).

3. “Winner-takes-it-all” rectification; Projection of the inter-

mediate Ak onto the feasible set Ak ∈ {0, 1}∩
∑

Ak = 1:

At+1
k =

{

1 if k = arg maxi Ai ,

0 otherwise.
(44)
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Algorithm 3 2D-TV-VMD with segmentation constraint

Input: signal f (x), number of modes K , parameters αk , βk , γk , ρ, ρk , T , τ , τk , ǫ.

Output: modes uk(x), domain partitioning support functions Ak(x), center frequencies ωk .

Initialize {ωk}, {u0
k} ← 0, {v0

k } ← 0,{A0
k} ← 1, {λk}0 ← 0, λ0 ← 0, n ← 0

repeat

n ← n + 1

for k = 1 : K do

Create 2D mask for analytic signal Fourier multiplier:

H
t+1
k (ω) ← 1 + sgn(〈ωt

k ,ω〉)

Update û AS,k :

ût+1
AS,k(ω) ← H

t+1
k (ω)

[

ρk v̂
t
k(ω) − λ̂t

k(ω)

ρk + 2αk |ω − ω
t
k |2

]

Retrieve uk :

ut+1
k (x) ← ℜ

(

F
−1
{

ût+1
AS,k(ω)

})

Update vk :

vt+1
k (x) ←

ρ At
k(x)

(

f (x) −
∑

i<k

At
i (x)vt+1

i (x) −
∑

i>k

At
i (x)vt

i (x) + λt (x)
ρ

)

+ ρkut+1
k (x) + λt

k(x)

ρ At
k(x)2 + ρk

Update ωk :

ω
t+1
k ←

∫

R2 ω|ût+1
AS,k(ω)|2dω

∫

R2 |ût+1
AS,k(ω)|2dω

Dual ascent u–v coupling:

λt+1
k (x) ← λt

k(x) + τk

(

ut+1
k (x) − vt+1

k (x)

)

end for

for k = 1 : K do

Update Ak through time split ODE and PDE propagation:

A
t+1/3
k (x) ←

At
k(x) + T

(

−βk + 2ρvt+1
k (x)

(

f (x) −
∑

i<k

A
t+2/3
i (x)vt+1

i (x) −
∑

i>k

At
i (x)vt+1

i (x) + λt

ρ

))

1 + 2Tρ(vt+1
k (x))2

Â
t+2/3
k (ω) ←

Â
t+1/3
k (ω)

1 + T γk |ω|2

end for

for k = 1 : K do

Rectify Ak through winner-takes-it-all:

At+1
k (x) =

{

1 if k = arg maxi A
t+2/3
i (x)

0 otherwise

end for

Dual ascent data fidelity:

λt+1(x) ← λt (x) + τ

(

f (x) −
∑

k

At+1
k (x)vt+1

k (x)

)

until convergence

The modified, 2D-SEG-VMD algorithm with segmenta-

tion constraint is given in Algorithm 3, while illustrative

examples are shown in Fig. 5 et seqq.

5 Lattice Segmentation

Until now, our decomposition associates one spatial char-

acteristic support function, Ak , with only one intrinsic

mode function, uk . This results in a simple decomposition

where each spatial region has exactly one simple oscil-

lation. Let us now consider a case where the image is

composed of regions not corresponding to plane waves,

but combinations of simple oscillatory patterns, such as a

checkerboard or hexagonal pattern. Microscopy of single-

molecule layers, colloids, and crystal grains have such pat-

terns. In biochemistry and nanoscience, the decomposition

of such microscopy images into regions of homogene-
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ity provides a necessary mechanic for further downstream

analyses.

In microscopy, a crystal image contains different meso-

scopic grains, where each grain typically can be a homo-

geneous, lattice region. Each grain has different spatial

periodicities, depending on the crystal lattice structure. These

structures are modeled by Bravais lattices, which, depend-

ing on the 2D crystalline arrangement, come in five forms:

oblique, rectangular, centered rectangular, hexagonal, and

square. Thus, a grain’s Fourier spectrum has several dis-

tinct peaks, associated with the various cosine waves that

constitute the pattern, which share a common spatial sup-

port (function). For example, a grain in a homogeneously

hexagonal lattice patch would have three coupled peaks in the

spectral half-space. Grains differ by orientation, so it is inter-

esting to find the grain supports, their boundaries and defects,

and the Fourier peaks associated with each grain. A crys-

tal image composed of such grains can be considered as an

assemblage of 2D general intrinsic mode type functions with

non-overlapping supports, specified propagating directions

and smoothly varying local wave vectors. A recent state-of-

the-art method uses 2D synchrosqueezed transforms together

with slow-oscillating, global-structure providing functions,

known as shape functions, in order to model atomic crystal

images [75]. In general, knowing the Bravais lattice structure

yields strong priors on the relative positions of the frequency

peaks; here, however, we only make use of the known number

of peaks, but not their relative positions.

To accommodate such regions, our spectral image seg-

mentation needs to be adapted to allow for multiple single-

Fourier-peak modes to be joined together through a single

binary support function. Let {uk j } j denote the set of modes

associated with the single binary support function Ak . Each of

these modes needs to be individually of small bandwidth, but

they contribute to the signal reconstruction jointly through

their single support function Ak . This simple modification

allows us to segment signals into meaningful pieces.

To this end, we modify the spatially disjoint n-D-SEG-

VMD model (43) as follows:

min
uki : Rn→R, Ak : Rn→{0,1}, ωki ∈Rn

{

∑

k,i

αki

∥

∥

∥
∇
[

u AS,ki (x)e− j〈ωki ,x〉
]
∥

∥

∥

2

2

+
∑

k

βk‖Ak‖1 +
∑

k

γk TV(Ak)

}

s.t. ∀x ∈ R
n :
{

∑

k Ak(x)
∑

i uki (x) = f (x),
∑

k Ak(x) = 1.
(45)

We call this the n-D-SEG-VMD lattice segmentation model.

The model can be optimized in much the same way as the

simpler model (43). The only significant difference is in the

ODE propagation step of the Ak update: here, all associated

modes uki (resp. their copies vki ) jointly influence the update

of the single Ak . Indeed, (39) now becomes:

∂ Ak(x)

∂t
= −βk

+ 2ρ

(

∑

i

vki (x)

)

⎛

⎝f (x)−
∑

l

Al(x)
∑

j

vl j (x) + λ(x)

ρ

⎞

⎠.

(46)

Explicitly modifying the previous algorithms to incorpo-

rate this submode coupling is fairly straightforward and left

as an exercise to the reader. Examples of image decomposi-

tion with submode coupling are shown in Figs. 9, 10, 12 and

12.

6 Outlier Detection: Artifact Detection and

Inpainting

As a final complication regarding crystallography images, we

now wish to deal with image features that cannot be explained

by the VMD model thus far, such as defects and artifacts.

While artifacts can be due to acquisition noise or sample

impurities (accidental or intended), defects are irregularities

in the regular crystal structure, within crystal grains, or more

frequently at the grain boundaries. In imaging terms, these

are characterized by a stark deviation from the regular spa-

tial pattern modeled by the band-limited modes of the VMD

model. In the presence of imaging noise, one naturally relaxes

the data-fidelity constraint by just a quadratic penalty, i.e., not

making use of a Lagrangian multiplier. Therefore, unless oth-

erwise accounted for, such defects and artifacts appear in the

data-fidelity residual, but due to their non-Gaussian nature

as strong outliers will also affect and deteriorate the mode

decomposition. It is imperative, therefore, to address these

features more specifically beyond making Gaussian noise

assumptions.

6.1 Artifact Indicator Function

Recently, a dynamic artifact detection model was introduced

in the framework of classical Chan–Vese image segmen-

tation [78]. There, individual pixels were eliminated from

the region-based segmentation terms to prevent skewing and

misleading the segmentation. This method is related to simi-

lar approaches in occlusion detection in optical flow [1] and

salt-and-pepper denoising [73]. Here, the goal is to isolate

defects and artifacts from interfering with the regular modes.

We note that these image defects and artifacts can be the

result of important physical structures [8,36,67,68].
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We introduce an artifact indicator function,

χ : R
n → {0, 1},

where for each pixel a 1 denotes an artifact, and 0 absence

thereof. We use this artifact indicator function to limit the

data-fidelity constraint to non-artifact regions, only, e.g.,

∀x ∈ R
n | χ(x) = 0 :

∑

k

Ak(x)uk(x) = f (x). (47)

This is equivalent to

∀x ∈ R
n :
∑

k

(1 − χ(x))Ak(x)uk(x) = (1 − χ(x)) f (x),

(48)

where (1 − χ(x)) = 1 in regions not classified as artifacts,

which is where data fidelity is to be enforced. A similar mod-

ification can be made to all data-fidelity constraints of the

previous models.

6.2 Defect and Artifact Detection and Inpainting

We have not described, so far, how the values of the binary

defect and artifact indicator function χ are to be deter-

mined, in the first place. While there are reasonable grounds

to believe that these defect and artifact locations could be

heuristically identified from images in preprocessing, we

want to integrate this detection process into the very same

decomposition model.

At this point, we do not have a concise and simple charac-

terization of the shape and appearance of defects and artifacts,

and for the general case, we even want to avoid including too

many such priors. Instead, we characterize lattice defects and

image artifact locations by what they are not; indeed, at these

locations the image simply fails to be sufficiently well mod-

eled by the band-limited modes extracted nearby. We thus

decide to classify a certain pixel f (x) as an artifact or defect,

χ(x) = 1, if the incurred data-fidelity cost would be too

large, locally, otherwise. This is most simply achieved by

including an L1 term on χ .

We modify the constrained n-D-TV-VMD cost functional

(27) to become the n-D-TV-XVMD (with artifact detection)

functional as follows:

min
uk : Rn→R, Ak ,χ : Rn→{0,1}, ωk∈Rn

{

∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+βk‖Ak‖1 + γk TV(Ak) + δ‖χ‖1

}

s.t. ∀x ∈ R
n :
∑

k

(1 − χ(x))Ak(x)uk(x)

= (1 − χ(x)) f (x). (49)

The corresponding unconstrained saddle point problem

(without Lagrange multiplier on the data fidelity) then

becomes:

L({uk}, {vk}, {Ak}, {ωk}, χ, {λk})

:=
{

∑

k

αk

∥

∥

∥
∇
[

u AS,k(x)e− j〈ωk ,x〉
]
∥

∥

∥

2

2

+βk‖Ak‖1 + γk TV(Ak)

+ δ‖χ‖1 + ρ

∥

∥

∥
(1 − χ(x))( f (x) −

∑

Ak(x)vk(x))

∥

∥

∥

2

2

+
∑

k

ρk ‖uk(x)−vk(x)‖2
2 + 〈λk(x), uk(x)−vk(x)〉

}

.

(50)

Note that the masking only impacts the data-fidelity eval-

uation domain, while all other terms are not affected. Indeed,

only two subminimization steps will be altered by the intro-

duction of the (1 − χ) term:

1. The area penalty and reconstruction-fidelity ODE (39)

will collapse to just ∂t Ak(x) = −βk whenever χ(x) = 1

(and remain unchanged, otherwise). In particular, the TV-

and L1 terms on the binary support functions Ak will

now exclusively drive the evolution of the latter whenever

a location is marked as artifact, since the data-fidelity

constraint is the only link between modes and support

functions.

2. Similarly, the update (37) of vk collapses to vt+1
k (x) =

uk(x) + λk(x)/ρk when χ(x) = 1, which effectively

unlinks the local mode estimate from the observed data

and simply inpaints the artifact regions by Fourier inter-

polation of the modes.

On the other hand, the estimation of the artifact indicator

function χ itself also leads to a straightforward optimization

step. The binary optimization can be carried out indepen-

dently for each pixel, and the optimal χ∗(x) chooses between

paying data-fidelity penalty versus artifact cost δ, as follows:

χ∗(x) =
{

0 if ρ( f (x) −
∑

Ak(x)vk(x))2 ≤ δ

1 otherwise
(51)

This thresholding scheme has an immediate interpretation

from a hypothesis-testing perspective. Indeed, if we consider

the data-fidelity weight ρ to be the precision of the implic-

itly assumed Gaussian noise distribution, then the expression

ρ( f (x) −
∑

Ak(x)vk(x))2 represents the squared z-score
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(standard score) of the local image intensity under such a

noise distribution. This squared z-score is compared against

the threshold δ. The artifact classification is effectively a con-

cealed statistical hypothesis z-test of the pixel intensity with

a Gaussian distribution

p( f (x)) = N ( f (x) |
∑

Ak(x)vk(x), ρ−1)

as null hypothesis H0, and a pixel is classified as an artifact

(H1) if the z-score of its intensity is more extreme than
√

δ.

The model parameter δ is thus intimately related to the level

of statistical significance attached to the artifact classification

and its expected false positives rate.

Again, in the interest of conciseness, we leave the modifi-

cation of the algorithms to include the artifact detection and

inpainting terms as an exercise for the reader. An inpainting

example is illustrated in Fig. 8.

7 Experiments and Results

We have implemented the three Algorithms 1–3, including

the submode coupling of Sect. 5 and the artifacts detection

and inpainting (Sect. 6) extensions, in MATLAB®. The algo-

rithms can be implemented in a single code file, because they

are mostly generalizations of each other.

In the implementation, we make two deliberate choices

that have not been discussed, so far. The first choice is with

respect to initialization of the center frequencies, where we

include four options:

1. initialization of frequencies uniformly spread on a circle

(deterministic),

2. random initialization on the positive half-space,

3. user selection through graphical user interface, and

4. user input as parameters.

Unless otherwise noted, all the examples shown below

make use of the deterministic radial frequency initialization

scheme.

The second particularity is with respect to model selec-

tion 2D-VMD, 2D-TV-VMD, and 2D-SEG-VMD. Indeed

it is useful in practice to initialize the TV-VMD model by

some iterations of unrestricted 2D-VMD, in order to settle

the center frequencies close to the optimal location; and sim-

ilarly, the segmentation model is best initialized based on the

outcome of 2D-TV-VMD optimization. We will thus always

start optimizing in 2D-VMD mode, and over the iterations,

switch to the two more complicated models at user-defined

time-points (which may be set to infinity, thereby producing

results of simpler models as final output).

These simple initialization strategies turn out to achieve

robustness effectively. Note that more sophisticated initial-

ization strategies and enhancements for increased robustness

that are known from popular models like k-means, such

as repeated runs from random initialization, could also be

applied to the proposed models.

Finally, we remark that the examples below typically con-

verge within less than 100–150 iterations (or even much faster

for the simplest 2D-VMD model).

Our implementation is publicly available for download

at http://www.math.montana.edu/dzosso/code and at MAT-

LAB Central.

7.1 Synthetic Overlapping Texture Decomposition

The first, synthetic image is a composition of spatially over-

lapping basic shapes, more precisely six ellipses and a

rectangle, with frequency patterns varying in both period-

icity and direction, courtesy of Gilles [28]. The spectrum is

ideal for segmentation due to modes being deliberately both

well spectrally isolated and narrow-banded. The resolution

of the synthetic image is 256 × 256.

We feed the synthetic image to our models and show

the resulting decompositions for both 2D-VMD and 2D-TV-

VMD models in Fig. 1. The parameters are7:

K αk βk γk δ ρ ρk τ τk T

5 1000 0.5 500 ∞ 10 10 2.5 2.5 1.5

In addition, the center frequency of the first mode is held

fixed at ω1 = 0 to account for the DC component of the

image. As a result, the first mode contains the solid ellipse

and rectangle, while the four remaining decompositions in

Fig. 1 show clear separation of the patterned ellipses.

In the simple 2D-VMD model of Fig. 1e, due to the solid

pieces having sharp edges, their spectra are not band-limited

and only smoothed versions are recovered. This is natu-

rally paired with the two lower frequency modes absorbing

residual boundary artifacts of the DC component, and ghost

contours appearing in these modes.

The spatially compact 2D-TV-VMD model, Fig. 1f–h,

however, can handle sharp boundaries through the support

functions Ak , while the modes uk can smoothly decay. The

resulting masked modes, Akuk , are thus clean and sharp.

These results should be compared against the exhaustive

2D empirical wavelet transform results in [30].

Further, in Fig. 2 we provide an illustration of the mul-

tiresolution monogenic signal analysis by Riesz–Laplace

7 Of course, the simpler 2D-VMD model only uses a subset of these

parameters, for the support functions are fixed at Ak = 1 uniformly.
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(a)

(b)

(c)
scale = 1 2 3 4 5

Fig. 2 Synthetic overlapping texture: multiresolution monogenic sig-

nal analysis using Riesz–Laplace wavelets (five scales, σ = 1.5)

[69,70]. a The local orientation is color-coded between − π
2

and π
2

. b

The coherency (degree of directionality): isotropic features are dark and

directional features are bright. c Composite angle (hue) and coherency

(saturation). At each scale, the method picks the dominant wave and

cannot resolve overlapping signals of same scale. Some waves appear

at multiple scales

wavelets [69,70].8 At each (dyadic) scale, the Riesz–Laplace

wavelets are able to pick up the dominant local orienta-

tion and compute a degree of coherency, reminiscent of our

proposed support functions. However, that method cannot

properly deal with overlapping signals and due to the rigid

construction of the wavelet scales, multiple signals belong to

the same scale while a signal may appear at multiple scales.

Finally, our results should also be compared against

the results obtained with the 2D Prony–Huang transform

reported in [60],9 and partially reproduced in Fig. 3. This

latter method performs EMD-based mode decomposition

before computing local orientation and coherency informa-

tion (not shown here). The mode decomposition is rather

slow and produces a very different decomposition.

8 MATLAB code available at http://bigwww.epfl.ch/demo/

steerable-wavelets/.

9 Obfuscated MATLAB p-code available at http://perso.ens-lyon.fr/

nelly.pustelnik/Software/Toolbox_PHT_2D_v1.0.zip.

7.2 Overlapping Chirps

The second example problem is still synthetic, but the modes

have non-trivial Fourier support. More precisely, the syn-

thetic image is a superposition of three compactly supported

yet spatially overlapping 2D chirps (see Fig. 4). Starting

from radial initialization, we let our algorithm determine the

correct support and appropriate center frequencies for this

problem, based on the following parameters:

K αk βk γk δ ρ ρk τ τk T

3 2000 1 1000 ∞ 7 10 1 1 1

The resulting decomposition is accurate with only little

error on the true support functions. The modes are spectrally

clean. It is interesting to observe how our model extrapolates

the modes outside their rectangular domain boundaries. Note
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Fig. 3 Synthetic overlapping texture: 2D Prony–Huang decomposition (default parameters) [60]. Decomposition into trend and 4 modes; spectral

analysis not shown

Fig. 4 Chirp decomposition. a Input signal f . b 2D-TV-VMD modes uk . c Fourier spectrum f̂ . d Determined supports Ak . See Sect. 7.2 (Color

figure online)

that the decay distance correlates with the wavelength of the

mode.

7.3 Textural Segmentation for Denoising

The two examples encountered so far were noise-free and

perfect reconstruction was possible through the use of

Lagrange multipliers (τ, τk > 0). In the presence of noise,

however, enforcing strict data fidelity may be inappropri-

ate, and instead relying on just the quadratic penalty to

promote data fidelity is the proper setting. This approach

is easily achieved by preventing the Lagrangian multipliers

from updating: τ, τk = 0. As a result, the noise can be han-

dled with a residual slack between the splitting variables. In

particular, the quadratic penalty term corresponds to a Gaus-

sian noise assumption, where the penalty coefficients ρ, ρk

relate to the noise precision.

Here, we explore the idea of using the slack in the

absence of Lagrangian multipliers for denoising based on

spectral sparsity. To this end, we construct a four-quadrant,

non-overlapping unit-amplitude cosine texture image with

different levels of noise, shown in Fig. 5. Because the quad-

rants are non-overlapping, we are interested in the output of

the 2D-SEG-VMD model using the following parameters:

K αk βk γk δ ρ ρk τ τk T

4 3500 1.5 750 ∞ 7 10 0 0 1

Without the Lagrangian multipliers active, it is important

to realize that the two copies of the modes, uk and vk , may

be different and that uk is the potentially cleaner copy of the

two.

In Fig. 5, we can see that even for important noise levels,

the partition is recovered with good precision (red contours).

In addition, the recovered composite of the four masked

modes is very clean, seemingly irrespective of the degrad-

ing noise level.
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σ σ∞= 0, SNR = = 0.1, SNR = 17.0 σ = 0.2, SNR = 11.0 σ = 0.5, SNR = 3.0 σ = 1, SNR = −3.0

SNR = 23.5 SNR = 23.8 SNR = 22.2 SNR = 18.5 SNR = 16.2

Fig. 5 Denoising. Top noisy f (noise SD σ and SNR) with detected phase borders (red). Bottom denoised signal
∑

k Akuk , SNR. See Sect. 7.3

(Color figure online)

7.4 Segmentation of Peptide β-Sheets

The next test case are two atomic force microscopy (AFM)

images of peptide β-sheets bonding on a graphite base,

courtesy of the Weiss group at the California NanoSystems

Institute (CNSI) at UCLA [10,76]. The peptide sheets grow

in regions of directional homogeneity and form natural spa-

tial boundaries where the regions meet. It is important to

scientists to have accurate segmentation for their dual inter-

ests in complementary analysis of the homogeneous regions

and their boundaries. Identifying regions of homogeneity

enables the subsequent study of isolated peptide sheets of

one particular bonding class. For these types of scans, manu-

ally finding the boundaries is a tedious problem that demands

the attention of a skilled scientist on a rote task. In addition

to speed and automation, the proposed 2D-VMD is superior

in accuracy to manual boundary identification due to regions

potentially having very similar patterns, of which the orien-

tation differs by only a few degrees, difficult to discern by

eye.

Nanoscale images such as these are a useful testbed since

data are often oversampled relative to the smallest observable

features, atoms and molecular parts. Also, segmentation in

one imaging modality can be used to guide segmentation or

data acquisition in a complementary imaging mode [3,8,36,

51,67].

The first example, shown in Fig. 6, is a 512 × 512 false-

color image, of which we only consider the average intensity

across color channels as a proxy, in lieu of the actual raw data

produced by the microscope. Also, as classical preprocessing

step, we apply a Laplacian of Gaussians (LoG) band-pass

filter to the image in order to remove both some noise and

the DC component. Expert inspection suggests that there are

six different grain orientations represented in this image. We

perform 2D-VMD, 2D-TV-VMD, and 2D-SEG-VMD using

these parameters:

K αk βk γk δ ρ ρk τ τk T

6 2000 1 250 ∞ 7 10 0 0 2.5

The recovered modes are shown in Fig. 6d–f. The uncon-

strained 2D-VMD model produces overly smooth modes

without clear boundaries. The compactly supported 2D-TV-

VMD model yields modes with sharp delineation. As can be

seen from the grain boundaries overlaid to the input image,

in Fig. 6b, the modes are not overlapping, but do not cover

the entire image domain, leaving unaccounted space at the

grain boundaries. This problem is effectively addressed by

the addition of the segmentation constraint, as seen by the

boundaries in Fig. 6c.

The second example, shown in Fig. 7, is believed to consist

of only three main grain orientations. This 512×512 image is

of the same type as the previous example and preprocessed

in the same way. The image exhibits strong singular spots

due to additional material deposition on the sample surface.

In order to address these outliers, we make use of the artifact

detection and inpainting extension, for δ finite:

K αk βk γk δ ρ ρk τ τk T

3 2000 1 75 3.5 7 10 0 0 2.5

While the singular deposits (“artifacts”) negatively impact

the mode purity for both 2D-VMD and 2D-TV-VMD
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Fig. 6 Atomic force microscopy (AFM) image of peptide β-sheets,

512 × 512 pixels, 500 nm × 500 nm (I). a Input f . b 2D-TV-VMD

boundaries (red). c 2D-SEG-VMD partition (red). d 2D-VMD modes

uk . e 2D-TV-VMD modes Akuk . f 2D-SEG-VMD modes Akuk . See

Sect. 7.4 in the text for details and discussion (Color figure online)

Fig. 7 Atomic force microscopy (AFM) image of peptide β-sheets,

512 × 512 (II). a Input f . b 2D-SEG-VMD partition (red). c Partition

(red) with enabled artifact detection (cyan). d 2D-VMD modes uk . e

2D-SEG-VMD modes Akuk . f Modes obtained with artifact detection

enabled. See Sect. 7.4 for details (Color figure online)

(Fig. 7d–e), this effect is partially alleviated by the automatic

detection and inpainting capability of the artifact extension

(Fig. 7f).10 In addition to the outlined grain boundaries (red),

the location of the detected artifacts is highlighted in cyan, in

Fig. 7c. Note that the artifact detection also allows spotting

at least some of the grain defects, in addition to the deposits.

7.5 Inpainting

Here, we are interested in exploiting the model’s capability

of intrinsically inpainting the modes (and therefore the input

image) in regions that are labeled as artifacts/outliers. To this

end, we construct a simple checkerboard image, which essen-

tially corresponds to a superposition of two cosine waves with

full support each. In addition, portions of the image are cor-

rupted by “pencil-scribble,” as shown in Fig. 8a. We set up

the model as a two-modes 2D-VMD image decomposition

10 Lower artifact threshold δ and higher TV weight γk might increase

the mode cleanliness even further.
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Fig. 8 2D-VMD inpainting. a Input image f . b Fourier spectrum f̂ .

c Recovered modes
∑

k uk . d Detected artifacts χ . See Sect. 7.5

problem, with a finite artifact detection threshold. The data-

fidelity Lagrangian is inactive in order to allow some slack

(Gaussian noise assumption) and artifact detection, while we

maintain an active Lagrangian multiplier on the u–v splitting:

K αk βk γk δ ρ ρk τ τk T

2 1500 n/a n/a 30 150 20 0 1 n/a

As can be seen in Fig. 8c, d, the model succeeds well in

detecting the scribble as outliers. In the artifact-labeled image

portions, the submodes are inpainted by intrinsic Fourier

interpolation, and as a result, a full checkerboard can be

recovered from the decomposition.

7.6 Textural Segmentation: Lattices

We finally turn our attention to the segmentation of images

with lattice texture, as observed, for example in crystallog-

raphy and microscopy images of crystalloid samples. The

fundamental assumed property of such images is that they

consist of K different domains (grains) forming a partition

of the image, such that each grain has a distinct lattice texture

composed of a superposition of M different essentially wave-

like subbands. As seen earlier, a checkerboard lattice would

consist of a superposition of M = 2 orthogonal cosine waves,

while a hexagonal lattice consist of M = 3 modes differing

Fig. 9 Lattice decomposition. a Input f . b Fourier spectrum f̂ . c, d

Recovered phases
∑

i Akuki . e, f Submodes uki . See Sect. 7.6.1

by 60◦ rotation. Our model allows for multiple submodes uki

to share a common support function Ak and thus be spatially

coupled.

7.6.1 Checkerboard: 2 Phases with 2 Submodes

As a first simple example, we consider the composite of

two checkerboard halves, of which one is slightly rotated,

as shown in Fig. 9a. The goal is to find the support of two

phases, partitioning the 256 × 256 image domain, and the
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Fig. 10 Three phases–three modes. a Input f . b Fourier spectrum f̂ .

c 2D-SEG-VMD partition (red). d Phases Ak

∑

i uki . See Sect. 7.6.2

(Color figure online)

respective two submodes for each such grain. We run the

2D-SEG-VMD model with the following parameters:

K M αk βk γk δ ρ ρk τ τk T

2 2 2000 1 250 ∞ 7 10 0 0 2.5

The resulting decomposition into the two checkerboard

phases, Ak

∑

i uki , is shown in Fig. 9c, d, while the con-

stituting two submodes per phase, uki , are illustrated in

Fig. 9e, f.

7.6.2 Hexagonal Lattice: 3 Phases with 3 Submodes

A slightly more complicated problem is illustrated in Fig. 10.

We start with a tripartite 256×256 image, where each domain

consists of an artificial hexagonal lattice pattern, obtained by

superposing three cosine waves rotated by 60◦ against each

other. Each domain has a slightly different lattice orientation

(0◦, 15◦, 45◦). Like the previous example, this is a 2D-

SEG-VMD problem, this time with three phases and three

submodes, each. The other parameters remain unchanged:

K M αk βk γk δ ρ ρk τ τk T

3 3 2000 1 250 ∞ 7 10 0 0 2.5

As can be seen in Fig. 10c, d, the recovered phases and

their boundaries are very precise. Note that this decompo-

sition involves the identification of nine center frequencies

and associated wave functions, and the delineation of three

support functions partitioning the image domain.

7.6.3 Simulated Hexagonal Crystal

The three-phase three-wave hexagonal lattice image of the

previous subsection was an idealized synthetic version of

what real-world acquired images of hexagonally arranged

crystal structures might look like. In an attempt to make the

problem more realistic, we created a more complicated syn-

thetic lattice image as follows: We predefine a 5-partition

of the 256 × 256 image domain. In each domain, individual

pixels corresponding to approximate “bubble locations” of

the crystal lattice are activated. The exact center position is

affected by discretization noise (the pixel locations are obvi-

ously limited to the Cartesian grid) as well as additional,

controllable jitter. The resulting “nail board” is then convo-

luted with a circular point spread function designed to mimic

the approximate appearance of an individual lattice element,

and Gaussian white noise is added. An example is shown in

Fig. 11a. Due to this construction the grain boundaries exhibit

very irregular defects. All of these complications make the

resulting image much more interesting and challenging to

segment.

In a first, simple attempt, we configure the 2D-SEG-VMD

algorithm as follows:

K M αk βk γk δ ρ ρk τ τk T

5 3 2000 1 250 ∞ 7 10 1 1 2.5

In contrast to the actually noise-free preceding examples,

here, we enforce data fidelity strictly by picking τ = τk = 1,

so as to make sure the phases and modes pick up the relevant

center frequencies and do not lazily get stuck in local min-

ima (see a discussion in [17] for the role of the Lagrangian

multipliers in low-noise regimes). The model is thus obliged

to over-explain all image noise (jitter and Gaussian noise)

in terms of mode decomposition. As a result, the obtained

partition captures the five phases largely, but suffers from

strong noise, as shown in the middle of Fig. 11. Most impor-

tantly, though, this procedure found the correct 5 × 3 center

frequencies.

These correctly identified center frequencies can now be

used as a very strong prior when running the 2D-SEG-VMD

model a second time, in a different regime with inactive

Lagrangian multipliers to allow noise slack. To this end, we

use the obtained center frequencies as user initialization for

a second run, with parameters as follows:

K M αk βk γk δ ρ ρk τ τk T

5 3 2e4 1 500 ∞ 7 10 0 0 2.5
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Fig. 11 Simluated crystal lattice. 2D-SEG-VMD decomposition in

two runs, first with, then without Lagrangian multipliers. See Sect. 7.6.3

in text for details and discussion. a Input image f . b Fourier spectrum

f̂ . c First run reconstruction
∑

k,i Akuki . d Partition (red) of second

run. e Reconstruction of second run. Middle row phases obtained in

first run with τ, τk > 0 to find correct ωk i . Bottom row clean phases

Ak

∑

i uik of second run with τ = τk = 0 and well-initialized ωk i

(Color figure online)

Now, the increased αk renders the modes more pure,

and also keeps the center frequencies from drifting too

much, while the partition regularity is regularized slightly

stronger (increased γk). The main difference are the inacti-

vated Lagrangian multipliers, relaxing the data-fidelity con-

straint considerably. The resulting decomposition is shown

in Fig. 11. In the correctly initialized denoising regime, we

obtain a very accurate partition and much cleaner crystal

grain estimates.

7.6.4 Colloidal Image

As a last example problem, we consider a bright-field light

microscopy image of 10 µm-sized spherical glass particles

suspended in water.11 These glass particles form a collection

of small 2D colloidal crystals with grain boundaries between

them. These grains have a hexagonal lattice structure similar

to the previously considered examples. For our purposes,

the original image is cropped, band-pass filtered with a LoG

11 Image used with permission, courtesy by Richard Wheeler, Sir

William Dunn School of Pathology, University of Oxford, UK.

filter, and downsampled to a final dimension of 256 × 256.

The effective input image is shown in Fig. 12a.

Visual inspection of the Fourier spectrum suggests that

there are probably four different grain orientations to be

found in the image (see Fig. 12b). We thus configure the 2D-

SEG-VMD model with the following parameter choice:

K M αk βk γk δ ρ ρk τ τk T

4 3 2000 1 250 ∞ 10 50 0.1 0.1 2.5

The resulting grain boundaries shown in Fig. 12c should

be compared to computationally determined lattice irregu-

larities (grain boundaries, defects) in Fig. 12d.12

8 Conclusions and Outlook

In this paper, we have presented a variational method for

decomposing a multidimensional signal, f : R
n → R,

12 Ibid.
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Fig. 12 Bright-field microscopy image of colloidal crystal and its seg-

mentation. Individual beads are 10 µm in diameter. See Sect. 7.6.4.

a Cropped, LoG-filtered, and downsampled input image f . b Fourier

spectrum f̂ . c 2D-SEG-VMD 4-partition (red) overlaid on input image.

d Colloidal connectivity graph for comparison: white edges indicate

hexagonal alignment (six equally spaced neighbors) and that a particle

is therefore part of a crystalline domain (grain), white colored edges

indicate grain boundaries and defects (Color figure online)

(images for n = 2) into ensembles of constituent modes,

uk : R
n → R, intrinsic mode functions that have specific

directional and oscillatory characteristics. This multidimen-

sional extension of the variational mode decomposition

(VMD) method [17] yields a sparse representation with

band-limited modes around a center frequency ωk , which

reconstructs the initial signal, exactly or approximately.

In addition to generalizing the 1D VMD model to

higher dimensions, we introduce a binary support function

Ak : R
n → {0, 1} for each mode uk , such that the signal

decomposition obeys f ≈
∑

k Ak · uk . In order to encour-

age compact spatial support, an L1 and a TV penalty term

on Ak are introduced. After appropriate variable splitting,

we present an ADMM scheme for efficient optimization of

this model. In particular, this includes MBO-like threshold

dynamics to tackle the motion by mean curvature stemming

from the support function regularizing TV term.

In this general setting, our model allows for spatially com-

pact modes that may be spatially overlapping. By restricting

the support functions on the probability simplex,
∑

k Ak = 1,

the modes have mutually exclusive spatial support and actu-

ally form a partition of the signal domain. In this fashion,

we obtain an image segmentation model that can be seen

as a Chan–Vese-like region-based model, where the homo-

geneity is assessed through spectral bandwidth. Our variable

splitting and the handling of region boundaries through the

binary support functions elegantly overcomes the usual trade-

off between spatial and spectral compactness/bandwidth.

In order to deal with images of crystal grains, each region

being more complicated than a simple cosine wave, we

introduce the coupling of submodes with a single binary

support function. This allows the segmentation of crystal

grain images, e.g., from microscopy, into respective grains

of different lattice orientation. Further, non-Gaussian image

noise, outliers, and lattice defects are efficiently addressed by

the introduction of an artifact indicator function, χ : R
n →

{0, 1}.
In summary, the models and algorithms allow decompos-

ing a signal/image into modes that may:

– have smooth or sharp boundaries (with or without TV/L1

terms on Ak),

– overlap or form a partition of the domain (image segmen-

tation),

– be essentially wavelike (single mode) or crystalline (cou-

pled submodes),

– reconstruct the input image exactly or up to Gaussian

noise,

– identify outlier pixels/regions and inpaint them.
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