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Two-dimensional complex parity-time-symmetric photonic structures
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We propose a simple realistic two-dimensional complex parity-time-symmetric photonic structure that is

described by a non-Hermitian potential but possesses real-valued eigenvalues. The concept is developed from

basic physical considerations to provide asymmetric coupling between harmonic wave components of the

electromagnetic field. The structure results in a nonreciprocal chirality and asymmetric transmission between in-

and out-coupling channels into the structure. The analytical results are supported by a numerical study of the

Bloch-like mode formations and calculations of a realistic planar semiconductor structure.
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I. INTRODUCTION

Parity-time (PT) -symmetric structures were initially pro-

posed as exotic systems with unusual properties; despite their

complex-valued potentials, the non-Hermitian Hamiltonians

describing those systems can have real eigenvalues [1].

First regarded as a curiosity in quantum mechanics, such

systems have recently been shown to have interesting and

useful applications in classical wave systems, especially in

optics. Indeed, PT-symmetric photonic systems have shown

intriguing new features, such as PT phase transitions [2]

and the realization of unidirectional invisible media [3,4] or

unidirectional waveguide transmitters [5,6]; some of these

effects have already been realized experimentally [2,5,6].

PT symmetry requires that the complex potential, U (�r) =
URe (�r) + iU Im (�r), obey the symmetry requirement U (�r) =
U ∗ (−�r), which means that the real part of the potential is

an even function, URe (�r) = URe (−�r), whereas the imaginary

part is odd, U Im (�r) = −U Im (−�r). Although the imaginary

part of the potential is generally difficult to obtain in nature, this

is not the case in optics. The classical analog to the real part of

the potential in optics is the refractive index, and the gain-loss

is analogous to its imaginary part. Therefore, by combining the

index and gain-loss modulations with the required symmetries,

such optical systems become classical analogs of quantum

systems described by PT-symmetric Hamiltonians [2–6].

To date, the pioneering works referenced above and recent

extensive literature on optical PT symmetry cover mostly one-

dimensional (1D) systems. On the other hand, recent works

on systems with gain-loss modulations in two dimensions

[7,8], and also on complex two-dimensional 2D crystals [9,10]

where the gain-loss and index are simultaneously modulated,

have shown the micro- and nanophotonics to be a platform for

developing synthetic materials with novel beam propagation

effects. However, none of these cases [7–10] can be attributed

to PT-symmetric systems because they do not meet the

requirements of PT symmetry.

In this paper, we propose a 2D PT-symmetric complex

photonic structure, and we show the properties inherent to its

2D character. We explore the light propagation within it, both

by realistic numerical calculations using the finite-difference

time-domain (FDTD) method, and by analyzing the Bloch-like

modes due to the complex modulation of the potential. We

observe strong asymmetric clockwise-counterclockwise flows

of light in the Bloch-like modes close to the crystallographic

resonances or, equivalently, close to high-symmetry points.

As a basic effect, we numerically show the measurable

asymmetric transmission of a Gaussian light beam incident

on a finite-sized structure resulting from asymmetric wave

coupling.

II. DERIVATION OF THE 2D HONEYCOMB

PT-SYMMETRIC STRUCTURE

To introduce the coupling effects in a 2D PT-symmetric

photonic structure, we start from a 1D PT-symmetric optical

system, the properties of which are summarized in Fig. 1. This

is essentially a superposition of a 1D Bragg mirror [Fig. 1(a1)]

and a balanced gain-loss modulation with the same periodicity

but spatially displaced by a quarter-period [Fig. 1(a2)]. In the

simplest case, we can consider the harmonic potential of the

structure in the form n (x) = n [cos (qx) + i sin (qx)], more

conveniently expressed as

n (x) = n exp (iqx) , (1)

where q is the reciprocal-lattice vector of the modulation,

and n is the amplitude of the complex index modulation.

Clearly, such a modulation unidirectionally couples a wave

with wave vector kB to kA = kB + q. In the right column of

Fig. 1(a2), a left-propagating resonant wave, kB ≈ −q/2, is

coupled to kA = kB + q ≈ q/2 and is thus Bragg-reflected

to the right. Alternatively, a harmonic Bragg reflector with

real-valued potential,

n (x) = n cos (qx) = n

2
[exp (iqx) + exp (−iqx)], (2)

symmetrically couples, at resonance, kA ≈ q/2 with kB ≈
−q/2, as illustrated in the right column of Fig. 1(a1). In this

way, the 1D PT-symmetric modulation given by Eq. (1) breaks

the symmetry of left-right wave coupling and propagation,
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FIG. 1. (Color online) (a1) Left: 1D Bragg reflector. Right:

Fourier transform (FT) of the structure, reciprocal-lattice vectors

and reciprocal coupling of wave vectors at resonance, n1 > n2. (a2)

Left: Gain-loss distribution (G, red; L, blue). Right: FT of the

combined 1D PT-symmetric structure from (a1) and (a2), symmetric

lattice vectors, and asymmetric coupling at resonance. (b1) Left:

Real part of Eq. (3), n0 = 1.1, �n = 0.1. Center: Arrangement of

cylinders. Right: FT of real cylinder’s structure and lattice vectors.

(b2) Left: Imaginary part of Eq. (3). Center: Honeycomb arrangement

of gain-loss cylinders, n = 1.1 ± 0.1i, n0 = 1.3. Right: FT of full 2D

PT-symmetric arrangement of cylinders. Insets in (b1) and (b2) show

the symmetric and asymmetric coupling at resonance.

which becomes most pronounced at resonance. Note that

this symmetry breaking is the main difference between the

potentials in Eqs. (1) and (2), and it is the reason for all

the peculiarities displayed by PT-symmetric systems, while

reciprocity always holds [11].

Keeping this basic principle in mind, we consider the

PT-symmetric complex crystal in 2D space. The simplest

choice is the trivial extension of the 1D PT symmetry

to 2D, n (�r) = nx exp (iqxx) + ny exp(iqyy), which simply

factorizes the PT symmetries in both quadratures but does

not lead to new 2D peculiarities. Therefore, we intend to

build the nonfactorizable PT symmetries, i.e., nonfactorizable

unidirectional coupling between the plane-wave components,

assuming that it will introduce 2D peculiarities (in comparison

with 1D PT-symmetric systems).

We chose a triangular lattice as the simplest nontrivial case:

n (�r) = n0 + �n
∑

j=AB,BC,CA

exp (i �qj · �r), (3)

which is generated by three vectors symmetrically rotated by

angles of 2π/3 with respect to one another, namely, �qAB,CA =
(q/2, ± q

√
3/2) and �qBC = ( − q,0), as represented in the

right column of Fig. 1(b2), where n0 is the refractive index

of the dielectric embedding medium, and �n determines the

amplitude of the complex modulation. Note that considering

only the real part of Eq. (3) leads to the corresponding dielectric

PhC with sixfold symmetry, as represented by Fig. 1(b1). At

resonance, |kA,B,C | = q
√

3/3, such a real structure (PhC case)

reciprocally couples the plane-wave components directed

along the symmetry axes, as schematically shown in the inset

of Fig. 1(b1). However, for the complex lattice described by

Eq. (3), the coupling is analogous to that given by Eq. (1), being

PT-symmetric in any direction. Such a complex lattice exhibits

a threefold symmetry, as shown in the inset of Fig. 1(b2).

This can be expected to produce peculiarities in PT-symmetric

systems.

Next, to design a realistic 2D PT-symmetric structure, we

replace the lower refractive index areas with low refractive

index cylinders [central column in Fig. 1(b1)]. The right

column of Fig. 1(b1) displays a sixfold reciprocal space

(Fourier transform) of the cylinder arrangement enabling

symmetric coupling. However, when such cylinders alterna-

tively exhibit gain and loss, as schematically represented in

the central column of Fig. 1(b2), the complex distribution

of the index contains the expected PT symmetry. Indeed,

the reciprocal space of the arrangement of cylinders [right

column of Fig. 1(b2)] reproduces the three points in the

configuration proposed in Eq. (3), leading to unidirectional

coupling between wave components. Apart from the three

points indicating the lattice vectors, �qAB,
⇀

qBC, and �qCA, other

higher-order harmonics of the complex distribution appear due

to the nonharmonic (stepwise) modulation of the potential.

The triangular lattice is seemingly the simplest nontrivial

case of a nonfactorizable 2D PT-symmetric complex crystal.

Further nontrivial cases could be realized for higher oddfold

rotational symmetry, which would also yield nontrivial 2D PT-

symmetric quasicrystals. Here we consider only this triangular

case.

III. ASYMMETRIC CHIRAL EXCITATION

We numerically check whether the proposed system

displays the expected properties of complex PT-symmetric

systems, in particular the asymmetric flow of light. Differ-

ently from one dimension, the asymmetric coupling between

wave vectors rotates the input by ±2π/3, depending on the

input channel. In other words, the structure is expected to

display a type of chiral nonreciprocity. This test is performed

numerically using the well-established FDTD technique [12].

We consider two finite-size structures of the same symmetry

containing the real and complex distributions shown in

Figs. 2(a) and 2(b), respectively.

We first analyze the propagation of a short broadband

pulse incident on the structure from the top in the vertical

direction and calculate the transmitted intensity on two

detectors, symmetrically located on both sides of the structure

[T1 and T2 in Figs. 2(a) and 2(b)]. The resulting spectral

transmission in the clockwise and counterclockwise directions,

normalized to the incident pulse intensity, is represented
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FIG. 2. (Color online) Schematic representation of (a) 2D PhC

(real) and (b) 2D PT-symmetric (complex) structures, and (c) and (d)

source and detectors. Clockwise and counterclockwise transmissions

as a function of frequency, in a/λ units, (“a” is the center-to-center

distance between cylinders of radius, R = 0.45a) for structures in

(a) and (b), respectively. Inset in (d) is a magnified view within

a/λ = 0.25 − 0.35. (e) and (f) Normalized intensity distributions for

an incident Gaussian beam (width 14a) on (a) and (b), respectively.

See the supplemental material in Ref. [14].

in Figs. 2(c) and 2(d) for each structure. When comparing

the transmissions, we clearly see the expected asymmetry

arising precisely at resonant frequencies a/λ ≈ 0.3, where “a”

is the center-to-center distance between cylinders; note that

q = 4π/3a [see Figs. 2(c) and2(d)]. Although the T1 and T2

spectra coincide perfectly for all frequencies, for the PhC case

in Fig. 2(c), the counterclockwise (clockwise) transmission

is enhanced (reduced) at resonance for the 2D PT-symmetric

structure in Fig. 2(d). Note that, except for a higher-order

resonance at a/λ ≈ 0.6 (due to high-order mode coupling),

the symmetry is still unbroken far from resonance, and both

curves coincide well at other frequencies.

For the PhC structure, an incident wave kA couples

symmetrically to kB and kC , as schematically shown in the

inset of Fig. 1(b1). We can observe that the field distribution

depicted in Fig. 2(e), obtained by numerical FDTD simulation,

is perfectly symmetric. However, the asymmetric flow of light

within the complex system enhances the transmission to the

counterclockwise output channel, T2, in Fig. 2(f), whereas

transmission to the T1 channel is suppressed. Figure 2(f)

demonstrates at a glance the asymmetric coupling schemat-

ically represented in the inset of Fig. 1(b2); the incident wave

�kA is coupled to �kB but not to �kC . Finally, we also find

that the situation depicted in Fig. 2(e) is very similar to the

field distribution from the 2D PT-symmetric structure far from

resonance, where no symmetry breaking is predicted.

Finally, we note that whereas �kA couples to �kB , −�kA

couples to −�kC . Thus, a −�kA wave, incident from the base

upward to the structure, would be transmitted clockwise

instead of propagating counterclockwise within the structure

due to the nonreciprocal chirality of the system. Note that

the closed set of lattice vectors (qAB + qBC + qCA = 0)

enables the simultaneous resonance of two disjoint triads,

namely (kA,kB,kC) and (−kA, − kC, − kB) in a circular chiral

coupling. The counterclockwise chiral mode is excited by kA,

and the clockwise mode by −kA, rendering the chiral flow of

light input-dependent.

IV. CHIRAL BLOCH-LIKE MODES CLOSE TO THE

PT-TRANSITION POINT

For a PhC, the Bloch modes are defined as localized

electromagnetic states of the periodic media that are invariant

in propagation. However, in a complex system described by a

non-Hermitian Hamiltonian, complex Bloch-like modes may

either amplify or decay in time. Below, we calculate such

Bloch-like modes analytically considering the simple case

of a harmonic PT-symmetric complex crystal of triangular

symmetry. We consider an incident plane wave with a

polarization perpendicular to the plane of the crystal and a

wave vector directed vertically, �k = (0, − k), near resonance:
�k = �kA + ��k. The small variations are considered to be in the

same incident direction: ��k = (0, − �ky). Disregarding the

second time derivatives, the wave equation can be written as

−2iω∂t
�E = c2

n(
⇀

r )
2
∇2 �E + ω2 �E. (4)

We expand the electric field into the first three harmonics

of the field, which are resonant in the lattice, namely �kA =
(0, − k0), �kB = �kA + �qAB , and �kC = �kA − �qCA, and we obtain,

for the TM polarization,

E =
∑

j=A,B,C

aj exp[i(�kj + ��k) · �r]. (5)

Introducing the expansion in (5) into (4) yields coupled

equations between their amplitudes, aA,aB ,aC ,

− i
n0

k0c
∂t

⎛

⎝

aA

aB

aC

⎞

⎠ =

⎛

⎜

⎝

�kA · ��k �n/n0 0

0 �kB · ��k �n/n0

�n/n0 0 �kC · ��k

⎞

⎟

⎠

⎛

⎝

aA

aB

aC

⎞

⎠ .

(6)

The dispersion diagrams, i.e., the temporal eigenvalues

and the associated Bloch-like modes, are obtained by di-

agonalization of the matrix in (6). Figures 3(a) and 3(b)

display the real and imaginary parts, respectively, of the matrix

eigenvalues for the three Bloch-like modes at the edge of the

Brillouin zone, i.e., at resonance between lattice vectors. The

temporal evolution of the Bloch mode is defined by the matrix

eigenvalues with a factor in0/k0c. As expected, sufficiently
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FIG. 3. (Color online) Calculated dispersion diagrams and Bloch

modes. (a) Real and (b) imaginary parts of the matrix eigenvalues �ω,

where �ky , on the horizontal axis, is the distance from resonance in

k0 units. (c) Amplitude and (d) phase of the amplified chiral Bloch

mode for �k = 0, when illuminated from above and from below (e)

and (f), respectively; the insets show the counterclockwise/clockwise

asymmetric coupling. (g) Field intensity and (h) phase distribution

within the hexagon for an incident Gaussian beam with carrier

frequency a/λ = 0.303, corresponding magnified 6a × 6a region.

(i) Field amplitude obtained directly from FDTD calculation; the

arrow indicates the input channel. See the supplemental material in

Ref. [14].

far from resonance, all the eigenvalues are real-valued (where

the asymmetry of the coupling is not pronounced). Close

to resonance, the PT phase transition occurs, and we obtain

Bloch modes with complex eigenvalues, one with a negative

imaginary part and hence amplified in time. Therefore, in an

extended structure, after a finite propagation time, the field

distribution is expected to exhibit the amplitude and phase

corresponding to this amplified mode. Such an amplitude

and phase of the most amplified Bloch mode, as calculated

analytically from Eq. (6), are depicted in Figs. 3(c) and 3(d),

respectively.

To check the analytic predictions, we analyze the field

evolution after excitation by a relatively long Gaussian pulse

with central frequency at resonance and the spectrum narrower

than the width of the transmission resonance peak in Fig. 2(d).

Within the structure (a larger version of the same honeycomb

configuration), the incident radiation is redistributed among all

the coupled harmonics approaching a stationary distribution

of the growing Bloch-like mode, after a sufficiently long

time. The analytically calculated amplitude and phase of the

amplified chiral Bloch-like mode are shown in Figs. 3(c) and

3(d) [Figs. 3(e) and 3(f)], when the structure is illuminated

from above (below), respectively. The result presented in

Fig. 3(i) is used to extract the amplitude and phase of the

Bloch mode shown in Figs. 3(g) and 3(h), respectively. The

results agree well with the analytically calculated amplified

Bloch modes. The differences may be attributed mainly to the

simplified model used (not accounting for the real shape of the

FIG. 4. (Color online) (a) Dielectric slab, n = 3.474, 0.612 μm

high, with holes of radii 0.45 μm filled by p-n/n-p semiconductor

junctions, n = 3.46 ± 0.007i; a = 1.0 μm, where red (blue) circles

indicate gain (loss) areas (b) Clockwise-counterclockwise normalized

transmission on detectors T1 and T2. Electric field distribution

snapshots at cross-sectional planes (c) z = 0 and (d) x = 0. The

black arrow in (c) indicates the input channel.

scatter) and the interplay between higher-order harmonics, as

well as to the finite size of the structure.

V. IMPLEMENTATION PROPOSAL

Finally, we propose a possible realization of the investi-

gated 2D PT-symmetric complex structure, which could be

implemented and measured in microphotonic devices. The

configuration illustrated in Fig. 4(a) consists of a silicon

slab with a honeycomb lattice of alternating p-n and n-p

semiconductor junctions. Full 3D FDTD numerical simula-

tions were performed using the LUMERICAL software package

[13]. The device is illuminated by a broadband pulse with a

Gaussian profile, with a source of 7 μm width and 0.5 μm

height. Detectors T1 and T2 are symmetrically placed on

either side of the structure as shown in Fig. 4(a) to record the

transmission. The calculated normalized transmission spectra

at T1 and T2 are depicted in Fig. 4(b). A measurable clockwise-

counterclockwise asymmetry is observed in the transmission

near resonance at the wavelength λ = 1.501 μm (wavelength

in a vacuum). The steady-state electric-field distributions at

the cross-sectional xy plane (z = 0) and yz plane (x = 0) are

shown in Figs. 4(c) and 4(d), respectively. The electric-field

snapshot in Fig. 4(c) shows the asymmetric light transmission

along the directions of T1 and T2 at the resonance frequency.

Furthermore, the cross-sectional field distribution depicted

in Fig. 4(d) proves the vertical confinement and guiding

of the propagating beam inside the slab. As a result, the

out-of-plane losses are almost negligible for this specific

design.

VI. CONCLUSION

To conclude, we propose a simple 2D PT-symmetric pho-

tonic structure and analyze the propagation of light with it. As

predicted, we see that close to resonance, the system exhibits
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a nonreciprocal chirality associated with asymmetric wave

coupling between the plane-wave components. Therefore,

such a 2D PT-symmetric structure with a hexagonal shape

asymmetrically transmits light beams incident on it. In addi-

tion, we analytically calculate the Bloch-like mode formations

and find that indeed the more amplified mode agrees well

with the complex field and phase distributions in the structure

at resonance. Following the proposed scheme, we design

and numerically analyze, using full 3D FDTD simulations,

a 2D PT-symmetric feasible configuration. The proposed

2D planar semiconductor structure could be produced by

microfabrication and microstructuration of the electrodes to

achieve the modulated gain-loss. It may be expected that

new synthetic optical components could rely on such optical

systems.
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