
Citation: Moniruzzaman, M.; Anil

Kumar, Y.; Pallavolu, M.R.; Arbi,

H.M.; Alzahmi, S.; Obaidat, I.M.

Two-Dimensional Core-Shell

Structure of Cobalt-Doped@MnO2

Nanosheets Grown on Nickel Foam

as a Binder-Free Battery-Type

Electrode for Supercapacitor

Application. Nanomaterials 2022, 12,

3187. https://doi.org/10.3390/

nano12183187

Academic Editors: Jeng-Yu Lin,

Min-Hsin Yeh and Tzu-Ho Wu

Received: 25 August 2022

Accepted: 9 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Two-Dimensional Core-Shell Structure of
Cobalt-Doped@MnO2 Nanosheets Grown on
Nickel Foam as a Binder-Free Battery-Type Electrode
for Supercapacitor Application
Md Moniruzzaman 1, Yedluri Anil Kumar 2,3 , Mohan Reddy Pallavolu 4 , Hammad Mueen Arbi 2,3,
Salem Alzahmi 3,5,* and Ihab M. Obaidat 2,3,*

1 Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero,
Seongnam-si 13120, Gyeonggi-do, Korea

2 Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
3 National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
4 School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
5 Department of Chemical & Petroleum Engineering, United Arab Emirates University,

Al Ain 15551, United Arab Emirates
* Correspondence: s.alzahmi@uaeu.ac.ae (S.A.); iobaidat@uaeu.ac.ae (I.M.O.)

Abstract: Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal
approach by in situ growing cobalt-doped@MnO2 nanocomposite on highly conductive nickel foam
(Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopant provides
a larger contacting area for MnO2. In the meantime, the excellent retentions of the hierarchical
phase-based pore architecture of the cobalt-doped surface could beneficially condense the electron
transportation pathways. In addition, the nickel foam (Ni foam) nanosheets provide charge-transport
channels that lead to the outstanding improved electrochemical activities of cobalt-doped@MnO2. The
unique cobalt-doped@MnO2 nanocomposite electrode facilitates stable electrochemical architecture,
multi-active electrochemical sites, and rapid electro-transports channels; which act as a key factor in
enhancing the specific capacitances, stability, and rate capacities. As a result, the cobalt-doped@MnO2

nanocomposite electrode delivered superior electrochemical activities with a specific capacitance of
337.8 F g–1 at 0.5 A g–1; this is greater than pristine MnO2 (277.9 F g–1). The results demonstrate a
worthy approach for the designing of high-performance SCs by the grouping of the nanostructured
dopant material and metal oxides.

Keywords: cobalt-doped manganese oxides; electrode; supercapacitors; energy storage; hydrothermal
method

1. Introduction

The intemperate exploitations of fossil fuels have led us to energy consumption limits
and unsustainable environmental difficulties [1–3]. Supercapacitors (SCs) are a new type
of greener energy storing devices among batteries and capacitors that have the benefits of
higher efficiency, larger power density, environmental protections, longer cycles, etc. [4–6].
However, the low energy densities of SCs limit their large-scale configuration commercially.
An efficient route to enhance this energy density is to make asymmetric SCs [7–9].

Electrodes are one of the crucial elements influencing the performances of SCs [10].
Different types of material samples have been developed so far for achieving better energy
densities, such as doped materials [11–13], metal hydroxides/oxides [14,15], composite
electrodes [16–19], and conductive polymers [20–23]. From this perspective, MnO2 be-
comes a favored source for making pseudocapacitor (PCs) electrodes due to their superior
theoretical capacities (~1370 F g−1), cheaper prices, and eco-friendliness [24]. MnO2 would
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deliver excellent capacities and characteristic features in neutral electrolytes, which do
not need stronger acids or alkalic-type environments; in turn, this is good for the envi-
ronment [25]. However, the MnO2 conductivity is still poor; this issue can be solved by
combining MnO2 with a dopant material, which enables larger specific surface areas and
excellent conductivities [26,27].

Cobalt-doped electrodes have features such as excellent electrical conductivities, good
chemical stabilities, superior surface interfaces, and a cheaper price. Thus, it could be
contemplated as an absolute candidate for supporting MnO2 in forming a composite
electrode sample [28]. The fabrication of cobalt-doped materials on nickel foam skeleton
has attracted a lot of interest so far [4,29–31]. Nickel foam is safer, greener, and plentiful;
thus, it became favorable for renewable energy developments. Cobalt-doped material
on the nickel foam skeleton generally consists of superior surface area and porosities,
which would efficaciously shorten the ion/electron transportation intervals. Nickel foam
with cobalt-doped material handled with alkali or acids also has a plentiful functional
surfacing group, which are favored for electrochemical activities [32–35]. Thus, the use of
cobalt-doped material with nickel foam and MnO2 has been anticipated to enhance the
performances of both MnO2 and cobalt-doped materials.

Herein, we developed a unique cobalt-doped MnO2 with the conductive skeleton
of nickel foam via a hydrothermal technique. The composite of cobalt-doped@MnO2
delivers excellent energy storing performance. This would be ascribed to the excellent
retention of the conductive way and uniformly loaded MnO2. Cobalt-doped@MnO2
facilitated the self-assembly of the composites with nickel foam; meanwhile, the metal
oxides constructively enhanced the capacities by transmitting the composite with PCs. The
energy storage performances of the cobalt-doped@MnO2 nanosheets were synergistically
developed, providing multiple chemical states of Co-existences in the electrode. The results
manifested the specific capacitance of the cobalt-doped@MnO2 nanosheets is 337.8 F g−1at
0.5 A g−1; this surpasses composites in recently reported literature.

2. Experimental Procedure
2.1. Synthesis of Cobalt-Doped@MnO2 Composite Nanosheets

Before synthesis, nickel foam (2 × 1 cm2) was carefully cleaned with a 6.0 M HCl
solution in an ultrasound bath for 30 min to remove and eliminate the influence of the
NiO layer from the surface; it was then rinsed with deionized water and absolute ethanol
several times; and finally, dried in a vacuum oven at 50 ◦C. Cobalt nitrate hexahydrate
(3 g) was added to 65 mL of MnCl2 solution with a concentration of 0.034 mol L−1. Then,
the precursor solution was continuously treated with ultrasound for 20 min to permit the
complete adsorption of Mn2+ on cobalt nitrate hexahydrate. In due course, the supernatant
liquids were detached by centrifugation; and 65 mL of KMnO4 solutions (0.069 M) were
added to the mixtures. After stirring at 115 ◦C for 3 h, the precursor mixtures were
washed with DI water continuously; and finally, dried at 130 ◦C for 12 h to gain the
cobalt-doped@MnO2 nanosheets composite.

For comparison, pure MnO2 electrodes were also fabricated by a similar reaction
process without adding Cobalt nitrate hexahydrate into the MnCl2 solution.

2.2. Characterizations

The electrode morphology was investigated by scanning electron microscopy (FE-SEM,
S-4800, Hitachi, Busan, Korea) and transmission electron microscopy (HRTEM, CJ111). The
elemental compositions and chemical states of the spectroscopic procedures of the electrode
were studied by X-ray photoelectron spectroscopy (XPS, VG Scientific—ESCALAB 250,
Busan, Korea.). The electrode sample structure of the crystal was perceived by X-ray
diffraction (XRD, D/Max-2400, Rigaku, Tokyo, Japan, Cu Kα) at an acceleration voltage of
40 kV using Cu Ka (λ = 0.154 nm) radiation.



Nanomaterials 2022, 12, 3187 3 of 11

2.3. Electrochemical Measurement

The electrochemical activities of the electrode composites (MnO2 and cobalt-doped@MnO2)
were investigated by a three-electrode configuration operating an electrochemical workstation
(SP-150 Biologic instrument, Busan, South Korea) in a 2 M KOH electrolyte. The Pt wire
(2 cm× 2 cm) and Hg/HgO electrode were employed as the counter and reference electrodes,
respectively. The galvanostatic charge/discharge (GCD), cyclic voltammetry (CV) tests quan-
tifications, and electrochemical impedance spectroscopy (EIS) analysis were captured with a
counter and reference electrode. The EIS result was processed by operating AC potentials
of 10 mV amplitude (versus Hg/HgO) in the ranges of 200 mHz to 200 kHz frequencies at
open-circuit potential (OCP). For a three-electrode system, the AC potential of 10 mV was
applied versus RE. The mass loading of the working sample on each electrode is ~3.4 mg. The
specific capacitance (Cs, F g−1) was calculated from the charge–discharge curve by using the
following equation [34]:

Cs = (I × ∆t)/(m × ∆V) (1)

where Cs, I, ∆t, and m are the specific capacitance (F g−1), current (A), discharge time (s),
and mass (g) of the active materials, respectively.

3. Results and Discussion

Figure 1 is a brief illustration of the preparation procedures for the cobalt-doped
MnO2 nanosheets composite. During the following hydrothermal procedures, the cobalt
gradually transformed into a porous nickel foam structure. The cobalt dope supports the
enhancement of the pore structures and provides the cobalt doping of the nickel form [29].
After a post in-situ hydrothermal deposition procedure, densely MnO2 nanoparticles were
grown on the nickel foam. The chemical reactions involved in the procedure are as follows:

2MnO4
− + 3Mn2+ + 2H2O→ 5MnO2 + 4H+ (2)
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Figure 1. Schematic diagram of the cobalt-doped@MnO2 nanosheets composite.

Figure 2a indicates a typical SEM image of the MnO2 nanoparticle material. The
MnO2 nanoparticle appears with distinct porous architecture. The internally networked
porous construction not only supplies a channel for quick electron transportations, but
also acts as a well-being skeleton for the MnO2 loading. Afterward, the SEM images of the
cobalt-doped@MnO2 nanosheets composite (Figure 2b) exhibits excellent dispersed MnO2
nanoparticles uniformly coating on the interfaces of the nickel foam. Figure S1 shows the
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SEM image of cobalt-doped@MnO2 nanosheets composite well-distributed on the nickel
foam. It is visible that the porous nature of the nickel foam is well-retained; this not only
encourages the electrolyte ion transportations, but also produces a superior contacting
surface for the MnO2. The SEM structure analysis investigation obviously indicates that
the cobalt-doped@MnO2 nanosheets structure was facilitated by the excellent electron
transportations between the electrode surface area and electrolyte interface to enhance
the electrochemical performance. The different crystalline faces with polycrystalline char-
acterization exist; and there was an observable grain boundary among the MnO2 and
cobalt dope in the structure of the cobalt-doped@MnO2. TEM images (Figure 1) display the
surface of the cobalt-doped@MnO2 nanosheets composite, obviously disposing of dense
nanoparticles loaded on the interfaces of the nickel foam. In addition, the HRTEM images
(Figure 2d) of the MnO2 nanoparticles disclose spacing fringes of 0.25 nm; this correlates
to the (006) MnO2 spacing planner. Further, the cobalt dope consists of numerous MnO2
that connect to form a highly porous network structure; which helps the electrolyte ions
penetrate during the charge–discharge process.
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Figure 2. (a) SEM images of the MnO2 sample; (b) an SEM image of the cobalt-doped@MnO2

nanosheets composite; (c) a TEM image of the cobalt-doped@MnO2 nanosheets composite; and
(d) an HRTEM image revealing the crystalline structure of the MnO2 nanosheets.

The crystalline structures of MnO2 and the cobalt-doped@MnO2 nanosheets composite
were analyzed by XRD analysis, as depicted in Figure 3a. For the binary MnO2 material,
two sharp peaks are visible around 22◦ and 43.5◦; these are similar to that of the nickel
foam [34,35]. For the cobalt-doped@MnO2 nanosheets composite, the three broader peaks
at 12.3◦, 36.8◦, and 65.8◦ are correlated with (002), (006), and (119) planners of the birnessite
category-MnO2 (JCPDS 18-802), respectively [36,37]. It is known that binary MnO2 is
similar to MnO2 in the composite through comparisons.
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Figure 3. The XRD patterns (a) and wide-scan XPS spectra (b) of the cobalt-doped@MnO2 nanosheets
composite, respectively. (c,d) The high-resolution XPS spectra for the cobalt-doped@MnO2 nanosheets
composite of Co 2p and Mn 2p.

XPS investigations were further employed to obtain information on elemental structure
compositions, and the chemical molecular states of the surfaces of the electrode. Figure 3b is
the general mapping of the XPS spectrum. The cobalt-doped@MnO2 nanosheets composite
depicts the peaks of Co 2p, Mn 2p, C, and O elements. Furthermore, due to the loading
of MnO2, the Mn peaks are visible in the spectra of the cobalt-doped@MnO2 nanosheets
composite; and the C peaks decrease sharply. For the Co 2p XPS spectrum (Figure 3c), the
spin-orbit split results of Co 2p1/2 (centered at 795 eV) and Co 2p3/2 (centered at 781 eV),
transgression 15 eV; this reveals the coexistences of Co3+ and Co2+ cations [38,39]. By a
Gaussian fitting method, the Co spectrum was fitted to four peaks, including the Co3+

peaks located at 780.8 eV and 781.1 eV and another peak located at 785.1eV and 802.5 eV,
which was assigned to Co2+. For the Mn 2p pattern (Figure 3d), the two peaks at 643.5 eV
and 655.6 eV correspond to Mn 2p3/2 and Mn 2p1/2, respectively [40–42]. The fitting peak
at 637.7 eV is particularly characteristic of Mn2+, and the peaks located at 642.9 eV and
653.6 eV ascribed to Mn3+. The spin separations energies were 11.9 eV, which reveals that
the Mn valence states were +4 [34,43,44]. The O 1s spectra would be deconvoluted into
O-C (531.5 eV), C-O-C/C-OH (533.4 eV), and O–Mn (530.2 eV) bondings, respectively
(as showed in Figure S2). The presence of the cobalt dope group was favored for the
enhancement of electrochemical capabilities [32].
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Electrochemical Properties of Electrode Materials

The electrochemical capabilities of binary MnO2 nanoparticles and the cobalt-doped@MnO2
nanosheets composite were investigated using a three-electrode setup. The CV and GCD data
values of the cobalt-doped@MnO2 nanosheets composite were depicted in Figure 4a,b, respec-
tively. As the scan rates expand between 5 to 200 mV s−1, the CV plots remain in almost
rectangular shapes; manifesting that the sample material consists of excellent reversibility and
absolute capacitance nature. There were not any apparent redox peaks under the voltage
windows of 0.0–0.6 V; which illustrates the behavior of the PCs of MnO2 and the PC nature of
the cobalt-doped@MnO2 nanosheets composite. At various current densities between 0.5 A g−1

to 15 A g−1, the GCD pattern shows close symmetrical charge/discharges (Figure 4b). At a
0.5 A g−1 current density, we performed the comparison of both binary MnO2 nanoparticles
and cobalt-doped@MnO2 nanosheets composite electrodes (Figure 4c). We also investigated the
CV curve of binary MnO2 electrodes, as illustrated in Figure S3b. The CV curves comparison
(Figure S3a) of the binary MnO2 nanoparticles and cobalt-doped@MnO2 nanosheets composite
also display rectangular-type shapes. It is visible from the regions of the CV plots that the
specific capacitances of the cobalt-doped@MnO2 nanosheets composite are greater than that of
binary MnO2.
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Figure 4. Electrochemical performances with the three-electrode system. (a) CV and (b) GCD
curves of the cobalt-doped@MnO2 nanosheets composite. (c) GCD curves at a current density of
0.5 A g−1 of binary MnO2 nanoparticles and cobalt-doped@MnO2 nanosheets composite electrode
materials. (d) The Nyquist plots of binary MnO2 and cobalt-doped@MnO2 nanosheets composite
electrode materials.

The data of EIS (Figure 4d) further evidenced that the cobalt-doped@MnO2 nanosheets
composite consists of good electrochemical performances. The range in the frequencies of
the pattern was from 0.02 Hz to 200 KHz. The Nyquist diagrams of binary MnO2 nanopar-
ticles and cobalt-doped@MnO2 nanosheets composite electrode materials achieve the same
small semicircles in the higher-frequency ranges (the semicircle diameter reveals charge
transfer resistances (Rct)); manifesting that they have smaller charge transfer resistances.
The Rct of the cobalt-doped@MnO2 nanosheets composite was slightly greater than that of
binary MnO2 nanoparticles. This was due to the charge transfer of cobalt-doped@MnO2
nanosheets presuming redox reactions, which were more moderate than the surface des-
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orption/adsorption nature of the sample PCs [38]. In addition, it would be obvious that
the cobalt-doped@MnO2 nanosheets composite effectively enhances the conductivities of
binary MnO2 nanoparticles. The ideal capacitance character is apparent from the almost
vertical linear plots in the lower frequency area. Thus, the cobalt-doped@MnO2 nanosheets
sample reveals a much more oblique plot; this signifies the foremost performances of
the PCs.

Figure 5a displays the comparison of binary MnO2 nanoparticles and cobalt-doped@MnO2
nanosheets composite GCD plots at 0.5 A g−1, respectively. The specific capacitance of binary
MnO2 nanoparticles was calculated to be 277.9 F g−1, which is approximately only 1/3 of the
cobalt-doped@MnO2 nanosheets composite. These results illustrate that the porous behavior of
the cobalt-doped@MnO2 nanosheets composite is advantageous to the electrolyte ions of diffu-
sion. While conserving binary MnO2 nanoparticles’ PC capacitance, the cobalt-doped@MnO2
nanosheets composite electrode also expands PC capacitances.
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doped@MnO2 nanosheets composite electrodes.

According to the cycling test (Figure 5b), binary MnO2 nanoparticles consist of well-
cycled stabilities; and the capacity retention rate residues ∼76.4% after 3000 long cycles.
Whereas, for the cobalt-doped@MnO2 nanosheets composite, the electrode remains ∼82.5%
after 3000 long cycles; manifesting that the nickel foam effectively enhances the cycling ca-
pabilities of MnO2. Surprisingly, both binary MnO2 nanoparticles and cobalt-doped@MnO2
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nanosheets composite electrodes have excellent retention stabilities. The specific capaci-
tance performances of the MnO2-based composite samples reported in previous studies
are displayed in Table 1. The specific capacitances of the cobalt-doped@MnO2 nanosheets
composite electrode are much higher than that of some nickel foam-based MnO2 composite
materials and other MnO2-based composites. Figure 5c illustrates the SEM image of the
cobalt-doped@MnO2 nanosheets composite material after 3000-long cycling stability. The
SEM image shows a good surface structure and super-wettability, indicating a vital role
in keeping faradaic redox and energy storage reactions. Figure 5d shows the impedance
plots of the binary MnO2 nanoparticles and cobalt-doped@MnO2 nanosheets composite
electrodes after 3000 cycles. There were no obvious changes of Rct after 3000 long cycles,
manifesting a rapid electron/ion transfer. Surprisingly, the higher performances of the
cobalt-doped@MnO2 nanosheets composite with hierarchical structure on nickel foam
is beneficial; owing to the larger surface area accessing point for ions that enhance the
wettability of the composite and accelerate electron transfer.

Table 1. MnO2 composite electrode performance comparison over the last five years.

Electrode Electrolyte Specific Capacitance
(F g−1)

Current Density
(A g−1) Ref.

MnO2/rice husk-derived composite 0.5 M Na2SO4 210.3 0.5 [30]

Holey reduced graphene oxide/MnO2 composites 1 M Na2SO4 192.2 0.5 [37]

MnO2@CCNs 1 M Na2SO4 262 0.2 [38]

CNT@NCT@MnO2 1 M Na2SO4 210 0.5 [40]

δ-MnO2(4.0)/HRGO 1 M Na2SO4 245 1 [45]

α-MnO2 NWs@δ-MnO2 NSs 6 M KOH 310.2 0.5 [46]

PPy/mesoporous MnO2 1 M Na2SO4 320 0.5 [47]

D-MNS-A@MnO2 1 M Na2SO4 231 1 [48]

cobalt-doped@MnO2 nanosheets 2 M KOH 337.8 0.5 This Work

4. Conclusions

In summary, cobalt-doped nanoparticles were uniformly grown on MnO2 with a large
specific surface region and unique pore construction to form a cobalt-doped@MnO2 nanosheets
composite. The improved electrochemical performances of the cobalt-doped@MnO2 nanosheets
composite are ascribed to the higher electrical conductivities, enlarged surface region, ample
working electrochemical sites, and rapid charging-transfer channels. The cobalt-doped@MnO2
nanosheets composite achieved extraordinary electrochemical capabilities. At a current density
of 0.5 A g−1, the specific capacitance is 337.8 F g−1. Moreover, the cobalt-doped@MnO2
nanosheets composite electrodes exhibit excellent cycling stabilities of 82.5% capacity retention
at 3000 GCD long cycles. The results of this research support the use of metal oxides as
conductive bases and expand the scope of dopant-based material applications. Finally, the
cobalt-doped@MnO2 nanosheets with the above unique physicochemical characteristics can
have numerous good functionalities for other applications, such as biosensors, electrocatalysts,
and batteries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12183187/s1, 1. Materials and Reagents; Figure S1. SEM
image of cobalt-doped@MnO2 nanosheets well distributed on nickel foam; Figure S2. XPS spectra of
O 1s; Figure S3a. CV comparison of binary MnO2 nanoparticles and cobalt-doped@MnO2 nanosheets
composite; Figure S3b. CV curves of binary MnO2 nanoparticles. All authors have read and agreed
to the published version of the manuscript.
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