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Abstract: 

Two dimensional correlation analysis is explored to data mine the time evolution of the 

characteristic Raman microspectroscopic signatures of the subcellular responses of the 

nucleoli of human lung cancer cells to the uptake of doxorubicin. A simulated dataset of 

experimental control spectra, perturbed with systematically time-dependent spectral changes, 

constituted by a short term response which represents the initial binding of the drug in the 

nucleolus, followed by a longer term response of the organelle metabolism, is used to validate 

the analysis protocol. Applying two dimensional correlation analysis, the in phase, 

synchronous correlation co-efficients are seen to contain contributions of both response 

profiles, whereas they can be independently extracted from the out of phase, asynchronous 

correlation co-efficients. The methodology is applied to experimental data of the uptake of 

doxorubicin in human lung cell lines to differentiate the signatures of chemical binding and 

subsequent cellular response.  



1. Introduction 

In the field of label free analysis and imaging, vibrational spectroscopic microscopy has 

emerged as an alternative for high content analysis of cells in vitro, which can provide 

molecularly specific signatures of biological processes and function.[1–3] Quantitative 

spectroscopic changes attributable to the biochemical processes occurring during cell culture 

and mitosis,[4,5] proliferation,[6] differentiation and activation,[7–9] adhesion,[10] death[11] and 

invasion[12] have previously been documented. In particular, Raman microspectroscopy can 

be performed at visible wavelengths in a confocal mode and can provide details at a 

subcellular level, of fixed or live cells,[2,3,13] enabling, for example, the detection of cellular 

mitochondrial distribution[14] and phagosomes.[15]  

Both infrared absorption (IR) and Raman microspectroscopy have been used to assess the 

effects of drugs on cells, demonstrating the potential to measure changes in a label free, high 

throughput manner and therefore be used in pre-clinical drug screening.[16–19] Raman 

microspectroscopic analyses of drug-cell interactions have focused both on changes in the 

cellular Raman spectra upon drug application, during intracellular tracking of the drug and its 

metabolites, as well as cellular resistance[20–22] 

The emerging nonlinear Raman microspectroscopic techniques of coherent anti-Stokes and 

stimulated Raman scattering[23], and indeed technological advances in infrared spectroscopic 

analysis[24,25], promise label free high content spectroscopic analysis of sub-cellular processes 

in real-time, and hitherto unrivalled visualisation of cellular processes and function. It is 

becoming increasingly important, therefore, to explore protocols for harnessing and 

interpreting the high content spectral information which such label free techniques can yield. 

Critically, the analysis and interpretation of the spectral responses remains a challenge, even 

in the hands of “specialists”. By their very nature, label free techniques register all species 

within the sampling area, and identification of specific responses requires multivariate 



analytical techniques to data-mine the differential signatures which are characteristic of cell 

injury events or response pathways. 

Previous studies have demonstrated the ability of Partial Least Squares Regression (PLSR) 

and Independent Components Analysis (ICA), and/or a combination thereof, to monitor the 

uptake of chemotherapeutic agents, and to differentiate between the spectral signatures of the 

initial chemical binding of Cisplatin,[26,27] Vincristine[28] and more recently Doxorubicin 

(DOX)[29–32] and Actinomycin D[33] in A549 and Calu-1 human lung cancer cells from the 

subsequent cellular response pathway. Notably, however, in the case of the DOX study, the 

analysis was based on the identification of two independent regimes of the temporal spectral 

evolution, clearly identifiable by the build-up, and saturation of the DOX Raman signature, 

initially in the nucleolus (~2-6 hrs), and subsequently nucleus of the cell (~6-12 hrs), before it 

was detectable in the cytoplasmic region (~24-48 hrs). The initial stages of the build up of the 

drug in the subcellular region were analysed independently from the regions of saturation, 

and the spectral signatures were interpreted in terms of the initial binding interactions of the 

drug in the organelle, and the subsequent metabolic response of the organelle. For automated 

analysis of more general cell exposure scenarios, in which for example the exogenous agent 

is not clearly identifiable in the cell by its strong Raman signature, an integrated objective 

multivariate data-mining algorithm is desirable. 

Two dimensional correlation analysis is an alternative data analysis protocol, which was 

developed by Noda[34] as a method of quantifying the relationship between spectral features 

that vary systematically as a function of an evolving parameter or physical quantity, such as 

time. Quaroni et al.[35] have demonstrated its use to assign the biochemical origin of weak 

absorption changes in time-resolved FT-IR spectromicroscopy of individual cells, and to 

perform real-time metabolic analysis of living cancer cells.[36]  



The application of two dimensional correlation analysis to a data set involves calculation of 

the correlation function of the evolving spectral profiles followed by application to the latter 

of a 2-D Fourier transform algorithm. The result is a complex function of two wavenumber 

variables that is plotted as separate real and imaginary components. The plot of the real 

component is called the synchronous plot, and that of the imaginary component the 

asynchronous plot. The former represents correlations between pairs of wavenumbers that 

evolve fully in phase, or with opposite phase. The latter represents correlations between pairs 

of wavenumbers that have an out-of-phase relationship. The principle of the technique is that 

the in phase spectral features should evolve synchronously with the time evolution, whereas 

the out of phase, asynchronous spectral features evolve over a later timescale.[37,38]  

In this study, the potential of two dimensional correlation analysis to simultaneously identify, 

in a single analytical protocol, the characteristic of Raman microspectroscopic signatures of 

both the early stage binding of chemotherapeutic agents in the nucleolus of cells, as well as 

the subsequent cellular responses will be demonstrated. Raman microspectroscopic data from 

the previous studies of DOX uptake by and response of the nucleolar regions of A549 and 

Calu I (Supplemental Material), human lung cancer cells will be employed, and the results 

will be compared to those of the previous PLSR/ICA analysis.[39] In order to validate the 

technique, simulated spectral datasets, based on systematic perturbations of the control 

datasets of the previous experimental studies, will be employed. 

 

2. Materials and Methods 

The details of experimental methods and protocols are described in greater detail in the original 

publications[31,39–41], but are summarised here. The experimental workflow of cell culture and drug 

exposure, for varying times, cytotoxicity assessment, fixation, subcellular Raman microscopic 

analysis, data preprocessing and analysis is depicted in Figure 1. 

2.1. Materials 



A549 human lung adenocarcinoma cells with the alveolar type II phenotype were obtained from 

ATTC (Manassas, VA, USA) and Calu-1 human lung epidermoid carcinoma cells were obtained 

from the European Collection of Cell Cultures. 

Doxorubicin hydrochloride® powder (Sigma Life Sciences, Ireland) was diluted in 1 mL sterile 

water, to the required concentration of  0.6 μM, identified by cytotoxicological analysis[33,41].  

2.2. Cell Culture 

A549 cells were cultured in DMEM (with 2 mM L-glutamine) with 10 % foetal bovine serum (FBS) 

and Calu-1 cells in RPMI with 10% FBS, both at 37 °C in a humidified atmosphere containing 5% 

CO2 and cells were split every two days to maintain ~60 % confluence.  

2.3. Raman Spectroscopy 

Cells (~ 3 x 103/cm2) were seeded and incubated on (20 mm diameter) CaF2 windows (Crystan Ltd, 

UK) for 24 hrs for both control and exposure to chemotherapeutic drug. Medium was then removed 

and samples were rinsed twice with sterile phosphate buffered saline (PBS) and covered with aqueous 

solutions of DOX, of concentration 0.6 μM. After each incubation period, cells were washed twice 

with sterile PBS and fixed in formalin (10 %, 15 min) and allowed to air dry. 

A Horiba Jobin-Yvon LabRAM HR800 spectrometer with a 785 nm, 300 mW diode laser as source 

(~100 mW at the sample), Peltier cooled 16-bit CCD, 300 lines/mm grating and 100 μm confocal 

hole, was used for this work. Spectra were acquired from the three visually identifiable cell locations: 

cytoplasm, nucleus and nucleolus, in the range from 400 cm-1 to 1800 cm-1 with a x100 objective 

(LCPlanN, Olympus) for 30 s two times, to finally produce a data set of 30 points per cell location for 

each cell line, over a total of 210 different cells. In this study, only spectra of the nucleoli are 

considered.  

2.4. Data Processing and Analysis 

Raman spectral pre-processing and analysis were performed in Matlab using algorithms developed in 

house. Prior to analysis, background was subtracted using a NCLS (non-negatively constrained least 



squares) algorithm, spectra were smoothed (Savitsky-Golay filter 3th order, 11 points), baseline 

corrected (fifth order polynomial) and vector normalised. 

Two dimensional correlation analysis was conducted using the MIDAS2010 Graphical User 

Interface (GUI) originally developed by researchers in the Canadian Light Source for two 

dimensional correlation analysis and data exploration of time resolved infrared spectra.[42] 

The GUI is available for download from MathWorks File Exchange,[42] and is recommended 

to be run in Matlab 7.6 (R2008a), with the Image Processing Toolbox. The spectral data 

should be loaded as a tab delimited text file with extension .txt, containing a matrix with [m 

n] dimensions. The first column of the matrix contains the spectral range (wavenumbers), 

while the remaining columns contain sample spectra. It is assumed that the dynamic variable 

(time), is incremented by a constant amount. Note, it was observed that the GUI does not read 

the final spectrum column, and therefore this was duplicated in a column n+1. 

3. Two dimensional correlation analysis of simulated spectral responses 

3.1. Generation of Simulated Spectral Responses 

The analysis of the kinetic uptake of DOX by A549 cells and subsequent cellular response by 

Farhane et al.[39] indicated the evolution of an initial response associated with the chemical 

interaction of the chemotherapeutic agent with the RNA/DNA in the nucleolus of the cell, 

and a subsequent longer term response associated with reaction of the cell metabolism. 

According to the observations of this study, a simplified representation of the initial response 

signature (Response 1) can be modelled based on a reduction of the prominent peaks 

observed at 785 cm-1 (RNA/DNA O–P–O stretching), 810 cm-1 (RNA O–P–O stretching), 

1095 cm-1 (DNA PO2
− symmetric stretching) and 1683 cm-1 (protein Amide I), as shown in 

Figure 2(a). Similarly, the spectral signature of the longer term cellular response (Response 

2) can be represented by increases in the prominent peaks at 1047 cm-1 (RNA P–O stretching, 



sugar phosphate –C–O–stretching), 1271 cm-1 (protein Amide III) and 1444 cm-1 (lipid CH2 

deformation).  

The time evolution of these responses can be modelled by a simple rate equation approach, 

such that: 

The number of bound DOX molecules, Nb, is represented as a function of time by 

dNb/dt = (Nrecp – Nb)KupD        (1) 

where Nrecp is the number of receptor sites for DOX binding in the cell nucleolus, D is the 

DOX dose, and Kup is the rate of uptake of DOX into the nucleolus of the cell. The spectral 

response of the cell to DOX binding is assumed to be instantaneous, and therefore the 

spectral response is weighted according to: 

Response 1 (t) = Response 1 x Nb(t)       (2) 

The time evolution of the subsequent cellular response, Nr, can similarly be modelled 

according to: 

dNr/dt = (Nresp – Nr)KrespNb        (3) 

where Nresp acts as a limit to the total response, and Kresp is the response rate. The spectral 

response of the cell to DOX binding is assumed to evolve at this rate, and therefore the 

spectral response is weighted according to: 

Response 2 (t) = Response 2 x Nr(t)       (4) 

Figure 2(b) shows the simulated temporal evolution of the spectral responses, using rates of 

Kup = 2.5 x 10-4 and Kresp = 5x10-6 hr-1.  

To simulate the time evolution of the intrinsic spectral response of the nucleus of A549 cells 

to DOX exposure, the simulated spectral responses in Figure 2(a), can be added to the 



experimental mean control spectra (Figure 2(a)), weighted at a given exposure time by the 

simulated response of Figure 2(b). Response 1 is weighted negatively, to represent the 

experimentally observed reduction in the identified features of nucleic acids. In both cases, an 

additional weighting of 0.05 was applied, to better mimic the experimental observations. 

Figure 2(c) shows a zoom of the spectral region from 700-1200 cm-1, illustrating the control 

spectrum and the simulated spectra at (as examples) 20 and 72 hrs DOX exposure. 

3.2. 2D Correlation Analysis of Simulated Spectral Responses 

The simulated spectral response data set, including simulated responses over the exposure 

period of 0-72 hrs, at 2 hour intervals, was analysed using the MIDAS 2010 two dimensional 

correlation analysis GUI package.[42] Figure 3a shows the synchronous correlation analysis 

in contour form, while Figure 3b shows the same plot, after subtraction of the control 

spectrum (0 hrs) from the dataset, as a static component. Both are symmetric with respect to 

the diagonal, as expected. Before subtraction, the 2D contour plot shows multiple positive 

correlations for all peaks, and the diagonal cross section contains contributions of all spectral 

components integrated over the exposure time range (data not shown). Subtraction of the 

static component greatly simplifies the correlation plot, as shown in Figure 3b. Again, the 

diagonal autocorrelation shows positive peaks for all spectral features of Response 1 and 

Response 2, as shown in Figure 4(a). Features of the off diagonal, cross peaks represent 

positive correlations for Response 1, and negative correlations for Response 2. A vertical 

cross section at x= 785 cm-1, shown in Figure 4(b), demonstrates that the spectral 

contributions of both Response 1 and Response 2 are represented, although with opposite 

signs to their contributions to the source spectra. The same applies to a horizontal cross-

section at y= 785 cm-1. Furthermore, although their contributions are weighted equally in the 

simulated spectra, the relative contributions of the spectral responses to the correlation is not 

the same, Response 2 being relatively weaker. Notably, with no a priori knowledge of the 



origin of the features, it is not obvious that negative and positive correlations have different 

temporal evolutions. Although Response 1 and 2 have clearly different temporal profiles, 

they both evolve synchronously as a function of time.   

Figure 5(a) shows the asynchronous correlation plot, which in this case is independent of 

subtraction of control and, as expected, is asymmetric with respect to the diagonal. Reading 

vertically at a (x) wavenumber corresponding to a feature of Response 1, the features of 

Response 2 are positively, asynchronously correlated, while reading vertically at wavenumbers 

of Response 2 features, Response 1 features are negatively, asynchronously correlated, as 

shown in Figure 5(b). The behaviour is inverted when reading horizontally from (y) 

wavenumbers of Response 1 or Response 2 features. Furthermore, although not identical, the 

weightings of the two Response features are approximately equal.  

The asynchronous contour plot thus clearly better illustrates that the spectral profile of 

Response 1 and Response 2 are decoupled and can be differentiated by two dimensional 

correlation analysis. The synchronous autocorrelation can be employed to identify the spectral 

features of the changes to the system, while the features of the asynchronous correlation plot 

can be employed to differentiate the responses of differing time evolution.  

Notably, however, the analysis does little to elucidate the temporal evolution of the responses, 

as simulated according to Figure 2. In fact, although the diagonal autocorrelation of Figure 3 

reproduces the spectral perturbations of Figure 2, the weightings of Response 1 and 2 are not 

equal, as shown in Figure 4(a), as the correlation function integrates over the exposure time of 

72 hours. Figure 6(a) shows a plot of the correlation over an expanding time window of 0-T, 

as T is increased from 4 hrs to 72 hrs (i.e. 0-2 hrs, 0-4hrs, 0-6hrs etc.). The integrated 

contribution of the Response 1 feature at 785 cm-1, for example, is considerably stronger than 

that of Response 2 at 1047 cm-1 over the time range. If the correlation is instead performed 



over a fixed, moving window, T (e.g. 0-4hrs, 2-6hrs, 4-8hrs etc.), the temporal evolution of 

the respective spectral features is better reproduced, as shown in Figure 6(b) for T=4 hrs. 

This is done by manually limiting the dataset to the range T1-T2, and extracting the correlation 

data for each range, which is rather laborious and is not easily facilitated by the MIDAS 2010 

GUI. Rather, the MIDAS 2010 GUI plots features of the original spectral data as a function of 

time, whether before or after subtraction of a static background, if appropriately identified by 

the correlation procedure (Figure 6(c)). 

4. Two dimensional correlation analysis of Experimental Datasets 

4.1. A549 Nucleolus after DOX exposure 

Figure 7(a) shows the synchronous contour plot of the two dimensional correlation analysis 

of experimental data of Raman microspectroscopic analysis of the nucleoli of A549 cells 

exposed to DOX at the IC50 concentration of 0.6M (24 hrs, MTT assay) over a period of 0-

72 hrs, as reported by Farhane et al..[39] The zero hour control has been subtracted as a static 

component. Figure 7(b) shows the corresponding asynchronous contour plot. The diagonal 

autocorrelation profile is dominated by the spectrum of DOX, as shown in Figure 8, which 

has strong features at, for example, 440 cm-1, 465 cm-1 (C-C-O and C-O), bands 

corresponding to C-O, C-O-H and C-H in the region between 1200 and 1300 cm-1, and at 

1445 and 1570 cm-1, related to skeletal ring vibrations[43,44]. In addition, there are a number of 

weaker peaks evident in the region of ~780 cm-1, 1000-1100 cm-1, and ~1600 cm-1, which 

represent the cellular responses to DOX exposure[39]. 

By analogy to the analysis of the simulated spectral model of Section 3, the independent 

evolutions of the spectral responses are best extracted by analysis of the asynchronous 

correlation plot (Figure 7(b)). Of specific interest is the instantaneous response of cellular 

spectral features as a result of DOX binding, which are directly correlated with the time 

dependent evolution of the DOX spectrum, as represented by the strongest DOX peak at 1217 



cm-1 and the subsequent evolution of the cellular spectra as a result of the interaction. Figure 

9(a) shows the vertical cross section of the asynchronous correlation analysis at a wavenumber 

of 1217 cm-1. The appearance of characteristic DOX features at ~440 cm-1 and 1220 cm-1 may 

be the result of metabolisation or aggregation of the drug in the cell nucleolus. Additional 

prominent features at ~1047 cm-1, 1200-1300 cm-1, and ~1440 cm-1 may be associated with the 

long term cellular response to drug binding in the nucleolus of the cell. The spectral profile of 

the vertical cross section at 1047cm-1 reveals negatively correlated features at 785 cm-1 and 810 

cm-1, as well as a weaker feature at ~1090 cm-1 and a broader feature at ~1640 cm-1, as shown 

in Figure 9(b).  

By analogy to the analysis of the simulated data of Figure 3, the peaks of the asynchronous 

features identified in figures 9 can be considered to be associated with spectroscopic signatures 

of the responses of the nucleolus to uptake of the chemotherapeutic agent, DOX (b), and the 

subsequent cellular responses (a), respectively. The initial response is correlated with the DOX 

spectroscopic profile and thus may be considered as the signature of the initial chemical 

binding of the DOX with nucleolar RNA, while the second spectral signature, asynchronous 

with the DOX signature, is characteristic of the subsequent cellular response, in the nucleolus. 

Figure 10 plots the temporal evolution of the spectral features, after subtraction of the control 

spectrum, of the DOX exposed A549 nucleolus, at 465 cm-1 (DOX), 785 cm-1 (RNA/DNA O–

P–O stretching) and 1047 cm-1 (RNA P–O stretching, sugar phosphate –C–O–stretching). The 

(negative) evolution of the 785 cm-1 feature clearly follows that of the characteristic 465 cm-1 

DOX feature, saturating at ~ 12 hrs. The feature at 1047 cm-1 continues to evolve, however, as 

the metabolism of the nucelolus responds to the drug interactions. 

The previous study by Farhane et al.,[39] using multivariate statistical analysis, consisting of 

Partial Least Squares Regression (PLSR) and Independent Components Analysis (ICA) 

showed a similar chemical binding signature in the nucleoli of the cells after short term DOX 



exposure for both A549 and Calu-1 cell lines, related to RNA/DNA interaction, resulting in a 

decrease of both bands at 785 cm−1 (DNA backbone O–P–O) and 813 cm−1 (RNA O–P–O 

phosphodiester band stretching). The signatures of the nucleolar interactions for both cell lines 

are remarkably similar to the profile of the (1047 cm-1) cross section of the asynchronous 

component of the two dimensional correlation analysis, further associating it with the signature 

of the direct binding of the drug in the cell. 

The uptake of DOX in the nucleolus, and the DOX-RNA/DNA intercalation is seen to saturate 

after 2-6 hrs.[39] After saturation, for the nucleolar regions, Independent Components Analysis 

(ICA) of the later exposure times revealed a notable decrease in cellular features at 728 cm-1 

(adenine) 785 cm-1 (cytosine, thymine and DNA backbone O–P–O), 813 cm-1 (RNA O–P–O 

stretching), 1095 cm-1 (DNA PO2
_ symmetric stretching) and 1376 cm-1 (thymine), consistent 

with a decrease in nucleic acid contributions due to the DOX mechanism of action inducing 

alteration of nucleolar structure, size, shape and as a consequence cellular apoptosis.[41] These 

characteristics are consistent with the features of the (1217 cm-1) cross section of the 

asynchronous component of the two dimensional correlation analysis.  

Notably, very similar profiles were observed for the case of Raman microspectroscopic 

analysis of the nucleolar regions of similarly DOX exposed Calu 1, non-small-cell lung cancer 

cells, as shown in Supplemental Figures S1-S2. It is notable, however, that the asynchronous 

cross sections of A549 and Calu 1 cells (Figure S2(b)) at 1217 cm-1 are significantly different. 

This was also observed in the multivariate analysis of Farhane et al.,[39] and was proposed to 

potentially hold the key to the different sensitivities of the two cell lines to the drug, related to 

anti-apoptotic and DNA repair mechanisms.[31] 

 

5. Conclusions 



As example of a label free analytical technique, Raman microspectroscopy has been 

demonstrated to be a viable alternative to expensive and time consuming conventional high 

content analysis protocols. Nevertheless, it is important that the information that the spectral 

profiling can yield can be effectively and efficiently data mined. This work demonstrates that 

two dimensional correlation analysis of Raman microspectroscopic signatures of the 

subcellular interactions of drugs in vitro can identify and differentiate the characteristic 

signatures of the initial chemical binding of the drug, and the subsequent cellular response, in 

a single operation. The use of simulated datasets provides a valuable validation of the 

technique, confirming that the true temporal evolutions of the identified characteristic features 

are faithfully reproduced. The study further illustrates the potential of Raman 

microspectroscopic subcellular analysis for cytological processes, and the similarities of the 

initial binding signatures in different cell lines suggest applications for in vitro preclinical 

candidate drug screening, which the differences in the response signatures for different cell 

lines suggest sensitivities of the technique to cellular resistance pathways and potential 

applications in patient screening for Companion Diagnostics strategies. 

 

Supporting Information  

Additional supporting information may be found in the online version of this article at the 

publisher’s website. 

Figure S1: (a) Synchronous contour plot of the two dimensional correlation analysis of 

experimental data of Raman microspectroscopic analysis of the nucleoli of Calu 1 cells 

exposed to DOX. The 0 hrs non exposed control has been subtracted as a static component. 

(b) Asynchronous contour plot of the two dimensional correlation analysis of experimental 

data of Raman microspectroscopic analysis of the nucleoli of Calu 1 cells exposed to DOX. 

The dashed lines indicates the vertical cross sections at 1047 cm-1 and 1217 cm-1. 



Figure S2: (a) Vertical cross section of the asynchronous correlation analysis (Figure S1(b)) 

at a wavenumber of 1217 cm-1. (b) Vertical cross section of the asynchronous correlation 

analysis (Figure S1(b)) at a wavenumber of 1047 cm-1. 
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Figure 1: Schematic representation of workflow of (i) cell culture (ii) drug exposure (iii) 

cytotoxicity assessment (iv) cell fixation and subcellular Raman microspectroscopic analysis 

(v) data preprocessing (v) two dimensional correlation analysis 

 

  



Figure 2: (a) Average Control spectra of the nucleoli of A549 cells. Also shown are the 

simulated spectral signatures of DOX binding (Response 1) and subsequent cellular response 

(Response 2). Spectra are normalised to a maximum intensity of 1. Band wavenumbers are: 1. 

785 cm-1, 2. 810 cm-1, 3. 1047 cm-1, 4. 1095 cm-1, 5. 1271 cm-1, 6. 1444 cm-1, 7. 1683 cm-1, (b) 

Simulated time evolution of the cellular spectral responses to DOX uptake in the A549 cell 

nucleolus, (c) Mean Control spectra of A549 nucleolus, and spectra with added simulated 

responses, between 700 and 1200 cm-1, after 20 and 72 hrs DOX exposure. 
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Figure 3: Synchronous contour plot of two dimensional correlation analysis of A549 nucleolar 

spectra with simulated response to DOX exposure over the time period 0-72 hrs, (a) before and 

(b) after subtraction of the control (0 hrs) spectrum as static component. Dashed lines in (b) 

show the autocorrelation diagonal and the vertical cross section at x= 785 cm-1. 
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Figure 4 (a) Diagonal autocorrelation peaks of two dimensional correlation analysis of A549 

nucleolar spectra with simulated response to DOX exposure over the time period 0-72 hrs. (b) 

vertical section of synchronous correlation analysis at 785 cm-1, after subtraction of the control 

(0hr) spectrum as static component. Band wavenumbers are: 1. 785 cm-1, 2. 810 cm-1, 3. 1047 

cm-1, 4. 1095 cm-1, 5. 1271 cm-1, 6. 1444 cm-1, 7. 1683 cm-1 
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Figure 5: (a) Asynchronous contour plot of two dimensional correlation analysis of A549 

nucleolar spectra with simulated response to DOX exposure over the time period 0-72 hrs. 

Dashed lines show the diagonal and vertical cross sections at x= 785 cm-1 and x=1047 cm-1 (b) 

vertical section of asynchronous correlation analysis at 785 cm-1 (solid line) and 1047 cm-1 

(dotted line). Band wavenumbers are: 1. 785 cm-1, 2. 810 cm-1, 3. 1047 cm-1, 4. 1095 cm-1, 5. 

1271 cm-1, 6. 1444 cm-1, 7. 1683 cm-1 
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Figure 6: Autocorrelation intensity for the features at 785 cm-1 and 1047 cm-1, with (a) an 

increasing correlation window 0-T, in intervals of 4 hrs (b) a moving correlation window T = 

4hrs. (c) shows the evolution of the spectral features at 785 cm-1 (Response 1) and 1047 cm-1 

(Response 2) as identified by the MIDAS 2010, after subtraction of the static component. 
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Figure 7: (a) Synchronous contour plot of the two dimensional correlation analysis of 

experimental data of Raman microspectroscopic analysis of the nucleoli of A549 cells exposed 

to DOX. The 0 hrs non exposed control has been subtracted as a static component. (b) 

Asynchronous contour plot of the two dimensional correlation analysis of experimental data of 

Raman microspectroscopic analysis of the nucleoli of A549 cells exposed to DOX. The dashed 

lines indicate the vertical cross sections at 1047 cm-1 and 1217 cm-1. 
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Figure 8: Diagonal autocorrelation of (Figure 7(a)) synchronous correlation analysis of 

experimental data of Raman microspectroscopic analysis of the nucleoli of A549 cells exposed 

to DOX. The 0 hrs non exposed control has been subtracted as a static component. 

Characteristic DOX features are indicated as: 1. 440 cm-1, 2. 465 cm-1, 3. 1200 cm-1, 4. 1300 

cm-1, 5. 1445 cm-1, 6. 1570 cm-1. 

 

  



Figure 9: (a) Vertical cross section of the asynchronous correlation analysis (Figure 7(b)) at a 

wavenumber of 1217 cm-1. DOX features are indicated by 1. 440 cm-1, 4. 1220 cm-1. Cellular 

response features are indicated by 2. 1047 cm-1, 3. 1200 cm-1, 5. 1300 cm-1, 6. 1440 cm-1 (b) 

Vertical cross section of the asynchronous correlation analysis (Figure 7(b)) at a wavenumber 

of 1047 cm-1. Features at 1. 785 cm-1, 2. 810 cm-1, 3. 1090 cm-1, 4. ~1640 cm-1 are indicated. 

(a) 
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Figure 10: Temporal evolution of the spectroscopic features of the DOX exposed A549 

nucleolus as a function of time. Solid lines are a guide to the eye. 
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