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[1] Knowledge of multidimensional correlation functions is crucial for understanding the
anisotropy of turbulence. The two‐dimensional (2‐D) spatial correlation functions (SCFs)
obtained in previous studies of space plasma turbulence were restricted to large‐length
scales and covered a limited angular domain of the two‐point separation vector with
respect to the mean magnetic field. Here we aim to derive 2‐D SCFs with smaller‐length
scale and nearly full angular distribution for the fluctuations of the number density and
magnetic field in magnetosheath turbulence. We use the Cluster four‐spacecraft
measurements of the fluctuations with respect to a temporally and spatially varying
background magnetic field to construct the 2‐D SCFs. We find that the correlation
function of the density fluctuations shows a pattern similar to that of the magnetic field
fluctuations, both of which appear to be composed of two populations, whereby the
major population extends along the coordinate parallel to mean magnetic field (Sk) and the
minor one deviates toward the perpendicular coordinate (S?). This pattern of 2‐D SCFs
implies that the energy of magnetosheath turbulence seems to cascade, in the inertial
range close to the ion scale, mostly transverse to the background magnetic field and
meanwhile partly along the field (i.e., k? � kk).
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1. Introduction

[2] Turbulence in magnetized space plasma has been
studied for more than four decades, and gradually its basic
as well as detailed characteristics have been revealed,
especially for solar wind magnetohydrodynamic turbulence
[Tu and Marsch, 1995; Goldstein et al., 1995; Bruno and
Carbone, 2005]. However, there still remain a lot of
unsolved problems and issues, one of which is the nature
and origin of the anisotropy of turbulent fluctuations in
k vector space. An alternative to the description of turbulence
by an energy spectrum in Fourier space is the description in
real space by a multidimensional spatial correlation function
(SCF), which can more easily be derived from the in situ
measurements than a multidimensional power spectral den-
sity (PSD). The two‐dimensional (2‐D) SCF corresponding
to large‐scale solar wind turbulence was firstly presented by

Matthaeus et al. [1990], who used multiple data sets from a
single spacecraft. The lower limit of the separation distance
(vector S with the longitudinal, Sk, and transverse, S?,
component with respect to the mean field) considered in that
paper was 105 km, which is 3 orders of magnitude larger than
that of the typical ion gyroradius (ri) in the solar wind. The
correlation length of solar wind turbulence was estimated
based on cross‐correlation analysis of simultaneous two‐
point measurements [Matthaeus et al., 2005;Weygand et al.,
2009]. Recently, Osman and Horbury [2007] used Cluster
four‐spacecraft data to estimate the 2‐D SCF of solar wind
turbulence, with the lower limit of the separation distance (S)
being 2 × 103 km (∼20 ri). However, the spatial extent of that
correlation function is far from a full coverage of the 2‐D S

space. To present such a 2‐D SCF with a nearly full angular
distribution and more complete coverage of the separation
distances down to 5ri is the main objective of this paper.
Besides the SCF derived in this article, second‐order struc-
ture function obtained by using the four‐satellite technique is
another way of studying the wave vector anisotropy of tur-
bulence [Chen et al., 2010]. They revealed that the second‐
order structure functions for both perpendicular and parallel
fluctuations between ion and electron scales are anisotropic,
with the values at large angles to magnetic field being greater
than smaller angles.
[3] To obtain such a comprehensive correlation function

for solar wind turbulence, the time range of the data required
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must be long enough to cover a wide distance range and to
include various angles of the solar wind velocity with
respect to the mean magnetic field (�VB). However, the
Cluster satellites can only stay in the continuously undis-
turbed solar wind for quite a short time, and thus are not able
to meet this requirement. In contrast, the Cluster measure-
ments made in the magnetosheath can cover a wider range
of �VB. Therefore, we chose the magnetosheath turbulence
as our target. However, magnetosheath turbulence is more
complicated than solar wind turbulence [see Alexandrova,
2008, and references therein]. In the magnetosheath,
Alfvén‐Ion cyclotron (AIC) and mirror‐mode waves may be
excited by linear instability due to the dominant ion tem-
perature anisotropy (with T? > Tk) [Schwartz et al., 1996;
Lucek et al., 2005]. These modes, if they exist, should result
in prominent spectral peaks at low frequencies. Their wave
vector features were already investigated [e.g., Narita
and Glassmeier, 2006]. A mirror‐mode‐like cascade was
inferred by Sahraoui et al. [2006], on the basis of fluctua-
tions with zero frequency in the plasma frame and a domi-
nant perpendicular wave vector (k?).Mangeney et al. [2006]
studied, using Cluster C1 spacecraft measurements, the 1‐D
reduced PSD of magnetic field fluctuations on the electron
scales and found it to be strongly anisotropic, with most
energy residing at an angle �VB around 90°. This kind of
1‐D reduced PSD was found to become concentrated around
�VB ∼ 90°, when the spacecraft frame frequency exceeded
the ion cyclotron frequency [Alexandrova et al., 2008].
Their results imply the k? � kk wave vector anisotropy
[Leamon et al., 1998; Horbury et al., 2008]. However, the
2‐D PSD (or its inverse Fourier transform, the 2‐D SCF) of
the magnetosheath turbulence has not yet been established.
Below we will show that, the wave vector anisotropy pre-
viously found in 1‐D reduced PSDs is again consistent with
our findings of the anisotropy of 2‐D SCF.
[4] Compressive fluctuations, e.g., magnetic field strength

and density fluctuations, are another important component
of turbulence besides transverse magnetic field fluctuations.
Their energy cascades are theoretically predicted to be a
kind of passive scalar turbulence [Goldstein et al., 1995],
both at the inertial and dissipation scales, due to their
nonlinear interactions, e.g., with kinetic Alfvén waves
[Schekochihin et al., 2009]. Parallel magnetic field fluctua-
tions d Bk

2 in the magnetosheath, one kind of compressive
fluctuations, were found to have larger PSD for large �VB

than that for small �VB (the index to k? � kk wave vector
anisotropy) [Alexandrova et al., 2008]. Marsch and Tu
[1990] found that, in the inner heliosphere, the density
spectra below 10−2 Hz for the low‐speed and high‐density
flows come close to a −5/3 spectral law supporting the
concept of a passive modulation of the density by Alfvénic
fluctuations, while the density spectra for the high‐speed
and low‐density flows reveal a flatter high‐frequency part,
and there do not obey the −5/3 power law. Rapid fluctuation
of electron density up to 2.5 Hz in the solar wind has been
studied by Kellogg and Horbury [2005], who also reported a
similar flattering of the lowest‐density spectra. According
to our knowledge, the wave vector anisotropy of density
fluctuations in the magnetosheath turbulence has not yet
been addressed.
[5] In this article, we present 2‐D SCFs of density and

magnetic field fluctuations in themagnetosheath by employing

the method proposed by Horbury [2000] and Osman and
Horbury [2007] to the Cluster FGM and EFW data sets.
We find that both of the 2‐D SCFs show a two‐population
structure, like the “Maltese cross” introduced by Matthaeus
et al. [1990]. According to Figure 3 of Matthaeus et al.
[1990], the quasi‐2‐D population becomes noticeable in
the 2‐D SCF for large parallel scales (Sk > 1500 Mm∼ 15 ×
103ri). Here in our case, the scale of appearance of quasi‐2‐D
population extends down to 5ri. This result indicates a
composition of the PSD by two populations for the magne-
tosheath turbulence, within a k range of [1/70, 1/5] ri

−1, where
the perpendicular PSD population dominates over the parallel
one (i.e., k? � kk).

2. Data Analysis of Cluster Measurements

2.1. Overview of Cluster Measurements
in the Magnetosheath

[6] The data sets used here were obtained from mea-
surements by the FGM [Balogh et al., 2001], EFW
[Gustafsson et al., 2001], and CIS [Rème et al., 2001]
instruments aboard Cluster [Escoubet et al., 2001] and cor-
respond to the period from 0000 to 0600 UT on 19 December
2001, when Cluster stayed in the magnetosheath. The
magnetosheath turbulence on this day was already studied
by Mangeney et al. [2006] and Alexandrova et al. [2008],
however their study was limited to its �VB variation of 1‐D
reduced PSDs of magnetic field fluctuations. Figure 1 shows
an overview of the Cluster C1 measurements made during
this time. The time variation of the three magnetic field
components (Bx, By, Bz in the GSE coordinate system) with
a spacecraft spin resolution of 4 s is illustrated in Figure 1a.
The bulk flow velocity components in the GSE coordinate
system are displayed in Figure 1c, and the angles between
the velocity and magnetic field vectors (�VB) are shown in
Figure 1d, which reveals a wide range of variations. The ion
number density variation, as measured by HIA on CIS
with a time resolution of 4 s, is plotted as the black line in
Figure 1b. The red line in Figure 1b represents the electron
number density, which was derived from the EFW probe
spacecraft potential in calibration with the HIA ion number
density. According to Pedersen et al. [2008], the connection
between electron densities and EFW potentials can be
established by calibrating them with the electron densities
from WHISPER [Décréau et al., 1997] or ion densities from
CIS/HIA, both of which are in good agreement in the solar
wind and magnetosheath. We do not have the electron
densities from WHISPER, which may be due to the absence
of Langmuir waves there. Therefore, the HIA ion densities
are used as a benchmark for calibration. From Figure 1b, we
can infer consistency between the ion and electron number
densities.

2.2. Mapping of Temporal Cross Correlations
Onto Coordinate Space

[7] The Cluster four‐spacecraft measurements are advan-
tageous over a single‐spacecraft measurement in analyzing,
with varying separation vectors, the spatial correlations
between field variables, since Cluster measurements can
produce six time‐cross‐correlation series in a given time
interval, and each series contains different separation dis-
tances and various unit separation vectors. Following
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Osman and Horbury [2007], we rewrite the cross correlation
of the fluctuations (e.g., d B?) measured by ith and jth
spacecraft over a time interval T asRd B?

i,j (t), where t(=tj− ti)
denotes the time lag t of the sampling by the jth spacecraft
with respect to the sampling by the ith spacecraft. The
separation vector S corresponding to t is given by the
relation, S = ri,j − Vflow t, where ri,j(=rj − ri) is the separation
vector between the positions of the jth and ith spacecraft,
and Vflow is the plasma bulk flow velocity vector. Similar to
Osman and Horbury [2007], we removed all the time lags
which yield ∣VA t∣/∣ri,j − Vflow t∣ > 0.2, and thus are
expected to break Taylor’s hypothesis, which we wanted to
avoid. Taylor’s hypothesis is usually not valid for analyzing
spatial correlation based on the measurements from only one
satellite in the magnetosheath, especially in the subsolar
region. However, when we estimate the spatial correlation
based on the measurements at multiple separated positions,

the validity still holds under certain condition we described
above, which means that the separation distance of fluc-
tuations is much larger than the wave traveling distance and
thus avoids the influence of wave temporal fluctuations on
the spatial correlation. In our case, the Cluster 4 satellites
were in the flank of magnetosheath rather than the subsolar
region, where the average flow velocity is about 273 km/s
more than twice of local Alfvén speed (123 km/s). For every
t satisfying the Taylor’s hypothesis, we rewrite Rd B?

i,j
(t) as

Rd B?
i,j

(S). S can be expressed as Skr̂k + S?r̂? with r̂k and r̂?
being unit vectors parallel and perpendicular to the mean
magnetic field. Therefore, we have Rd B?

i,j
(Sk, S?), which is a

projection result of temporal cross correlation onto the 2‐D
coordinate space.
[8] In Figure 2, we show an example of mapping temporal

cross correlations onto the coordinate space. The relevant
time range [0222:29, 0232:29] UT is marked by a blue

Figure 1. Overview of Cluster C1 measurements in the magnetosheath during the interval [0000, 0600]
UT on 19 December 2001. (a) Time variations of Bx (black), By (red), and Bz (blue) components in GSE
coordinates measured by FGM. (b) Time variations of Ni (black) and Ne (red) measured by CIS/HIA and
EFW, respectively. (c) Time profiles of flow velocity components, Vx (black), Vy (red), and Vz (blue) in
GSE measured by CIS. (d) Time variations of �VB between B and V.
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Figure 2. An example of projecting the temporal cross correlation onto the 2‐D S space. (a) The selected
time interval [0222:29, 0232:29] UT marked by a blue shadow. (b) Six temporal cross correlations of d Ne

(black solid, red solid, green solid, blue solid, black dashed, and red dashed for C1‐C2, C1‐C3, C1‐C4,
C2‐C3, C2‐C4, and C3‐C4, respectively) and one autocorrelation of C1 measurements (black dotted).
(c) Projection of the six temporal cross correlations of d Ne onto the 2‐D S space by using the method
described in section 2.2. (d) Temporal cross correlations and autocorrelation of d B?, with the line
styles having the same meaning as in Figure 2b. (e) Projection of the six temporal cross correlations of
d B? onto the 2‐D S plane. (f and g) The case for d Bk.
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shadow in Figure 2a, corresponding to a time interval T of
10 minutes. The angle �VB usually does not change a lot
during 10 minutes. If we set a longer time interval, e.g.
30 minutes, �VB will vary in a wide range during the
30 minutes (see Figure 2a). If we shorten the time interval to
a smaller value, saying 1 minute, then few correlation times
will be included and the correlation result may be not
reliable. The correlation time is estimated to be about

0.5 minute according to the formula TC =
R

R �ð Þ!0

0

R(t)/R(0)dt

as applied to the correlation profiles in Figure 2, where t is
the time lag and R is the correlation coefficient. The tem-
poral cross correlations between different pairs of density
fluctuations (d Ne) are displayed in Figure 2b, and they
are projected onto the coordinate space (2‐D S space) in
Figure 2c. The abscissa (Sk) and ordinate (S?) in Figure 2c
are plotted in unit of ri, which is ∼105 km in this case. The
separation distance between two different satellites is around
2000 km. Figures 2d and 2e show the mapping of the
temporal cross correlations for d B? onto the 2‐D S space.
d B? is defined as d B · (b̂ × x̂), where b̂ is the unit vector of
local mean magnetic field and x̂ is the unit vector of x axis of
GSE coordinates. We assume that d B? is rotational sym-
metric about local mean magnetic field. This definition of
d B? is used hereafter. It can be inferred that, in this time
interval, the d Ne as well as d B? sequences measured by the
four Cluster spacecraft are similar and apparently highly
cross correlated, since the six temporal cross‐correlation
profiles resemble the temporal autocorrelation profiles
(black dotted lines in Figures 2b and 2d).
[9] We note a spacecraft spin effect in the d Ne time series,

which originates from the asymmetric plasma distribution
around the satellite caused by wake effects or photoelectrons
[Pedersen et al., 2008], and which must be eliminated
before making a temporal correlation. Otherwise, an artifi-
cial periodic oscillation would be added on the profile of the
correlation coefficient. Such artificial periodic oscillation
cannot be completely removed by applying a multinotch
filter to the d Ne time series, since the residual spin harmonic
spikes of the related PSD would still remain, however we

modify the filter. Alternatively, we find that the running‐
averaged d Ne with a time width of 2 s leads to a correlation‐
coefficient profile which gives the same trend as the original
one without artificial oscillations, and which therefore is
adopted for our study. We resampled the d B? time series,
with an original sampling rate of 22/s, to create a new one of
5/s, in order to be consistent with that of the d Ne time series.
We note that the aliasing in frequency domain caused by
downsampling does not affect significantly the correspond-
ing PSD probably due to the power law shape of PSD, which
means that the downsampled time profiles can still be used
without suppressing the aliasing effect.

2.3. Establishment of 2‐D Spatial Correlation
Functions and Their Reliability

[10] For other time intervals different from that in Figure 2,
there are many more �VB values, corresponding to different
profiles of the correlation coefficient. Over the duration
of 6 h, we apply a running window with a time interval T
of 10 min and a time step D T of 2.5 min, to get a set of
correlation‐coefficient profiles with a wide range of �VB.
We select out those time ranges when the maximum values
of the six correlation‐coefficient profiles are all larger than
0.6, and then project the chosen temporal cross correlations
onto the 2‐D S plane. The correlation threshold of 0.6 is
selected after practical experiences. We find that, when all
the six cross‐correlation profiles have maximum correlation
coefficients (Rm) larger than 0.6, they appear similar to each
other with some shift of time lags, which indicates a nice
cross correlation between the four satellite measurements.
For the other time intervals with Rm < 0.6, the correlation
profiles deviate a lot from each other, which implies the
unreliability of the cross‐correlation results. This 2‐D S

plane is divided into many square cells with a size of 1.2 ×
1.2 in units of ri. The spatial correlation coefficient of every
square cell is thus assigned to an average of the correlation
coefficients corresponding to it. In this way, 2‐D the
spatial correlation function (SCF) is obtained. The resulting
2‐D SCFs for d Ne, d B?, and d Bk are illustrated in
Figures 3a, 3b, and 3c. The scale length revealed by the
SCFs ranges between 5 ri and 70 ri. It is interesting to find

Figure 3. Two‐dimensional spatial correlation functions (SCFs) for (a) d Ne, (b) d B?, and (c) d Bk. The
derivation of them is described in section 2.3.

HE ET AL.: 2‐D CORRELATION FUNCTION OF MAGNETOSHEATH TURBULENCE A06207A06207

5 of 9



that the d Ne SCF shows a structure similar to that of the d
B? SCF. From Figure 3, we find that the contour of higher
correlation (in red) is extending along Sk, while the contour
of intermediate correlation (in yellow and green) is ex-
tending in various directions mainly with angles to S? being
less than 45°. Therefore, the major population of the cor-
relation function comes from the contours along Sk, and the
minor population from the fan‐like contours deviating
toward S?. However, the SCF for d Bk is not as fully filled
as that for d Ne, and some difference appears between them.
In theory, both the d Bk and d Ne represent the compress-
ibility of magnetized plasma. For the compressional wave
propagating at a certain angle with respect to background
magnetic field (�kB), the enhancement of either magnitude is
expected to be accompanied with an increase of the other
one. However, the compressibility ratio between the PSD of
d Bk and d Ne varies when the compressional wave propa-
gates at different �kB. This variation of the compressibility
ratio might result in the pattern difference between d Bk PSD
and d Ne PSD, and likewise d Bk SCF and d Ne SCF. It is still
unknown why the pattern of d B? SCF looks similar to that of
d Ne SCF.
[11] We note that it is difficult to estimate the parallel and

perpendicular correlation lengths (lk and l?) for both the
major and minor populations of the SCF by using an
assumedmultivariate nonlinear fitting function SCF(Sk, S?) =
a · exp(−Sk/lk1 − S?/l?1) + (1 − a) · exp(−Sk/lk2 − S?/l?2),
where the parameters (a, lk1, l?1, lk2, l?2) to be fitted
represent the energy fraction of major population, the par-
allel and perpendicular correlation lengths for major and
minor populations, respectively. It is also difficult to define
lk and l? as the width at a correlation level of exp(−1) ∼ 0.36,
since the SCFs obtained in this data analysis do not have a
complete coverage in the coordinate space, as the coordinates
extend beyond 70 ri and the correlation coefficients approach
to lower correlation levels. As an alternative, the correlation
length is assigned to the width at a relatively higher correla-
tion level. The major population of the observed SCF struc-
tures is thus estimated to have a parallel correlation length
around 60 ion Larmor radii and a perpendicular correlation
length around 10 ion Larmor radii, if we define the correlation
length to be the width at a correlation level of 0.65 for
d Ne SCF and 0.75 for d B? SCF. The lower correlation level
for d Ne SCF than that of d B? SCF might be due to a partial
decorrelation of density fluctuations, which is transformed
from the electric potential with certain uncertainty.
[12] Next we need to check whether our method, yielding

these two maps of the mean correlation‐coefficient distri-
bution, is reliable in describing the 2‐D SCFs of magne-
tosheath turbulence. According to Matthaeus et al. [1986],
turbulence can be considered as weakly stationary if its
correlation function is independent of the start point in time,
and if the fluctuations are nearly ergodic, which is the case
given the time duration is long enough, say much larger
than the correlation time. Therefore, in our study the
selected time series of d Ne and d B? can be regarded as
weakly stationary and almost ergodic, since the correlation‐
coefficient profiles change little when the start time is shifted
somewhat (but by less than 2 min to guarantee a similar �VB),
and as the chosen time interval T (10 minute) is much longer
than the correlation time (∼0.5 minute). Moreover, the mag-
netosheath downstream tends to be almost stationary during

6 h, within which the solar wind upstream usually remains
in a steady state.
[13] Figure 4 demonstrates the reliability of our sugges-

tion to regard the distribution of correlation‐coefficient
averaged in every cell as being representative of the real 2‐D
SCF. Figures 4a and 4b illustrate the estimated standard
deviation s and the number of counts (n) of correlation
coefficients falling in each cell for d Ne. Figure 4c shows the
confidence interval CI for the mean correlation coefficient in
every cell, which is calculated by means of the formula
CI = 2 · tC,n · s/

ffiffiffi

n
p

, with tC,n being the upper (1 − C)/2
critical value for the t distribution with n − 1 degrees of
freedom. The confidence level C adopted here is 95%. The
smaller CI is the more credible is the average correlation
coefficient. We can therefore have trust in our SCFs shown
in Figure 3, since most parts of CI (<0.25) are smaller than
the minimum value of the SCFs. Figures 4d, 4e, and 4f
shows the reliability of d B? SCF.
[14] To see how the PSD of the fluctuations of number

density and magnetic field change along with �VB, we
estimate the slopes of PSD in both the lower and higher
frequencies for different �VB and plot them in Figure 5. The
different points (�VB, slope) in Figures 5b, 5c, 5e, and 5f
correspond to fluctuations measured by Cluster C1 in dif-
ferent time ranges, which were selected in section 2.3, with
all of the six cross‐correlation profiles in that time range
having maximum values exceeding 0.6. For the fluctuations
measured by the other three satellites, they show similar
results. The PSD of density fluctuations (Figure 5a) shows an
enhancement just below the spectral break (at ∼0.6–0.7 Hz).
The PSD of d Bk in the same time range also has a bump at
the same frequency. The bump in both PSD of d Ne and d Bk
may be interpreted as a signature of mirror mode [Schwartz
et al., 1996; Sahraoui et al., 2006] which has a wave vector
anisotropy with k? � kk, as inferred from the observed
SCFs. Figure 5d illustrates the PSD of d B?. There is a small
bump around the spectral break (0.1–0.2 Hz), which may be
related to the presence of Alfvén vortices [Alexandrova
et al., 2006]. The magnetic structures associated with
Alfvén vortices are like field‐aligned current tubes, which
cause the magnetic field disturbances to have the wave
vector anisotropy (i.e., k? � kk). This anisotropy is again
consistent with the anisotropic SCFs presented here. We
find that there are rising trends of spectral indices with �VB

for both PSD(d Ne) and PSD(d B?) in the high‐frequency
segments beyond 0.1 Hz in the spacecraft frame. The
increase of the spectral index with increasing �VB was also
reported by Horbury et al. [2008] and Podesta [2009] in the
solar wind turbulence, which may shed light on the required
turbulence model.

3. Summary and Discussion

[15] We have presented the 2‐D spatial correlation func-
tions for the compressive and transverse turbulent fluctua-
tions, d Ne and d B?, in the magnetosheath of the Earth’s
magnetosphere. It is interesting to find that both of these two
SCFs with a scale length range of [5,70] ri show similar
structures, which have a major population extending along
Sk and a fan‐like minor population deviating toward S?.
Based on this structure of SCF, one can infer that the cor-
responding 2‐D PSD may also consist of two populations,
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with the major being in the k? direction and the minor close
to the kk direction. We note that in practice a high‐quality
2‐D PSD cannot be derived from a direct Fourier transfor-
mation of the 2‐D SCF, for the reason that many parts of
the 2‐D PSD would turn out to be negative, even though the
2‐D SCF was smoothed. A new method is needed for the
reconstruction of 2‐D PSD in the future. Nevertheless, our
findings about the dominance of parallel population in SCF
(Sk � S?) indicate the dominance of perpendicular popu-
lation in multidimensional PSD (k? � kk). This indication is
consistent with the wave vector anisotropy of magnetosheath
turbulent fluctuations as revealed from �VB variation of 1‐D
reduced PSD in previous studies [e.g.,Mangeney et al., 2006;
Alexandrova et al., 2008].
[16] Theoretical prediction based on only one singe wave

mode cannot cover the whole of what we have observed.
The mixture of various modes (e.g., Alfvén (cyclotron)
waves and mirror modes) and structures (e.g., Alfvén vor-

tices and pressure‐balanced structures) may be responsible
for the complexity of observations. It appears that according
to our findings there might be two paths of energy transfer:
the major cascade is in the direction nearly perpendicular to
the local mean magnetic field, while the minor cascade is
parallel. But the wave nature underlying this anisotropic
turbulence cascade remains unclear. We may speculate
whether critical balance cascading of Alfvén waves
[Goldreich and Sridhar, 1995] or cascading of pressure‐
balanced structures (e.g., perpendicular slow magnetoa-
coustic waves [Mangeney et al., 2006] or mirror modes
[Sahraoui et al., 2006]) may be responsible for the SCF
population parallel to Sk, and if the cascading of parallel
Alfvén waves (Alfvén‐Ion cyclotron waves at high fre-
quencies) may contribute to the SCF population lying close
to S?. All these three kinds of wave mode if with oblique
wave vectors are theoretically predicted to be responsible for
the anticorrelation between electron density and magnetic

Figure 4. Credibility estimation of the 2‐D SCFs for (a, b, and c) d Ne and (d, e, and f) d B?. Distribution
of the estimated standard deviation for the correlation coefficient in every square cell (Figures 4a and 4d).
Histograms of the number count in every square cell (Figures 4b and 4e). The cells in red represent the
zero number count. Distribution of the confidence interval for the estimated mean correlation coefficient
in every square cell (Figures 4c and 4f). The related confidence level is 95%.
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field fluctuations [Lacombe and Belmont, 1995]. In general,
the 2‐D SCFs revealed here sheds new light on the anisot-
ropy of magnetosheath turbulence, and may also be relevant
to other plasmas such as the solar wind and solar corona. In
the future, to examine the development of turbulence in the
magnetosheath downstream of the bow shock, the spatial
evolution of the correlation function from the bow shock
may be also needed to be studied besides the spatial ten-
dency of intermittency investigated by Yordanova et al.
[2008].
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