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1 Introduction and summary

The geometry near D-branes is probed by lighter branes bound to them. One of the most

well-known examples is that Dp-branes bound to D(p + 4)-branes on the orbifold C
2/ZN

describe instantons on the resolved AN−1 ALE space [1].

Recently, there has been remarkable progress in the study of D0-D2 states bound to a

D6-brane on a toric Calabi-Yau three-fold. From the above viewpoint, such D-branes probe

the Calabi-Yau geometry wrapped by the D6-brane. In fact, the BPS index of the D-brane
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bound states is evaluated by counting molten configurations of a three-dimensional crys-

tal [2–6], whose crystalline structure is determined by the toric diagram of the background

Calabi-Yau three-fold [5].1 Moreover, the thermodynamic limit of the molten crystal de-

scribes the smooth geometry of the mirror Calabi-Yau three-fold [11, 12]. This suggests

that the melting crystal gives a “discretization” of the background Calabi-Yau geometry.

The generalization of the crystal melting model to D4-D2-D0 states has partially been

studied. In [13, 14], the authors considered D2-D0 states bound to a non-compact D4-brane

on a divisor of the (generalized) conifold, and constructed a two-dimensional statistical

model which reproduces the BPS index of the D4-D2-D0 states. After the success of the

D6-D2-D0 crystal melting, it is natural to expect that the structure of the two-dimensional

model is related to some property of the toric divisor wrapped by the D4-brane. However,

such a relation has not yet been clarified. The main reason for this is that the prescription

given in [13, 14] is ad hoc and not derived from the BPS condition for the D-brane bound

states.

In this paper, we derive a general method to construct a two-dimensional crystal

melting model for D4-D2-D0 states on an arbitrary toric Calabi-Yau three-fold, by solving

the BPS condition for the D-branes. We put a D4-brane on a non-compact toric divisor

D of a toric Calabi-Yau three-fold Y , and count BPS D2-D0 states bound to it. Here the

D2-branes are wrapped on compact two-cycles of Y , and the D0-branes are point-like in

Y . We particularly consider the singular limit of Y , in which D2-D0 states are realized

as fractional branes localizing at the singularity. We identify the supersymmetric gauge

theory on the D-branes, and solve the F- and D-term constraints. There is a natural torus

action on the moduli space MD4 of supersymmetric vacua, which essentially comes from

toric actions on Y . We then show that the torus fixed points of MD4 are in one-to-one

correspondence with molten configurations of a two-dimensional crystal. The crystalline

structure depends on the choice of the divisor wrapped by the D4-brane.

To give a short summary of this paper, let us first consider the simplest case of Y = C
3

and D = C
2 ⊂ Y . Since C

3 has no compact two-cycle, we can only consider D4-D0 states.

The low-energy effective theory on k D0-branes bound to a D4-brane wrapping D is a d = 1

supersymmetric U(k) gauge theory with 8 supercharges. In the d = 4, N = 2 language, the

theory includes three adjoint chiral multiplets Ba for a = 1, 2, 3 which come from D0-D0

strings with the N = 4 superpotential

tr
(
B1[B2, B3]

)
. (1.1)

There are also a fundamental and an anti-fundamental chiral multiplet I, J which come

from D4-D0 strings with the N = 2 superpotential2

JB3I . (1.2)

1There are also several works on the crystal melting description of the wall-crossing phenomena [7–9]

and refinement [10].
2Here we assume without loss of generality that B3 describes the fluctuations of the D0-branes in

directions transverse to the D4-brane.
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Figure 1. A Young diagram (left) can be regarded as a molten configuration of a two-dimensional

crystal (right). The crystal infinitely extends in the upper-right region.

It is well-known that F-term conditions associated with the above superpotential imply the

ADHM constraints on k-instantons:3

[B1, B2] + IJ = 0 . (1.3)

Here, the effect of the non-compact D4-brane clearly appears in the additional superpoten-

tial (1.2). The moduli space MD4 of supersymmetric vacua admits a natural torus action.

The BPS index is essentially equivalent to the number of the torus fixed points of MD4,

which are labeled by Young diagrams [15, 16]. Note that each Young diagram is regarded

as a molten configuration of a two-dimensional crystal composed of square boxes (figure 1).

Therefore, counting the torus fixed points is equivalent to counting molten crystals. The

aim of this paper is to generalize this to arbitrary Y and D.

When Y is a general toric Calabi-Yau three-fold and D is one of its toric divisors,

the low-energy effective theory on D-branes is identified by using the technique of brane

tiling [5]. In section 2, we briefly review the work [5] on the crystal melting model for D6-

D2-D0 states on a toric Calabi-Yau three-fold, including the technique of brane tiling. The

brane tiling was originally developed in the study of the D-brane construction of N = 1 su-

persymmetric gauge theories [17–20] (for reviews, see also [21, 22]). We particularly study

brane tilings with so-called isoradial embedding, as mentioned in subsection 3.1. The main

difference from the D6-D2-D0 case is that the D4-brane induces an additional superpo-

tential such as (1.2). In subsection 3.2, we use a technique developed in [23] to identify

such an additional potential for arbitrary Y and D. We then claim in subsection 3.3 that

the F- and D-term constraints imply that some chiral multiplets have vanishing vev’s on

supersymmetric vacua. In the above example of Y = C
3, B3 is such a chiral multiplet. The

set of chiral multiplets with vanishing vev’s is specified by a so-called “perfect matching”.

The proof of our claim is given in subsections 3.7 and 3.8, where we use the results of [24].

Based on this observation, we show that the resulting moduli space MD4 is embedded in

the moduli space MD6 of a parent D6-D2-D0 state. Here, the parent D6-D2-D0 state is

obtained by replacing the D4-brane with a D6-brane wrapping the whole Calabi-Yau Y .

The inclusion map i : MD4 →֒ MD6 is characterized by the perfect matching. We then

show in subsection 3.4 that the torus fixed points of MD4 are in one-to-one correspondence

with molten configurations of a two-dimensional crystal. This two-dimensional crystal is,

in fact, a “slope face” of the three-dimensional crystal associated with the parent D6-D2-D0

3The real part of the ADHM constraints comes from the D-term constraint.
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counting. Moreover, choosing a different divisor D of the same Calabi-Yau Y gives a dif-

ferent slope face of the same three-dimensional crystal. As described in 3.5, the boundary

of the two-dimensional crystal is given by so-called “zig-zag paths”.

In section 4, we give several examples in which Y is C
3, the conifold, the suspended

pinch point, and the orbifold C
2/ZN × C. In particular, when Y is the conifold, our

crystal melting model reproduces the triangular partition model proposed in [13]. If Y

is the suspended pinch point, our model reproduces the oblique partition model proposed

in [14]. Furthermore, when Y = C
2/ZN × C and D = C

2/ZN ⊂ Y , our model reproduces

the orbifold partition model [25–27] whose partition function agrees with the N = 4 U(1)

instanton partition function on the AN−1 ALE space, i.e. the level-one character of the

affine SU(N) algebra. Note that this example is the original setup of [1] which has been

mentioned at the very beginning. In fact, our setup is a generalization of that of [1] to

an arbitrary toric divisor. In some of the examples, we explicitly show that our model is

consistent with the wall-crossing formula for the BPS index.

One of interesting future works is to extend our result to the multiple D4-branes with

D2- and D0-branes. When Y = C
2/ZN × C and D = C

2/ZN ⊂ Y , this setup produces

the affine Lie algebra character with a higher level than one. It will also be an interesting

future problem to assign certain weights to each fixed point of U(1)2 in the moduli space

and study an analogue of the Nekrasov’s partition function [16, 28]. This generalization

should have a good realization in the string theory and the M-theory. Furthermore it should

be related to some observables of a two-dimensional conformal field theory by the AGT

relation [29]. From the viewpoint of the gauge theory on the D4-brane, this work can be

thought of as the instanton counting in the d = 4, N = 4 supersymmetric gauge theory on

a toric divisor.4 There are several interesting works [31–33] on the crystal melting in this

context. It is worth studying the relation to these works. It would also be interesting to

apply our method to a Calabi-Yau three-fold with compact four-cycles. Although we do not

explicitly consider such an example in this paper, the application is straightforward. When

Y contains compact four-cycles, the melting crystals also count the charge for compact

D4-branes. In particular, it would be interesting to study the relation to the work of [34].

Another interesting direction would be to study the connection to the works [35–39], where

the crystal melting model was studied in the context of five-dimensional supersymmetric

gauge theories. It is also worth studying the relation to the works [40–43] on the BPS

chiral operators of gauge theories on D-branes at toric Calabi-Yau singularities.

2 Crystal melting for D6-D2-D0 states

We here briefly review the crystal melting model for D6-D2-D0 states on a toric Calabi-Yau

singularity, mainly following [5]. We consider the BPS bound states of a single non-compact

D6-brane and arbitrary numbers of D2 and D0 branes, where the D6-brane is wrapping

4To be more precise, the theory is a topologically twisted N = 4 super Yang-Mills theory. The fact that

the divisor is embedded in a Calabi-Yau three-fold implies that the topological twist is the Vafa-Witten

type twist [30].
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Figure 2. Left: the toric diagram of the conifold. Each line segment s corresponds to a non-

compact curve βs in the conifold. Right: the corresponding T 2-fiber. We have a non-degenerate

T 2-fiber at a generic point of the toric base R
3. However, the T 2 degenerates to S1 along some

semi-infinite lines from pΣ. The semi-infinite lines are in one-to-one correspondence with the curves

βs. At the intersection pΣ, the T
2-fiber shrinks into a point, giving rise to a singularity.

the whole Calabi-Yau, the D2-branes are wrapping compact two-cycles and the D0-branes

are point-like in the Calabi-Yau three-fold.

2.1 Quivers on D2-D0 from brane tilings

A toric Calabi-Yau three-fold YΣ is roughly regarded as a (T 2×R)-bundle over R3, where the

T 2-fiber degenerates in a subspace specified by a toric diagram Σ. We mainly consider YΣ
without compact 4-cycles. The toric diagram Σ is a convex lattice polygon, in which every

vertex is associated with a toric divisor of YΣ. Every line segment s in Σ is associated with

a non-compact curve βs in YΣ, along which the T 2-fiber degenerates to S1. The degenerate

cycle is specified by the slope of the line segment s. Namely, if s is stretched between two

vertices (p1, q1) and (p2, q2) in Σ, then (q1− q2,−p1+p2)-cycle of T
2 degenerates along the

curve βs. The transverse (p1 − p2, q1 − q2)-cycle then generates an isometry of the curve

βs. At the intersection pΣ of all the curves βs, the T
2-fiber shrinks into a point, giving rise

to a singularity (see figure 2).

Let us consider D0-branes localized at the singularity pΣ. In order to evaluate the

supersymmetric index for such BPS D0-branes, we identify the low energy effective theory

on the D0-branes. We first take the T-duality transformation along the two directions of

the T 2-fiber, which maps the D0-branes to D2-branes wrapping the whole T 2. On the

other hand, the toric Calabi-Yau geometry itself is mapped to intersecting NS5-branes in

flat spacetime [18, 44–46] because the T-duality exchanges the source of the KK gauge

field with that of the NSNS B-field. In particular, the curve βs for every line segment s

of Σ is mapped to a single NS5-brane wrapped on a semi-infinite tube. The tube is an

S1-fibration over a semi-infinite line from pΣ in the toric base. If s is stretched between

(p1, q1) and (p2, q2), then the fiber S1 is the (p1−p2, q1−q2)-cycle of T
2 (see figure 3). The

NS5-branes also extend in R
4 transverse to the six-dimensional space we are considering.

The D2-branes wrapping T 2 at pΣ, which come from the original D0-branes, are now

divided into several “tiles” by the intersecting NS5-branes (figure 3). Here, the conservation
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Figure 3. Left: each NS5-brane is a semi-infinite line in the toric base and wrapped on a one-cycle

of the T 2-fiber. Right: all the NS5-branes intersect at the point pΣ, where we have a brane tiling

system. The red lines are the NS5-branes, which “bend” to fill up the gray regions. In the white

regions, we only have dynamical D-branes without NS5-branes. Each blue arrow is associated with

a massless chiral multiplet.

of the NS5-charge implies [47] that the intersecting NS5-branes in fact “bend” to fill up

some of the tiles (the gray regions in figure 3). To be more precise, if the boundary NS5-

branes of a tile gives a definite orientation, the tile is filled with an NS5-brane. Such tiles

are classified into two types, depending on the orientations of the NS5-brane. In figure 3,

the dark and light gray regions are filled with NS5-branes with opposite orientations. The

white regions has no NS5-branes, and are filled only with D-branes. By construction,

neither two gray regions nor two white regions share any edge. Furthermore, the corner of

a light gray region is attached to the corner of a dark gray region, and vice versa.

Now, we consider the low-energy effective theory on the D-branes. When we reduce the

two directions of T 2, we obtain a supersymmetric quantum mechanics on the world-volume

of the D-branes, whose field content can be read off from the brane configuration in T 2.

Each white region in T 2 gives a U(N0) gauge group, where N0 is the original D0-brane

charge. The gray regions give rise to no gauge multiplet because they are filled with NS5-

branes. We also have a bifundamental (or adjoint) multiplet at each intersection point of

the white regions. Such a bifundamental is expressed as an arrow from one white region to

the other (figure 3). The orientation of the arrow is determined by the relative positions

of two adjacent gray regions. We determine it so that the arrow goes from bottom to top

when the adjacent light gray region is on its left side.5 This definite orientation means that

the bifundamental (or adjoint) is not a hyper multiplet but a chiral multiplet. Thus, the

low-energy theory on the D-branes is generically a d = 1, N = 4 quiver quantum mechanics.

For example, the quiver diagram for the brane configuration in figure 3 is shown in figure 4.

For a given quiver diagram Q on T 2, we denote by Q0 the set of nodes in Q, and by Q1

the set of arrows in Q. The set of faces in Q is denoted by Q2. We sometimes denote by

Q̃ the universal cover of the quiver diagram Q.

5Of course, the adjacent dark gray region is on the right side of the arrow.
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N0

N0

N0+N2N0+N2 N0
N0+N2

A1

A2

B2

B1

Figure 4. Left: the quiver diagram Q associated with the brane tiling in figure 3. The diagram is

defined on T 2; the upper (right) and lower (left) dotted lines are identified. Here N0 and N2 are

the D0- and D2-charges on the conifold, respectively. Right: the left quiver diagram is equivalent

to the well-known quiver for the conifold.

The superpotential for the chiral multiplets comes from string disk amplitudes as-

sociated with gray regions. If a light gray region is surrounded by the chain of arrows

X1, · · · , Xn, then there is a superpotential term of the form

tr(X1 · · ·Xn) . (2.1)

Here we used the same symbol Xa to denote a chiral multiplet associated with the arrow

Xa. On the other hand, a dark gray region contributes

− tr(X1 · · ·Xm) (2.2)

to the superpotential if it is surrounded by the chain of arrows X1, · · · , Xm. The minus

sign here is due to the opposite orientation of the NS5-brane. Since each arrow is attached

to one light gray and one dark gray region, every chiral multiplet appears twice in the

superpotential.6

So far we have only considered D0-branes at the original Calabi-Yau three-fold YΣ,

which leads to the same rank of the gauge groups. Now, let us consider additional D2-

branes wrapping on some compact two-cycles of YΣ. In the singular Calabi-Yau limit, all

the compact cycles are vanishing and the D2-charges are realized as fractional D0-charges.

This means that, if we originally have N2 D2-branes on a vanishing two-cycle then the

T-duality maps them to D2-branes filling one of the white regions in T 2, which increases

the rank of the corresponding gauge group by N2 (figure 4). Thus, introducing D2-charges

changes the ranks of gauge groups.

We have seen that the T-duality maps the toric Calabi-Yau geometry to a brane tiling

system, from which we can read off the quiver diagram Q on T 2 and the superpotential.

Let us here mention the dual diagram Q∨ of Q. Namely, we consider a graph Q∨ on T 2

such that Q∨
0 ≃ Q2, Q

∨
1 ≃ Q1 and Q∨

2 ≃ Q0. In Q∨, every face is associated with a gauge

6This implies that we can set all the coupling constant in W to be +1 or −1 by rescaling the superfield

Xi. In (2.1) and (2.2), we have already taken into account such rescalings.
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Figure 5. The quiver diagram Q (left) and the dual graph Q∨ (right) on T 2. Each vertex in Q∨

is black or white colored, depending on the orientation of the dual face in Q. By construction, Q∨

is always a bipartite graph, giving a dimer model on T 2.

group while every vertex gives a superpotential term. Every line segment is associated with

a chiral multiplet. We denote this dual map by ψ : Q → Q∨. We sometimes denote the

universal cover of Q∨ by Q̃∨. We assign the color of white or black to a vertex f ∈ Q∨
0 ,

depending on the orientation of the corresponding face ψ−1(f). If ψ−1(f) is a light gray

(dark gray) face, then we assign white (black) to f . Then, it follows from our construction

that the dual diagram Q∨ is a bipartite graph where every line segment connects one black

and one white vertex (figure 5). In mathematics, such Q∨ defines a dimer model on T 2.

Therefore, we sometimes call vertices in Q∨
0 “dimer vertices” and those in Q0 “quiver

vertices”. The dimer model Q∨ plays an important role in the main part of this paper.

2.2 Adding a flavor D6-node

We now put an additional D6-brane wrapping on the whole Calabi-Yau YΣ. Since such a

D6-brane is non-compact, we can regard it as a flavor brane. In the quiver language, it

adds an additional flavor node ∗ to the quiver diagram Q. Note that the T-duality maps

the D6-brane to a non-compact D4-brane localized at a point in T 2. We assume that the

point is attached to a white tile in the brane tiling. Then the quiver has an arrow I from

∗ to another node i ∈ Q0, which describes a “quark” in the fundamental representation of

the gauge group associated with i. Thus, adding a single D6-brane implies an extended

quiver Q̂ with Q̂0 = Q0 ∪ {∗} and Q̂1 = Q1 ∪ {I}. Since there is no gauge invariant

operator involving I, we have no additional superpotential induced by the D6-brane. From

the mathematical viewpoint, the flavor node ∗ gives a “framing” for quiver representations.

2.3 Moduli space and θ-stable modules

The D-brane bound states we are considering can be seen as BPS particles in R
4, and our

aim is to evaluate the BPS index of the BPS particles. Since the D-brane world-volume

itself breaks half the supersymmetry, the BPS index is regarded as the Witten index of the

quiver quantum mechanics on the D-branes. To evaluate the Witten index, we first have

to identify the moduli space of supersymmetric vacua.

The moduli space of the world-volume theory is parameterized by supersymmetric

configurations of scalar fields. Some of the scalars correspond to fluctuations of the D-

branes in the Calabi-Yau three-fold YΣ, while the others express fluctuations in R
3. Here

the latter describes the position of the BPS particle in R
3 and we fix it. Then the remaining

– 8 –
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moduli space is exactly the same as the moduli space of a d = 4, N = 1 quiver gauge theory

with the same quiver diagram Q̂ and the superpotentialW . Below, we describe this moduli

space in terms of quiver representations.

We first define the so-called “path-algebra” CQ̂ which is generated by paths in the

quiver diagram Q̂. Any path in Q̂ starts at a node, follows some arrows and terminates at

a node. The product of two paths is defined by connecting the tail of the first path with

the head of the second path. Here, if the tail of the first and the head of the second are

not attached to the same quiver node, the product is defined to be zero. For each node

ℓ ∈ Q̂0, there is a special element eℓ of CQ̂ which corresponds to a path from ℓ to ℓ with

zero length. Since eℓ is regarded as the projection onto the set of paths terminating at ℓ,

the element
∑

ℓ∈Q̂0
eℓ is the multiplicative identity of the path algebra CQ̂. Physically, a

CQ̂-module corresponds to a configuration of chiral fields in the quiver quantum mechanics,

which might break supersymmetry.

In order to impose the F-flat condition, we consider a quotient

A = CQ̂/F (2.3)

where F is the ideal of CQ̂ generated by all the derivatives ∂W/∂Xa for Xa ∈ Q1.
7

Physically, an A-module expresses a F-flat configuration of the chiral fields. Note here that

an A-moduleM has a natural gradingM = ⊕
ℓ∈Q̂0

Mℓ whereMℓ = eℓM . Since A includes a

subalgebra isomorphic to C, each moduleMk is naturally a complex vector space. For each

k ∈ Q0, dimMk is identified with the rank of the gauge group associated with the node

k. On the other hand, dimM∗ expresses the rank of the flavor symmetry group associated

with the D6-node. Since we only have a single D6-brane, we set dimM∗ = 1.

On the other hand, the D-flatness condition is known to be equivalent to the θ-

stability [48] defined as follows. For a given set of real parameters θk for all k ∈ Q0

and θ∗, the slope function of an A-module M is defined by

θ(M) =
∑

k∈Q0

θk dimMk + θ∗ dimM∗ . (2.4)

Now, for a given A-module M , we fix θk, θ∗ so that θ(M) = 0. Then, M is called θ-stable

if every non-zero proper sub-module M ′ ⊂ M satisfies θ(M ′) < 0.8 In [48], it was shown

that θ-stable modules with complexified gauge groups are in one-to-one correspondence

with the D-flat configurations, where θk, θ∗ are identified with the FI parameters of the

quiver gauge theory. The condition θ(M) = 0 is necessary to identify θk, θ∗ with the FI

parameters. In fact, the D-term conditions are schematically written as

∑

Xa∈Sℓ

X†
aXa −

∑

Xa∈Tℓ

XaX
†
a = θℓ1 , (2.5)

where Sℓ and Tℓ are the sets of arrows in Q̂1 which start and end at ℓ ∈ Q̂0 respectively.

Summing up the trace of (2.5) for all ℓ ∈ Q̂0, we obtain θ(M) = 0. This implies that there

7Here we denote a path corresponding to an arrow Xi by the same symbol Xi.
8We here use the opposite inequality sign in comparison to [48], which is just a matter of convention.
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are |Q0| independent θ-parameters for a given A-module. In this paper, we always set θ

so that θk < 0 for all k ∈ Q0. Note that this implies θ∗ ≥ 0. Changing the θ-parameters

generically gives rise to the wall-crossing phenomena of the BPS states. For more on the

stability condition, see appendix A.

From this argument, we find that θ-stable A-modules are in one-to-one correspondence

with the supersymmetric vacua of the quiver quantum mechanics. In the next subsection,

we use this correspondence to study the torus fixed points of the moduli space. In partic-

ular, we use the fact that any θ-stable A-module M with θk < 0 for all k ∈ Q0 is a cyclic

module generated by an element m ∈ M∗, that is, M = Am [7]. In fact, if Am 6= M then

Am is a proper submodule of M with θ(Am) > 0, which contradicts with the θ-stability of

M . Note that, since M∗ is one-dimensional, such an element m is essentially unique.

2.4 BPS index and molten crystals

We now come to the main part of this section. We evaluate the Witten index in terms of

the θ-stable A-modules. First of all, the Witten index can be calculated via the localization

with respect to U(1)3 = U(1)2 × U(1)R action on the moduli space. Here, U(1)2 comes

from the toric actions on the Calabi-Yau three-fold YΣ while U(1)R is the R-symmetry of

the theory.9

To see the U(1)3-actions explicitly, let us consider a map t : Q1 → U(1). Such a

map assigns a global U(1)-action to each chiral multiplet. We require that t keeps all the

F-term conditions, or equivalently, t keeps the superpotential up to an overall rescaling.

We denote the set of all such t by T . Since the D-term constraints are obviously invariant

under t ∈ T , the moduli space of supersymmetric vacua is symmetric under the action of

T . Let us consider how many independent t-actions there are. For each face f ∈ Q2, we

define

nf =
∏

X∈∂f

t(X) , (2.6)

where the product is taken over chiral fields surrounding f . Preserving the F-term con-

ditions is equivalent to requiring that the ratio nf1/nf2 is precisely invariant for any

f1, f2 ∈ Q2. Note that the ratios are not all independent because there is an identity

∏

f∈Q2

n
sign(f)
f = 1 , (2.7)

where sign(f) = ±1 depending on the color (light or dark gray) associated with the face

f . This identity follows from the fact that any chiral field is attached to one dark and

one light gray region. Due to this, there are only (|Q2| − 2) independent ratios nf1/nf2 .

Requiring all of them invariant imposes (|Q2| − 2) constraints on the t-actions.10 We then

find T ≃ U(1)|Q1|−(|Q2|−2).

9To be more precise, U(1)R is the R-symmetry of the parent d = 4, N = 1 supersymmetry of our d = 1,

N = 4 quiver quantum mechanics.
10As we will see later, there are equal numbers of faces with sign(f) = +1 and those with sign(f) = −1.

This guarantees that the identity (2.7) is consistent with the overall rescaling of the superpotential.
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A1

A2

B2B1

∗

I

Figure 6. Left: the periodic quiver Q̃ for the conifold case, which is the universal cover of the

quiver diagram Q on T 2. Right: the three-dimensional crystal C∆∗
is obtained by putting atoms

for all the elements of ∆∗. Each finite ideal of ∆∗ corresponds to a molten configuration of the

crystal.

Note that some of the t-actions are absorbed into gauge transformations. In the

U(1)|Q0| subgroup of the gauge group, the diagonal U(1) keeps all the chiral fields invariant.

The other U(1)|Q0|−1 can absorb (|Q0|−1) degrees of freedom of T . The independent global

symmetry of the theory is thus T/U(1)|Q0|−1 ≃ U(1)3, where we used the Euler formula

for T 2: |Q0| − |Q1| + |Q2| = 0. In other words, each t-action is a U(1)3-action modulo

gauge transformations. Since θ-stable A-modules are generated by a single element m, this

U(1)3-action is naturally extended to the modules, where we set m to be invariant under T .

The U(1)3-fixed points of the moduli space are equivalent to U(1)3-invariant θ-stable

A-modules. It was shown in [4] that the latter is in one-to-one correspondence with so-called

“finite ideals” defined as follows. We first define ∆∗ to be the set of F-term equivalence

classes of paths starting at the node ∗. For any [x], [y] ∈ ∆∗, we write [x] ≤ [y] if there is

a path z and representatives x, y of [x], [y] so that y = zx. Then, a finite ideal π of ∆∗ is

defined as a subset of ∆∗ with the following property:

For any [x], [y] ∈ ∆∗ satisfying [x] ≤ [y], if [y] ∈ π then [x] ∈ π.

For a given finite ideal π of ∆∗, an A-module spanned by all the elements of π is a U(1)3-

invariant θ-stable module. On the other hand, any U(1)3-invariant θ-stable module has

its basis corresponding to a finite ideal of ∆∗. This is clearly a generalization of the fact

that the torus fixed points of the moduli space of instantons in C
2 are labeled by Young

diagrams.

What is important here is that the finite ideals of ∆∗ are expressed as molten crys-

tals [5]. To see this, we first consider the universal cover Q̃ of the quiver diagram Q, which

is also attached to the D6-node ∗ at a reference node (figure 6). We call Q̃ the periodic

quiver. We now start at ∗ and follow all the F-term equivalence classes of paths in ∆∗,

putting an “atom” on the ending node of each path. From the dimer model viewpoint, we

place an atom on a face of Q̃∨. An atom on k ∈ Q̃0 has its “color” determined by p(k)

where p : Q̃ → Q is the natural projection. When we consider two different equivalence

classes [c1], [c2] ∈ ∆∗ ending at the same node k ∈ Q̃0, we need to consider the “depth” of

atoms. It was shown in [4] that any path from ∗ to a node k ∈ Q̃0 is F-term equivalent
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to vkω
ℓ for some ℓ ∈ N, where vk is the shortest path from ∗ to k and ω is a loop around

some face of Q̃.11 Here ω and vk are not unique, but the integer ℓ is uniquely determined.

Thus, the elements of ∆∗ are completely classified by its ending node k ∈ Q̃0 and the

non-negative integer ℓ. Then the rule is that, for an F-term equivalence class [vkω
ℓ] ∈ ∆∗,

we put an atom on the node k at the depth ℓ. If we put atoms for all the elements of ∆∗,

we obtain a three-dimensional crystal C∆∗
on the periodic quiver Q̃ (figure 6). Note here

that there is a bijection f : ∆∗ → C∆∗
. For any two atoms α, β ∈ C∆∗

, we say that there

is a “bond” from α to β if there is an arrow from f−1(α) to f−1(β). It is now clear that a

finite ideal of ∆∗ corresponds to a subcrystal p of C∆∗
such that

a bond from β ∈ C∆∗
to α ∈ p implies β ∈ p.

Now, recall that the Witten index of the quiver quantum mechanics on D-branes is

evaluated as a sum over the U(1)3-fixed points of the moduli space. Since the fixed points

are in one-to-one correspondence with the molten configurations of C∆∗
, we can write the

Witten index as a sum over molten crystals p. The D2 and D0 charges for a given p are

determined by dk := dimMk for k ∈ Q0. This dk is equivalent to the number of atoms in

p which are associated with the k-th quiver node. To be more specific, let us define the

generating function of the Witten index Ω(γ) as

ZBPS =
∑

n,mI∈Z

Ω(D +mIβI − ndV )qn
∏

I

QmI

I , (2.8)

where q and QI are Boltzmann weights for D0 and D2 charges. The index I runs over

1, · · · , N where N is the number of compact two-cycles in the Calabi-Yau three-fold YΣ.

We also define the generating function of the molten crystals as

Zcrystal =
∑

p

(−1)dimCMD6
∏

i∈Q0

xdii , (2.9)

where xi is the Boltzmann weight for the i-th quiver node, and MD6 denotes the mod-

uli space of the BPS states with charges {di}. The sign factor depends on the complex

dimension of the moduli space MD6. Now, what was pointed out in [5] is that

ZBPS = Zcrystal (2.10)

holds under a suitable identification between the Boltzmann weights (q,QI) and xi. The

explicit identification between the Boltzmann weights depends on the original Calabi-Yau

three-fold YΣ.

3 Crystal melting for D4-D2-D0 states

In this section, we replace the D6-brane with a non-compact D4-brane on a toric divisor and

consider BPS D2-D0 states bound to the D4-brane. The main difference is that the flavor
11To be precise, this equivalence relies on some conditions on the dimer model. In this paper, we only

consider dimer models with “isoradial embedding” as explained in subsection 3.1. For such dimer models,

all the conditions are satisfied [4, 24, 49, 50].
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Figure 7. Left: an isoradial embedding of Q∨ on T 2, shown in its universal cover. Every vertex

f ∈ Q∨
0 at the boundary of a face k ∈ Q∨

2 is on a unit circle ck surrounding the face. Right: a dimer

model with an isoradial embedding implies a rhombus tiling of T 2.

D4-brane gives an additional superpotential term which reduces the moduli space of the

quiver quantum mechanics on the D-branes. We will show that the BPS index of the D4-

D2-D0 states is evaluated by counting two-dimensional melting crystals. We particularly

concentrate on dimer models with isoradial embedding as we explain in subsection 3.1.

3.1 Isoradial embedding

As reviewed in section 2, the brane tiling gives a dimer model Q∨ associated with the

toric Calabi-Yau three-fold YΣ. The universal cover Q̃∨ of Q∨ plays an essential role in

the construction of the crystal melting model. In the rest of this paper, we particularly

consider dimer models with isoradial embedding. The isoradial embedding is an embedding

of Q∨ in T 2 so that every vertex f ∈ Q∨
0 at the boundary of a face k ∈ Q∨

2 is on a unit

circle ck (figure 7). Dimer models with an isoradial embedding have been discussed in the

study of a class of d = 4, N = 1 supersymmetric gauge theories [20]. The necessary and

sufficient condition for Q∨ to admit an isoradial embedding is reviewed in appendix B.

What is important here is that the existence of a dimer model with an isoradial embedding

was shown in [51] for an arbitrary toric Calabi-Yau three-fold.12 In the rest of this paper,

we will focus on such a class of dimer models.

An important property of such dimer models is the existence of a rhombus tiling on

T 2. Given an isoradial embedding of Q∨, we can draw a line from a quiver vertex k to a

dimer vertex f if f is on the unit circle ck. Such lines form rhombi as in the right picture

of figure 7. Note that each rhombus is associated with a chiral multiplet Xa. The fact that

every dimer vertex is on some unit circle implies that this procedure leads to a rhombus

tiling on T 2. We will exploit this property heavily in the main part of this section.

3.2 Flavor D4-node

Let us now discuss the location of the flavor D4-brane in the brane tiling. We assume the

D4-brane is wrapping on a toric divisor D corresponding to a corner of the toric diagram

12The authors thank Kazushi Ueda for pointing out this.
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�2 �1

pΣ
NS5

NS5

NS5

NS5

D4-node

F

∗
XF

i

j J

I

Figure 8. Left: after the T-dual transformations, the D4-brane becomes a flavor D2-brane filling

up the facet F in the toric base, whose boundary is embedded in two NS5-branes along ℓ1 and ℓ2.

Right: in the brane tiling at pΣ, the intersection point of the boundary NS5-branes is attached to

two dynamical D2-branes i and j. The D4-node is located at the intersection, and induces two

massless “quarks” I and J .

Σ. The reason for this is that we want to make D non-degenerate in the singular Calabi-

Yau limit. The projection of D to the toric base is a two-dimensional facet F bounded by

two semi-infinite lines ℓ1 and ℓ2. The lines ℓ1, ℓ2 are associated with two external legs of

the toric web-diagram. The T-duality along T 2 maps the D4-brane to a flavor D2-brane

filling up the facet F. The flavor D2-brane is bounded by two intersecting NS5-branes,

each of which wraps on a one-cycle of T 2 and extends along ℓ1 or ℓ2 (figure 8). At the

intersection point pΣ of ℓ1 and ℓ2, we have a brane tiling system as in figure 3. Note

that the boundary of the flavor D2-brane is a point in T 2 and embedded in the boundary

NS5-branes. In particular, in the brane tiling system at pΣ, the flavor D2-brane is located

at the intersection point of the two boundary NS5-branes (figure 8), which gives a flavor

“D4-node”. Although we use the same symbol ∗ to denote the D4-node, it gives rise to

quite different physics from the D6-node.

In the brane tiling, an intersection of two NS5-branes is always attached to two dy-

namical D2-branes (coming from the original D2-D0 states on YΣ). This implies that the

D4-node has two massless “quarks” attached to it. To be more specific, suppose that the

D4-node ∗ is adjacent to dynamical D2-branes i and j, and there is a chiral field XF asso-

ciated with an arrow from i to j (the right picture of figure 8). Then we have a “quark”

I associated with an arrow from ∗ to i as well as an “anti-quark” J associated with an

arrow from j to ∗. The quark and anti-quark are involved in the following additional

superpotential term [23]:

Wflavor = JXF I , (3.1)

which gives additional F-term conditions

JXF = 0 , XF I = 0 . (3.2)

The total superpotential is now written as W =W0 +Wflavor. The first term W0 does not

contain I, J , and can be read off from the brane tiling as explained in subsection 2.1. The
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additional potential (3.1) also modifies the F-term condition with respect to XF as

∂W0

∂XF
+ IJ = 0 . (3.3)

Thus, we now have two different F-term constraints (3.2) and (3.3) from the D6-D2-D0 case.

Both of them are induced by the additional superpotential (3.1). In the next subsection,

we discuss how the two differences change the moduli space of supersymmetric vacua.

The location of the node i will be important in the construction of the two-dimensional

crystal melting model. In fact, it gives a framing for the quiver representation. We stress

here that i is the starting node of XF .

We also mention that the boundary NS5-branes of the facet F in general have several

intersections in T 2. For example, when the Calabi-Yau is C
2/ZN × C and the D4-brane

is on C
2/ZN , there are N different intersection points of the boundary NS5-branes. In

general, the D4-node is located at one of the intersection points, and the choice is related

to the holonomy of the gauge field at infinity on the D4-brane. We will discuss this in more

detail in subsection 4.4.

3.3 Moduli space of vacua

In this subsection, we study the moduli space MD4 of the quiver quantum mechanics on

the D4-D2-D0 state. The F-term conditions are now given by (3.2) and (3.3) together with

∂W0

∂Xa
= 0 for Xa 6= XF . (3.4)

We particularly show that the moduli space is a subspace of the moduli space MD6 of

a parent D6-D2-D0 state. Here the parent D6-D2-D0 state is obtained by replacing the

D4-brane with a D6-brane. The subspace is characterized by the invariance under the

actions of a U(1)-subgroup of U(1)2 × U(1)R. The U(1)-subgroup depends on the divisor

D wrapped by the D4-brane.

Perfect matchings. To describe this, we first introduce so called “perfect matchings”

of the dimer model Q∨. Every edge in Q∨
1 has its definite orientation from black to white

vertex. A perfect matching m is defined as a collection of such oriented edges in Q∨ so that

every vertex in Q∨
0 is attached to one and only one edge in m. All the perfect matchings

in the conifold case are shown in figure 9. We then define the “slope” (hx, hy) of perfect

matchings [18, 52]. We first fix a reference perfect matching m0 and consider mα −m0 for

every perfect matching mα, where the minus sign reverses the orientation of the edges.13

The edges in mα − m0 always form a closed oriented curve in Q∨. When lifted to the

universal cover R2 of T 2, such a closed curve divides R2 into an infinite number of regions

(figure 10). Then we define a height function on the universal cover which takes a constant

value in each region. We require that the height function changes by ±1 when we move

13To be more precise, we here regard mα and m0 as elements of a linear space over Z which is generated

by the edges in Q∨. For any edge e in Q∨, we identify −e with the same edge of the opposite orientation.

Then, for any two perfect matchings mα and mβ , the element mα − mβ can be identified with a closed

oriented curve in Q∨, or in T 2.

– 15 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
9

(0, 0)

m0

(1, 0)

m1

(0, 1)

m2

(1, 1)

m3

Figure 9. The possible perfect matchings in the case of conifold. Each perfect matching is associ-

ated with a lattice point of the toric diagram.

Figure 10. The uplift of m1−m0 to the universal cover. The red arrows divide the universal cover

into an infinite number of regions. The slopes are defined as the changes of the height function

along the two periodic directions. This example has the slope (1, 0).

to an adjacent region crossing the curve. The sign of the height change depends on the

orientation of the curve crossed. Then the slope (hx, hy) of mα is defined by the height

changes in the two periodic directions of the quotient R2/Z2 ≃ T 2 (figure 10).

What is striking here is that hx, hy give a surjective map from the perfect matchings

to the lattice points of the toric diagram Σ, where (hx, hy) represents the relative positions

of the lattice point [17, 18, 52]. For example, (hx, hy) for all the perfect matchings in

the conifold case are shown in figure 9. Note that the ambiguity of the choice of the

reference matching m0 is absorbed by shifting the origin. Since the lattice points of Σ

are in one-to-one correspondence with the toric divisors, we also have a surjection ϕ from

perfect matchings to toric divisors. Although ϕ is not necessarily bijective, a divisor D′

associated with a corner of the toric diagram has a unique perfect matching mD′ such that

ϕ(mD′) = D′ if the brane tiling admits an isoradial embedding [24, 51]. Since our divisor

D is associated with a corner of the toric diagram, we have a unique perfect matching mD.

Constraints on supersymmetric vacua. We now claim that there are two constraints

on the field configuration at supersymmetric vacua, which are derived from the F- and
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D-term conditions. The first constraint is

J = 0 , (3.5)

which reduces (3.3) back to the original one ∂W0/∂XF = 0. Although (3.5) can easily be

proven at a torus fixed point of the moduli space, it in fact holds at any point of the moduli

space of vacua. We will prove this in subsection 3.7. The second constraint is that for any

chiral field Xa ∈ Q1

Xa = 0 if ψ(Xa) ∈ mD . (3.6)

Here ψ : Q → Q∨ is the dual map. As we will see later, ψ(XF ) is always included in

the perfect matching mD. Therefore the condition (3.6) is generically stronger than (3.2).

However, we claim that (3.6) follows from (3.2) if combined with the θ-stability for θk <

0, θ∗ ≥ 0 and the other F-term conditions. We will prove this in subsection 3.8.

Now, the two different F-term conditions (3.2) and (3.3) from the D6-D2-D0 cases are

simplified; the former is replaced with (3.6) while the latter reduces back to the original

one. Moreover, the “anti-quark” J , which does not exist in the D6-D2-D0 case, vanishes on

supersymmetric vacua. Hence, the moduli space MD4 of the D4-D2-D0 state is obtained

just by imposing (3.6) on the moduli space MD6 of the parent D6-D2-D0 state. Here the

parent D6-D2-D0 state is obtained by replacing the D4-brane with a D6-brane. In other

words, MD4 is naturally regarded as a subspace of MD6. This reflects the fact that our

D4-brane extends only in a divisor of the Calabi-Yau three-fold while the D6-brane wraps

on the whole three-fold. The constraint (3.6) is interpreted to mean that Xa ∈ ψ−1(mD)

describes a transverse fluctuation of the fractional branes to the D4-brane world-volume.

As described in appendix C, we can verify this interpretation by considering a single D0-

probe.

From the mathematical point of view, our claim is the following. Let Q′ be a new

quiver such that Q′
0 = Q̂0 = Q0 ∪ {∗} and Q′

1 = Q̂1 ∪ {J} = Q1 ∪ {I, J}. Let us define F ′

to be the ideal of CQ′ generated by ∂W/∂I, ∂W/∂J and ∂W/∂Xa for all Xa ∈ Q1.
14 We

then define

A′ := CQ′/F ′. (3.7)

We also define an another algebra

A
◦
:= CQ̂/F

◦
, (3.8)

where F
◦
is the ideal of CQ̂ generated by all the ∂W0/∂Xa and Xb such that ψ(Xb) ∈ mD.

Note that, since ψ(XF ) ∈ mD, we have [XF ] = 0 in A
◦
.15 Setting XF = 0 implies

∂W/∂I = ∂W/∂J = 0 and ∂W/∂Xa = ∂W0/∂Xa in CQ′. Therefore an A
◦
-module is

naturally regarded as an A′-module. However, the converse is not always true. Now, our

claim is that there is a one-to-one correspondence between θ-stable A′-modules and θ-stable

A
◦
-modules if we take θk, θ∗ so that θk < 0 and θ∗ ≥ 0. We will prove this in subsections 3.7

and 3.8.

14Recall that W =W0 +Wflavor.
15Here, [XF ] is the equivalence class of XF .
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MD4 in MD6. We here show that MD4 as a subspace of MD6 is characterized by its

invariance under a U(1)-subgroup of U(1)2 × U(1)R ≃ U(1)3. To see this, let us consider

t ∈ T such that

t(Xa) =

{
eiα if ψ(Xa) ∈ mD

1 if ψ(Xa) 6∈ mD

, (3.9)

for α ∈ R. Since mD is a perfect matching of Q∨, this t preserves all the F-term conditions

for the parent D6-D2-D0 state. Furthermore, for general α, this t-action cannot be absorbed

into gauge transformations. In fact, since each superpotential term includes one and only

one chiral field involved in mD, the t-action (3.9) does not preserve the superpotential.

Such a U(1)-action cannot be absorbed by gauge U(1)|Q0|−1. Therefore, the t-actions (3.9)

form a U(1)-subgroup of U(1)3 acting on MD6. We denote this by U(1)mD
.

Since all chiral fields involved inmD vanish onMD4, the moduli spaceMD4 is invariant

under the action of U(1)mD
. Thus U(1)3 reduces to U(1)2 ≃ U(1)3/U(1)mD

on MD4. The

Witten index of the quiver quantum mechanics is then, up to sign, the number of U(1)2-

fixed points of MD4. Since the perfect matching mD depends on the divisor D wrapped by

the D4-brane, so does the residual U(1)2. Note that all these properties of MD4 essentially

follow from the constraints (3.6) and (3.5). We will derive them in subsections 3.8 and 3.7.

Let us here mention that the relation between MD4 and MD6 is quite similar to that

between the instanton and vortex moduli spaces. The moduli space of vortices in d = 2,

N = (4, 4) theories was studied in [53] and shown to be embedded in the moduli space of

instantons.16 Moreover, it was pointed out that the vortex moduli space can be regarded

as a U(1) invariant subspace of the instanton moduli space. It would be interesting to

study this similarity further.

3.4 Two-dimensional melting crystal

We now consider the U(1)2-fixed points of the moduli space MD4. The inclusion map

i : MD4 →֒ MD6 implies that they are naturally regarded as some U(1)3-fixed points of

MD6. In other words, we are interested in a class of U(1)3-fixed points of MD6 which

are included in i(MD4). Recall here that any U(1)3-fixed point of MD6 is expressed as

a finite ideal π of ∆∗, where ∆∗ is the F-term equivalence class of paths starting at ∗.

In particular, the elements of π form a basis of the corresponding module. Now, what

kind of finite ideal corresponds to a fixed point in i(MD4)? The projection of MD6 to

i(MD4) is given by (3.6), which eliminates all the paths crossing the perfect matching mD.

Let us define ∆
◦

∗ as the set of F-term equivalence classes of paths from ∗ which do not

cross the perfect matching mD. By definition, ∆
◦

∗ is a subset of ∆∗. It is now clear that

the U(1)3-fixed points in i(MD4), or equivalently the U(1)2-fixed points of MD4, are in

one-to-one correspondence with finite ideals of ∆
◦

∗. From the mathematical viewpoint, we

find that U(1)2-invariant θ-stable A
◦
-modules are in one-to-one correspondence with finite

ideals of ∆
◦

∗.

Next, recall that f : ∆∗ → C∆∗
is a bijection from ∆∗ to a three-dimensional crystal

C∆∗
, where [vkω

ℓ] ∈ ∆∗ is mapped to an atom on the node k ∈ Q̃0 at the depth ℓ. Note

16See also [54–56] for the localization on the vortex moduli space of d = 2, N = (2, 2) theories.
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zig
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zag

Figure 11. Left: two examples of zig-zag paths. In general, an edge in Q∨ is involved in two

different zig-zag paths. There is a one-to-one correspondence between zig-zag paths and NS5-

branes. For example, the red dotted line describes a NS5-brane associated with the red zig-zag

path. Right: a zig-zag path P is decomposed into Zig(P) and Zag(P).

that we here fix a reference node ĩ ∈ Q̃0 and assume that the flavor-brane node ∗ is attached

to it; there is a quark I from ∗ to ĩ. Let us now define C
∆
◦

∗

:= f(∆
◦

∗), which is a subcrystal

of C∆∗
. We call C

∆
◦

∗

“reduced crystal”. The finite ideals of ∆
◦

∗ are then in one-to-one

correspondence with molten configurations of C
∆
◦

∗

. The melting rule is the same as before;

for a molten configuration p of C
∆
◦

∗

,

a bond from β ∈ C
∆
◦

∗

to α ∈ p implies β ∈ p.

Note here that if one representative path of [vkω
ℓ] ∈ ∆∗ includes some chiral field in

ψ−1(mD) then so does any other representative path. This implies that the reduced crystal

C
∆
◦

∗

is obtained from the original crystal C∆∗
by eliminating all the bonds associated with

chiral fields involved in mD.

Now, let us consider how the reduced crystal is embedded in the original three-

dimensional crystal. For any element [vkω
ℓ] ∈ ∆

◦

∗, its representative path vkω
ℓ cannot

contain any chiral field in ψ−1(mD). However, ω includes one such chiral field. Therefore

we should have ℓ = 0, which means that any element of ∆
◦

∗ is represented by a shortest path

from ∗. This particularly implies that the reduced crystal C
∆
◦

∗

lies in a two-dimensional

plane at the depth zero.

3.5 Shape of the crystal

We have seen that the reduced crystal is always a two-dimensional crystal. We now discuss

the precise shape of the crystal. Let us first introduce so-called “zig-zag paths”. A zig-zag

path is an oriented path in Q∨ which satisfies the following property: along a zig-zag path,

we turn maximally right at a black vertex as well as maximally left at a white vertex

(figure 11). This property is exactly the same as the property of cycles wrapped by NS5-

branes in the brane tiling. In fact, there is a bijection from the NS5-branes to the zig-zag

paths of Q∨, which preserves the winding numbers. This also implies a one-to-one map

between the zig-zag paths and the external legs of the toric web-diagram. The zig-zag paths

of a dimer model with an isoradial embedding have some nice properties as described in
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R

�P1

�P2

ĩ

�XF

Figure 12. The periodic dimer model Q̃∨ in the conifold case. The two zig-zag paths P̃1 and P̃2

divide the universal cover of T 2 into four regions. We denote by R a region including the face ĩ.

We here assume that D is associated with the upper-right corner of the toric diagram in figure 2.

appendix B. In particular, when lifted to the universal cover Q̃∨, any two zig-zag paths

share at most one edge.

Since a zig-zag path P is oriented, all the edges in P are also oriented. We then define

Zig(P) as a collection of edges in P which are from white to black vertex. We also define

Zag(P) := P − Zig(P) (the right picture of figure 11). Now, recall that our flavor brane is

bounded by two NS5-branes at ℓ1, ℓ2. They are associated with two zig-zag paths in Q∨,

which we denote by P1 and P2 respectively. The winding numbers of P1,P2 are determined

by the directions of ℓ1, ℓ2. Then it was shown in [24] that

Zig(P1) , Zag(P2) ⊂ mD . (3.10)

Note that, since P1 and P2 have different winding numbers, they always intersect with each

other on Q∨. At each intersection of P1 and P2, they share an edge ψ(Y ) for some chiral

multiplet Y ∈ Q1. Due to the condition (3.10), such a chiral multiplet Y always satisfies

ψ(Y ) ∈ Zig(P1) ∩ Zag(P2) ⊂ mD . (3.11)

Note that XF defined in subsection 3.2 is one such chiral multiplet. Therefore we always

have ψ(XF ) ∈ mD.

Let us now consider uplifts of P1,P2 to the universal cover Q̃∨, where we have a natural

projection p∨ : Q̃∨ → Q∨. Recall that there is a reference node ĩ in Q̃0 ≃ Q̃∨
2 which is

attached to the D4-node ∗. The node ĩ is also attached to a lift of the chiral multiplet XF ,

which we denote by X̃F (figure 12). Let ψ̃ : Q̃ → Q̃∨ be the dual map on the universal

cover. There are two zig-zag paths of Q̃∨ which share the edge ψ̃(X̃F ) at their intersection.

When projected to Q∨, they map to P1 and P2. We therefore denote them by P̃1 and

P̃2, respectively. The two zig-zag paths P̃1, P̃2 divide the universal cover of T 2 into four
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C
−

C+

�1�2

D

Figure 13. If the cone associated with our divisor D is in the clockwise side of C+ and in the

counter-clockwise side of C−, then there is a path from k to ℓ without crossing (p∨)−1(mD).

regions. We denote one of them which includes ĩ by R. See figure 12 for an example in the

conifold case, where the blue face is ĩ and the orange region including ĩ is R.

What we want to show is that the reduced crystal C
∆
◦

∗

fills up the region R and P̃1, P̃2

give the boundary of the crystal. Here, since C
∆
◦

∗

lies at the depth zero, we identify atoms

in C
∆
◦

∗

with faces in Q̃∨. Recall first that P̃1 and P̃2 share ψ̃(X̃F ) at their intersection.

The fact ψ(XF ) ∈ Zig(P1) ∩ Zag(P2) then implies that X̃F is always an out-going arrow

from R and eliminated by the constraint (3.6).17 From this and (3.10), it follows that all

the out-going arrows from R is eliminated by (3.6). This means that the reduced crystal

C
∆
◦

∗

is inside the region R.

Furthermore, if ℓ ∈ Q̃0 ≃ Q̃∨
2 is inside R, then the reduced crystal C

∆
◦

∗

always includes

an atom placed on ℓ. This can be shown as follows. Let us fix k, ℓ ∈ Q̃0 and consider all

the zig-zag paths of Q̃∨ which have k on its right side and ℓ on its left side. Such zig-zag

paths are associated with some external legs of the toric web-diagram. We define C− as a

cone generated by such external legs. We also consider all the zig-zag paths on Q̃∨ which

has k on its left side and ℓ on its right side, and define C+ similarly. Then, it was shown

in [24] that if the cone associated with our divisor D is located in the clockwise direction

of C+ and in the counter-clockwise direction of C−, as in figure 13, then there is always

a path from k to ℓ which does not cross (p∨)−1(mD).
18 When we set k = ĩ and ℓ to be

inside R, then the cone associated with D is always in the clockwise direction of C+ and in

the counter-clockwise direction of C−. Therefore, there is always a path from ĩ to ℓ ∈ Q̃0

without crossing (p∨)−1(mD). This means that C
∆
◦

∗

includes an atom placed on ℓ. Since ℓ

is an arbitrary node in R, this implies that the reduced crystal C
∆
◦

∗

fills up the region R.

3.6 Partition function

We have shown that U(1)2-fixed points of the moduli space MD4 are in one-to-one cor-

respondence with molten configurations of the reduced crystal C
∆
◦

∗

lying in R. Then the

17Recall that our chiral multiplets have their definite orientations such that they encircle black (white)

vertices in Q∨ clockwise (counter-clockwise).
18Here (p∨)−1(mD) is the inverse image of mD through p∨ : Q̃∨ → Q∨, and itself is a perfect matching

of Q̃∨.
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partition function of the BPS D4-D2-D0 states is given by

ZD4-D2-D0 =
∑

p

(−1)dimC(M~d
)
∏

k∈Q0

xdkk , (3.12)

where p runs over all possible molten configurations of C
∆
◦

∗

and di is the number of i-

th atoms in p. We denote by M~d
the moduli space of BPS states with charge {dk}, or

equivalently the moduli space of vacua of the quiver quantum mechanics with ranks {dk}

of the gauge groups.

In general, the complex dimension of the moduli space dimC(M~d
) is calculated as

dimC(M~d
) = n1 − n2 − n3 , (3.13)

where n1 is the degrees of freedom of chiral fields which are not involved in the perfect

matching mD, and n2 is the number of non-trivial F-term conditions. In general n1 can be

written as

n1 =
∑

X 6∈mD

ds(X)dt(X) , (3.14)

where s(X) and t(X) is the starting and ending node of a chiral field X ∈ Q̂1, respectively.

The third term in (3.13) is given by

n3 =
∑

k∈Q0

(dk)
2, (3.15)

which is the number of gauge degrees of freedom. Note that our gauge group has already

been complexified to be
∏

k∈Q0
GL(dk), as explained in subsection 2.3.

In section 4, we describe some examples and show that our construction perfectly

reproduces known statistical models for D4-D2-D0 states on C
3, (generalized) conifold,

and C
2/ZN ×C. We will also describe some examples of D4-D2-D0 crystal which have not

been in the literature to the best of our knowledge.

3.7 Proof of J = 0

We here show that J = 0 follows on a θ-stable module with θk < 0 for k ∈ Q0. Since such

a θ-stable module is a cyclic module generated by m ∈M∗, it is sufficient to show that

JvI = 0 (3.16)

for any path v in Q. We assume that v is a path from i to j because otherwise (3.16)

trivially holds. In general v can contain I and/or J . However, since I and J appear only

as IJ in v, it is sufficient to consider v without including I, J .

Hereafter, we consider the universal cover Q̃ of Q and regard v as a path in Q̃. We

respectively denote by ĩ and j̃ the starting and the ending nodes of v in Q̃, which are of

course uplifts of i and j. Now, for our purpose, it is sufficient to assume v is a shortest

path from ĩ to j̃. To see this, let us recall that our F-term equivalences are

∂W0

∂XF
+ IJ = 0 ,

∂W0

∂Xa
= 0 (for Xa 6= XF ) , (3.17)
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· · ·

P̃1

· · · · · ·

· · ·· · ·

· · · · · ·

vs(Y )

Y
v
′

XF

ĩ

Figure 14. A shortest path vs(Y ) from i to s(Y ) for an out-going arrow Y from R. Since Y crosses

one of the red edges, there is a path v′ such that Y vs(Y ) is F-term equivalent to v′XF .

together with XF I = 0 and JXF = 0. If J = 0, these imply that v has a standard

expression of the form [4]

v = v0ω
ℓ0 . (3.18)

Here v0 is a shortest path from ĩ to j̃, ω is a loop which starts with XF and surrounds

a face in Q̃2, and ℓ0 is a non-negative integer. If J is non-vanishing, this expression is

generally modified as

v = v0ω
ℓ0 + (−1)s1w1(IJ)v1ω

ℓ1 + · · ·+ (−1)snwn(IJ)vnω
ℓn , (3.19)

where {va} are shortest paths from ĩ, and wa are paths to j̃ which are not necessarily

shortest. The sign factors depend on sa = 0 or 1. Since ωI starts with XF I = 0, the terms

with ℓa 6= 0 do not contribute to JvI. On the other hand, the terms with ℓa = 0 contribute

±JwaIJvaI to JvI. Therefore, if JvI = 0 is satisfied for all shortest paths v then it also

holds for any other non-shortest path v.

Let us now show that a shortest path v which gets outside the region R gives a

vanishing contribution to JvI. Recall that any out-going arrow Y from R is an element of

Zig(P̃1) ∪ Zag(P̃2). If v contains any such Y , then vI starts with Y vs(Y )I where vs(Y ) is

a shortest path from ĩ to the starting node s(Y ) of Y (figure 14). However, since there is

always a path v′ such that v′XF is F-term equivalent to Y vs(Y ), we find Y vs(Y )I = v′XF I =

0. Thus, if a shortest path v contains some out-going arrow from R then JvI = 0.

The remaining task is to show (3.16) for shortest paths v which are inside the region

R. We first show the following lemma:

Lemma. A shortest path v from ĩ to k ∈ Q̃0 does not cross (p∨)−1(mD) if k is inside R.

Proof. As mentioned in subsection 3.5, for any node k ∈ Q̃0 inside R, there is a path v

from ĩ to k which does not cross (p∨)−1(mD). This path is, in fact, a shortest path from ĩ

to k. The reason for this is that any non-shortest path contain at least one ω around some

face in Q̃2, and therefore crosses (p∨)−1(mD) at least once.

This lemma particularly implies that a shortest path v from ĩ does not contain any XF if

v is inside R. We now assume that v is such a shortest path. We rewrite JvI as

JvI = tr(IJv) = − tr

(
∂W0

∂XF
v

)
= tr(u1v)− tr(u2v) , (3.20)
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u1u2

·
·
·

·
·
·

XF

Figure 15. The relative sign in (3.21) implies u1XF surrounds a black node while u2XF surrounds

a white node in Q̃∨.

where u1 and u2 are paths in Q such that

∂W0

∂XF
= −u1 + u2 . (3.21)

The relative sign implies that u1XF surrounds a black node in Q̃∨
0 while u2XF surrounds

a white node (figure 15). Note that u1v and u2v form loops in Q, which we denote by L1

and L2 respectively. In terms of these, we can rewrite (3.20) as

JvI = tr(L1)− tr(L2) . (3.22)

In the rest of this subsection, we will show that this vanishes for any shortest path v

inside R.

Rhombus tiling and F-term equivalence. Note that the two loops L1, L2 have the

same winding number on T 2, which we denote by (nx, ny). Since v is inside the region R,

(nx, ny) lies in a convex cone CD in R
2. The cone is naturally identified with F defined

in subsection 3.2 and therefore depends on the choice of D. We can generally write the

winding number as

(nx, ny) = r(n̂x, n̂y) , (3.23)

where r is a positive integer and n̂x, n̂y are mutually prime integers. Since r depends on

the shortest path v, we sometimes write it as rv.

Recall here that there is a one-to-one correspondence between zig-zag paths and the

external legs of the toric web-diagram. In particular, if there is a zig-zag path whose

winding number is (n′x, n
′
y) then there is an external leg spanned by the vector (n′x, n

′
y).

Since F is a cone spanned by two adjacent external legs ℓ1, ℓ2, the only zig-zag paths whose

winding number lies in CD are P1 and P2. This fact will be important in the proof of

tr(L1)− tr(L2) = 0.

The case r = 1. We first consider the case r = 1. We will show that L1 and L2 are F-

term equivalent to each other, which implies (3.22) vanishes. Recall that our brane tiling

admits an isoradial embedding, and therefore we have a rhombus tiling on T 2. We denote

by HF a rhombus including the chiral multiplet XF . What is important here is that,

when we regard L1, L2 as cycles of T 2 rather than those of Q, they can be continuously

deformed into each other without crossing HF . To see this, we move to the universal cover

R
2. The uplifts of L1, L2 are paths with infinite length, which we denote by L̃1 and L̃2

respectively. Note that each of L̃1, L̃2 has an infinite number of connected components,
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XF XF

XF XF

�L2

�L1

Figure 16. The situation in the case of r = 1. The blue dashed rectangle expresses the fundamental

domain for the torus R
2/Z2. The black solid edges together with the while and black nodes form

the periodic dimer model Q̃∨. The union of the gray rhombi is denoted by H̃F . When we regard

L̃1, L̃2 as paths in R
2, they are continuously deformed into each other without crossing H̃F .

which are just copies of one connected line with infinite length. Since v is a shortest path

in Q̃, they have no self-intersection. The uplift of the rhombus HF is an infinite number of

rhombi. We denote by H̃F the union of all such rhombi in R
2. We now see that L̃1 can be

continuously deformed into L̃2 without crossing H̃F (figure 16). This always follows when

r = 1. Furthermore, we can perform this deformation periodically so that L̃1 remains the

uplift of some cycle of T 2. This implies that, on T 2, L1 can be deformed into L2 without

crossing HF .

Note that this does not immediately mean L1 and L2 are F-term equivalent. When

we regard them as paths in Q, rather than those in T 2, we can deform them only by

F-term equivalence. In fact, in a general dimer model, there could exist two homotopic

paths which are not F-term equivalent to each other. However, there is a nice theorem

that any two homotopic paths are F-term equivalent if the dimer model admits an isoradial

embedding [57]. Below, we will generalize this and show that L1 and L2 are in fact F-term

equivalent.

In the universal cover R
2, there are special rhombi which are passed by L̃1 or L̃2.

The collection of such rhombi divides R
2 into an infinite number of connected regions.

We denote by r the union of the regions which do not contain any XF (figure 17). Note

that the boundary of r has two kinds of vertices; quiver vertices and dimer vertices. Let

us now consider to reduce the region r via the F-term equivalence. We deform L̃1 and

L̃2 by using the F-term equivalence at the boundary of r, which reduces the area of r

(figure 18). Reducing r is possible only when the boundary of r has a dimer vertex which

is not attached to any rhombus edge lying inside r [57]. We perform this deformation of

L̃k periodically so that it is an uplift of a deformation of Lk. Then this does not change

the winding number of L̃k. We repeat this deformation and stop if we cannot reduce r

further. There are, in fact, only three possibilities to stop. The first possibility is that r is

empty when we stop. In this case L̃1 coincides with L̃2 after the operations, and therefore

we find that L1 is F-term equivalent to L2. The second possibility is that, when we stop, r

is not empty but can be written as the disjoint union of compact regions. In this case, we
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XF XF

XF XF

L̃2

L̃1

Figure 17. The collection of rhombi passed by L̃1, L̃2 (white rhombi) divides the universal cover

into an infinite number of connected regions. The union of the regions which do not contain any

XF is denoted by r. In this picture, r is the union of the orange rhombi.

L̃2

L̃1

L̃2

L̃1

Figure 18. By using the F-term equivalence at the boundary of the region r, we can reduce the

area of r. We here used the F-term condition associated with the blue edge. Reducing r is possible

only when we have a dimer vertex at the boundary of r which is not attached to any rhombus edge

lying inside r.

L̃2

L̃1

L̃2

L̃1

Figure 19. Left: the second possibility to stop. When we stop, the region r is not empty but

written as the disjoint union of compact regions. Right: the third possibility to stop. When we

stop, r is not empty and cannot be written as the disjoint union of compact regions.

have the situation illustrated in the left picture of figure 19. However, this is inconsistent

with the rhombus tiling of R2, which follows from Lemma 5.3.1 of [57]. Thus, the second

possibility is forbidden. The third possibility is that, when we stop, r is not empty and

cannot be written as the disjoint union of compact regions. In this case, we have a situation

as in the right picture of figure 19. This does not contradict with the lemma in [57], but

still turns out to contradict with the rhombus tiling of R2. To see this, note first that

any dimer vertex at the boundary of r is now attached to at least one rhombus edge lying

inside r, because otherwise we can further reduce r. It also follows that any quiver vertex

at the boundary of r is attached to at least one such rhombus edge. Therefore the simplest

– 26 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
9

L̃1

Figure 20. The simplest case of the third possibility. There is a zig-zag path inside r (blue path)

which has the same winding number as L1. In this situation, we cannot deform L̃1 to reduce r

because every white dimer vertex at the boundary is attached to some rhombus edge lying inside r.

L̃2

L̃1

L̃2

L̃1

HF HF HF HF

HF HF HF HF

Figure 21. When r ≥ 2, it is not possible to deform L1 into L2 without crossing HF . The picture

shows the universal cover in the case of r = 3. The blue dashed rectangle expresses the fundamental

domain for the torus R2/Z2.

case is that, at the boundary of r, each (quiver or dimer) vertex is attached to only one

edge lying inside r. In this case, there is always a zig-zag path P̃ included in the region

r (figure 20). When projected to T 2, P̃ is mapped to a zig-zag path of Q whose winding

number is (nx, ny). Since (nx, ny) lies in the convex cone CD, such a zig-zag path should

be P1 or P2. Recall that both P1 and P2 involve XF . Therefore P̃ also involves XF . This,

however, contradicts with the fact that the region r does not contain any XF . Hence, the

simplest case does not occur. Let us then consider a non-simplest case. Namely, suppose

that the boundary of r includes a vertex attached to more than one rhombus edge lying

inside r. In this case, L̃1 or L̃2 has to intersect with itself in order to be periodic in R
2. The

periodicity of L̃k is necessary because it is the uplift of Lk. However, the self-intersection

of L̃k contradicts with the fact that v is a shortest path. This implies that not only the

second possibility but also the third possibility is forbidden. Hence, L1 is always F-term

equivalent to L2, which implies (3.22) vanishes.

The case r ≥ 2. Next, we turn to the cases r ≥ 2. In this case, JvI = 0 follows by

induction on r. Since r depends on v, we here write it as rv. We assume Jv′I = 0 for any

v′ with rv′ < rv, and prove JvI = 0.

Note first that, in the case rv ≥ 2, it is not possible to deform L1 into L2 without

crossing HF . A typical example with rv = 3 is shown in figure 21. However, as we will
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L̃
′

2

L̃
′

1

L̃
′

2

L̃
′

1

HF HF HF HF

HF HF HF HF

˜

Figure 22. There are always L′
1 and L′

2 which can be deformed into each other without crossing

HF and also satisfy (3.24). The picture shows the uplifts of (L′
1, L

′
2) for (L1, L2) in figure 21. The

blue dashed rectangle expresses the fundamental domain for the torus.

prove below, there are always one-cycles L′
1, L

′
2 in Q which can be continuously deformed

into each other without crossing HF and also satisfy

tr(L1)− tr(L2) = tr(L′
1)− tr(L′

2)− (rv − 1) tr(vIJ) . (3.24)

Once such L′
1, L

′
2 exist, we can show

rv(JvI) = tr(L′
1)− tr(L′

2) . (3.25)

Since L′
1 can be continuously deformed into L′

2 without crossing HF , the same argument

as in the case of rv = 1 implies that (3.25) vanishes. Since rv > 0, we then find JvI = 0.

The remaining task is to show the existence of such a nice pair (L′
1, L

′
2). Let us first

consider an example in figure 21, where L1, L2 are lifted to L̃1, L̃2, respectively. We now

define paths L̃′
1 and L̃′

2 as in figure 22. Since they are periodic in the universal cover, we

can regard them as the uplift of some one-cycles of T 2. We denote such one-cycles by L′
1

and L′
2, respectively. By definition, L′

1 and L′
2 can be continuously deformed into each

other without crossing HF . Let us now consider the difference between L1 and L′
1. In fact,

the only difference is that, only once, they pass the opposite sides of HF . In terms of u1, u2
defined in (3.21), this can be expressed as

tr(L1)− tr(L′
1) = tr(v′u2)− tr(v′u1) , (3.26)

for some path v′ from i to j (figure 23). The relation (3.21) and the F-term equivalence (3.3)

now imply that this can be rewritten as

tr(L1)− tr(L′
1) = − tr(v′IJ) . (3.27)

Note here that v′ and v are different paths, but v′IJ and vIJ have the same winding

number rv(n̂x, n̂y). In fact, the only difference between v and v′ is again that they pass

the opposite sides of HF once. Then, the same argument as above implies that there are

paths v1, v2 (figure 23) from i to j such that

tr(v′IJ)− tr(vIJ) = tr(v1 IJ v2 IJ) . (3.28)
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HF HF HF

u1

u2

v
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·
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v1v2

Figure 23. In the example of figure 21, there is a path v′ from i to j such that tr(L1) = tr(v′u2)

and tr(L′
1) = tr(v′u1). In the picture, the red path is v′ while the blue paths are u1 and u2. The

green v1 and v2 are used in (3.28).

Here the right hand side can be written as (Jv1I)(Jv2I). Note that, since v1 and v2 are

shorter than v, we always have rv1 , rv2 < rv. Then, due to our assumption, both Jv1I and

Jv2I vanish. Therefore we can rewrite (3.27) as

tr(L1)− tr(L′
1) = − tr(vIJ) . (3.29)

The minus sign in the right-hand side is important, which comes from the fact that L′
1

always surrounds the black-node side of HF . Let us now turn to L2 and L′
2. The similar

argument as above tells us that

tr(L2)− tr(L′
2) = + tr(vIJ) . (3.30)

The different sign in front of tr(vIJ) is due to the fact that L′
2 always surrounds the

white-node side of HF . Combining (3.29) and (3.30), we obtain

tr(L1)− tr(L2) = tr(L′
1)− tr(L′

2)− 2 tr(vIJ) . (3.31)

This is a special example of (3.24) with rv = 3.

By generalizing this argument, we can show the existence of a desired pair (L′
1, L

′
2)

for any shortest path v which lies inside R. The crucial point is that the winding number

(nx, ny) of L1, L2 for such v always lies in the convex cone CD. In general, we can deform

L1, L2 into the following forms by the F-term equivalence without crossing HF :

L1 ∼ v(1)us1 · · · v(rv−1)usrv−1v(rv)u1 , L2 ∼ v(1)us1 · · · v(rv−1)usrv−1v(rv)u2 , (3.32)

where v(k) is a shortest path with rv(k) = 1, and sk ∈ {1, 2}. Then we define

L′
1 = v(1)u1 · · · v(rv−1)u1v(rv)u1 , L′

2 = v(1)u2 · · · v(rv−1)u2v(rv)u2 . (3.33)

The fact that (nx, ny) lies in the convex cone CD guarantees that L′
1 can be deformed into

L′
2 without crossing HF . The difference between tr(L1) and tr(L′

1) is generally expressed as

tr(L1)− tr(L′
1) = −n1 tr(vIJ) , (3.34)
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where n1 =
∑rv−1

k=1 (sk − 1) ≥ 0. Here, we used our assumption that Jv′I = 0 for any

shortest path v′ with rv′ < rv. Similarly, the difference between tr(L2) and tr(L′
2) is

written as

tr(L2)− tr(L′
2) = +n2 tr(vIJ) , (3.35)

where n2 =
∑rv−1

k=1 (2− sk) ≥ 0. Then we obtain

tr(L1)− tr(L2) = tr(L′
1)− tr(L′

2)− (rv − 1) tr(vIJ) , (3.36)

where we used the fact that n1 + n2 = rv − 1. Thus, we have shown the existence of the

desired (L′
1, L

′
2), which completes our proof of J = 0.

3.8 Proof of mD = 0

We here prove (3.6) on a θ-stable module with θk < 0 for k ∈ Q1. Since such a θ-stable

module is a cyclic module generated by an element m ∈M∗, it is sufficient to show that if

Y ∈ Q̃1 satisfies (ψ ◦ p)(Y ) ∈ mD then Y vI = 0 for any path v from ĩ ∈ Q̃0.
19 According

to the argument in the previous subsection, we here set J = 0.

Let s(Y ) be the starting node of Y . We assume v is a path from ĩ to s(Y ) because

otherwise Y vI = 0 trivially holds. Moreover, it is sufficient to consider only the shortest

path v = vs(Y ) from ĩ to s(Y ). To see this, recall that v has the standard form (3.18) for

the shortest path v0 = vs(Y ) and a loop ω starting with XF . As shown in [4], this can also

be expressed as

v = ω̃ℓ vs(Y ) , (3.37)

where ω̃ is a loop which starts at s(Y ) and surrounds a face in Q̃2. In particular, we can

take ω̃ to start with Y . Then Y vI = 0 immediately follows if Y vs(Y )I = 0. Hence, we only

need to consider the case v = vs(Y ) in our proof.

The remaining task is to prove Y vs(Y )I = 0 for Y ∈ Q̃1 satisfying (ψ ◦ p)(Y ) ∈ mD.

Let us first consider Y ∈ Q̃1 which is an out-going arrow from R. Recall that such Y is

always an element of Zig(P̃1)∪Zag(P̃2), and therefore satisfies (ψ ◦ p)(Y ) ∈ mD. The path

Y vs(Y )I for such Y has already been considered in the previous subsection, and shown to

vanish. This also implies that any Y ∈ Q̃1 outside R leads to Y vs(Y )I = 0.

Now, let us consider Y ∈ Q̃1 which is inside R and satisfies (ψ ◦ p)(Y ) ∈ mD. We here

denote by t(Y ) the ending node of Y . Since t(Y ) is inside R, our lemma in subsection 3.7

implies that the shortest path vt(Y ) does not cross (p∨)−1(mD). Now, let ωt(Y ) be a loop

around a face in Q̃ which starts at t(Y ) and ends with Y . We then define a path uY so

that ωt(Y ) = Y uY (figure 24). Now, the path uY vt(Y ) is a path from ĩ to s(Y ) without

crossing (p∨)−1(mD), which implies that uY vt(Y ) is a shortest path to s(Y ). We can then

write vs(Y ) = uY vt(Y ) up to the F-term equivalence, and therefore

Y vs(Y )I = Y uY vt(Y )I = ωt(Y )vt(Y )I . (3.38)

As mentioned above, ωt(Y )vt(Y ) is F-term equivalent to vt(Y )ω where ω is a loop starting

with XF . Since vt(Y )ωI starts with XF I, it vanishes due to the constraint (3.2). Thus

we find Y vs(Y )I = 0. Combining the argument in the previous paragraph, we have shown

Y vs(Y )I = 0 for any Y ∈ Q̃1 such that (ψ ◦ p)(Y ) ∈ mD. This completes our proof.

19Recall here that ψ : Q→ Q∨ is the dual map.
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ĩ

Figure 24. There is always a path from ĩ to t(Y ) without crossing (p∨)−1(mD) if Y is inside R.

Then uY vt(Y ) is a shortest path from ĩ to s(Y ). Here the red edges are the ones in (p∨)−1(mD).

1

2
3

∗

I

1

2

3

C1B1

B2

B3

∗

N0

I

B1

B2 B3

Figure 25. Left: the toric diagram of C3. The lattice points are at (0, 0), (1, 0) and (0, 1). Middle:

the brane tiling for D0-branes on C
3. Right: the quiver diagram for D6-D0 states on C

3.

4 Examples

In this section, we consider some examples of our crystal melting model for D4-D2-D0

states on toric Calabi-Yau three-folds.

4.1 C
3

The first example is C3, where we can put a single D6-brane on the whole C3 or a D4-brane

on a divisor C
2. In either case, we have no D2-brane charge because C

3 has no compact

two-cycle.

Let us first consider the D6-D0 bound states. The toric diagram and the brane tiling

of C3 are shown in figure 25. In the quiver quantum mechanics on the D0-branes, we have

one gauge group and three adjoint chiral multiplets Ba. The rank of the gauge group is

equal to the D0-charge. The quiver diagram of the theory is shown in the right picture of

figure 25. From the brane tiling, the superpotential is read off as

W0 = tr
(
B1[B2, B3]

)
(4.1)

– 31 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
9

B3

B1

B2

ĩ

B1
B2

B3

Figure 26. Left: the universal cover Q̃∨ of the dimer model Q∨ for C3. Each diamond region is a

fundamental domain of R2/Z2 ≃ T 2. The two zig-zag paths which are attached to ĩ and share B3

at their intersection are also shown. Right: the corresponding three-dimensional crystal is obtained

by putting atoms on the faces of Q̃∨.

which implies the F-term condition

[Ba, Bb] = 0 . (4.2)

This means that every element of ∆∗ is now expressed as a monomial of the form

(B1)
n1(B2)

n2(B3)
n3I for ni ∈ N. The periodic dimer model Q̃∨ is depicted as in the left

picture of figure 26. Note that this dimer model clearly admits an isoradial embedding.20

By putting atoms on the faces of Q̃∨, we obtain a cubic crystal as in the right picture

of figure 26, where a single cube is an atom associated with the unit D0-charge. Each

face of the cube expresses a “bond” associated with a chiral multiplet Ba. The melting

rule of the crystal implies that the partition function (2.9) is now written as a sum over

three-dimensional Young diagrams p [2, 11]:

ZD6-D0 =
∑

p

q|p| =

∞∏

n=1

1

(1− qn)n
. (4.3)

where q is the Boltzmann weight for D0-charge.

Now, instead of the D6-brane, let us put a D4-brane on a holomorphic divisor C
2 in

C
3. We consider BPS D0-branes bound to the D4-brane. Recall that this example has

already been mentioned in the introduction. The perfect matchings of Q∨ are shown in

figure 27. We have three perfect matchings, corresponding to the three corners of the toric

diagram of C3. Let us assume, without loss of generality, that the divisor D wrapped by

the D4-brane is associated with the lattice point (0, 1) of the diagram. Then, the boundary

NS5-branes of the facet F are the second and third NS5-branes in figure 25. Since B3 is

located at their intersection, we identify XF = B3 in this example. The superpotential

induced by the D4-brane is then written as

Wflavor = JB3I . (4.4)

20See appendix B for a general criterion.
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B3

B1

B2

(0, 0) (1, 0) (0, 1)

Figure 27. Leftmost: the dimer model Q∨ on T 2 for C
3. Others: three perfect matchings

corresponding to the three lattice points of the toric diagram. In C
3 case, the perfect matchings

are in one-to-one correspondence with the toric divisors of C3.

∗

N0

I

B1 B2

J
B1

B2

Figure 28. Left: the quiver diagram for D4-D0 states when D is associated with the lattice point

(0, 1) of the toric diagram. Right: the two-dimensional crystal for the D4-D0 states on C
2.

The perfect matching mD only involves B3, and therefore the condition (3.6) just implies

B3 = 0 on supersymmetric vacua. Setting B3 = 0 leads to the well-known D4-D0 quiver

on C
2 (figure 28). The only non-trivial F-flatness condition is now

[B1, B2] + IJ = 0 , (4.5)

which is equivalent to the ADHM constraint. Thus, we have reproduced the well-known

result of the D4-D0 states on C
2. Note that we already know that J = 0 also holds on

supersymmetric vacua.

The U(1)2-fixed points of the moduli space are in one-to-one correspondence with

the molten configurations of a two-dimensional crystal in figure 28, where a single square

atom is associated with the unit D0-charge. The four sides of each square express four

“bonds” attached to it. Note that the crystal is a two-dimensional “slope face” of the

three-dimensional crystal in figure 26. Moreover, the boundary of the two-dimensional

crystal is given by the two zig-zag paths shown in the left picture of figure 26. The melting

rule of the crystal implies that every molten configuration is expressed as a two-dimensional

Young diagram. The partition function (3.12) is then written as a sum over two-dimensional

Young diagrams p:

ZD4-D0 =
∑

p

q|p| =

∞∏

n=1

1

1− qn
. (4.6)
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We here implicitly assume that all the fixed points are bosonic. We can show this by

calculating the dimension of the moduli space. The moduli space is parameterized by

I, J,B1 and B2 which have 2|p| + 2|p|2 complex parameters. They are subject to the F-

term conditions [B1, B2] + IJ = 0 which reduces |p|2 of them. Furthermore, dividing out

the gauge degrees of freedom reduces further |p|2 complex parameters. Thus, the complex

dimension of the moduli space is

dimC(M|p|) = 2|p| , (4.7)

which implies that all the fixed points of the moduli space are bosonic. Note that (4.7)

matches the dimension of |p|-instanton moduli space.

4.2 Conifold

The second example is the conifold. We have already seen the brane tiling, D6-D2-D0

quiver, and D6-D2-D0 crystal in section 2. The partition function associated with the

three-dimensional melting crystal in figure 6 was considered in [3] in the study of the

non-commutative Donaldson-Thomas invariants. In this subsection, we instead consider

D4-D2-D0 states on the conifold. Note that the dimer model Q∨ for the conifold (figure 5)

admits an isoradial embedding.

We put a flavor D4-brane on a toric divisor D associated with a corner of the toric

diagram in figure 2. Since all the toric divisors are isomorphic in the singular conifold

limit, we assume without loss of generality that D is associated with the lattice point (1, 1)

of the toric diagram. The boundary NS5-branes are then the first and second ones in the

right picture of figure 3. Since B2 is located at their intersection, XF is identified with B2

in this example. The superpotential induced by the D4-brane is written as

Wflavor = JB2I . (4.8)

The total superpotential is given by W0 +Wflavor with

W0 = tr(A1B2A2B1)− tr(A1B1A2B2) . (4.9)

The perfect matchingmD turns out to bem3 in figure 9. According to (3.6), supersymmetry

eliminates all the chiral fields involved in mD, leading to the quiver diagram in the left of

figure 29.21 The non-trivial F-term condition is now

A2B1A1 −A1B1A2 + IJ = 0 . (4.10)

The two-dimensional crystal for the D4-D2-D0 states extends in the region R in figure 12.

As shown in the right of figure 29, this crystal is a two-dimensional “slope face” of the

three-dimensional pyramid crystal in figure 6. Note here that we already know that J = 0

also follows on supersymmetric vacua.

21This quiver also appears as the ADHM quiver on the blown up CP
2 [58, 59]. We would like to thank

Kazushi Ueda for letting us know this fact.
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Figure 29. Left: the quiver diagram for D4-D2-D0 states on the conifold. Right: the reduced

crystal is a two-dimensional slope face of the three-dimensional pyramid crystal in figure 6.

A1

B1 A2

Figure 30. Left: the two-dimensional crystal for D4-D2-D0 states on the conifold, which infinitely

extends in the upper-right region. Three chiral fields A1, A2, B2 correspond to three types of

“bonds” connecting triangle atoms. Right: an example of a molten crystal.

Let us express the two-dimensional crystal in a different way, keeping the crystalline

structure. We express each atom as a triangle so that its three sides are associated with

the three “bonds” attached to the atom. Then the two-dimensional crystal in figure 29 is

re-expressed as in the left of figure 30. The melting rule of the crystal is that

• A blue triangle can be removed if and only if its left and lower edges are not attached

to other atoms.

• A red triangle can be removed if and only if its slope edge is not attached to other

atoms.

This is precisely equivalent to the triangular partition model proposed in [13].

The partition function of the BPS index is written as

Zcrystal :=
∑

p

(−1)dimC(Ma,b)xayb, (4.11)

where p runs over all the molten configurations of the crystal, and a and b are the numbers

of blue and red triangular atoms in p. The sign factor is determined by the dimension of the

moduli space. We now have five non-vanishing chiral fields I, J, A1, A2, B1 with 3ab+a+ b

complex degrees of freedom in total. The non-trivial F-term condition (4.10) reduces ab
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of them. Dividing out the gauge degrees of freedom further reduces a2 + b2 parameters.

Thus, the dimension of the moduli space is written as

dimC(Ma,b) = a+ b− (a− b)2. (4.12)

This implies (−1)dimC(Ma,b) = 1, and therefore the torus fixed points are all bosonic.22

When we change the variables as

q = xy , Q = −x , (4.13)

the partition function (4.11) can be rewritten as [13]

Zcrystal =

∞∏

n=1

1

1− qn

∞∏

m=0

(1− qmQ) . (4.14)

By identifying q and Q with the Boltzmann weights for D0 and D2-branes respectively,

this corresponds to the correct BPS D4-D2-D0 partition function in the singular limit of

the conifold [60].

4.3 Suspended pinch point

The third example is the suspended pinch point, whose toric diagram is shown in the left

picture of figure 31. In this case, we have four toric divisors associated with the corners of

the toric diagram. We first consider a D4-brane on the divisor for p1, and next consider

that for p2. The former reproduces the oblique partition model proposed in [14] while the

latter gives a new statistical model. It will be shown via the wall-crossing formula that

they give the correct partition function of the BPS indices for the corresponding D4-D2-D0

states.

D2-D0 quiver and bipartite graph. We first identify the quiver diagram for D2-D0

states on the suspended pinch point. The relevant brane tiling is shown in the middle of

figure 31. The quiver diagram for the D2-D0 states is shown in the right picture. We have

seven chiral multiplets with the following superpotential:

W0 = tr
(
Φ(Ỹ Y − X̃X)

)
+ tr

(
ZZ̃XX̃

)
− tr

(
Z̃ZY Ỹ

)
. (4.15)

The F-term conditions are then written as

Ỹ Y = X̃X , Z̃XX̃ = Y Ỹ Z̃ , XX̃Z = ZY Ỹ ,

ΦX̃ = X̃ZZ̃ , XΦ = ZZ̃X , ΦỸ = Ỹ Z̃Z , Y Φ = Z̃ZY . (4.16)

If we introduce a flavor D6-brane, then we have a D6-node attached to one of the nodes

in the quiver diagram without any additional superpotential. The U(1)3-fixed points of

the moduli space are expressed as molten configurations of the three-dimensional crystal

studied in [5] (in particular, see figure 5).

In this subsection, we instead introduce a flavor D4-brane on a toric divisor. The

relevant dimer model Q∨ and its perfect matchings are shown in figure 32. Note that Q∨

admits an isoradial embedding.

22Note here (4.12) is always non-negative. In fact, our melting crystal implies b ≥ (a−b)(a−b−1)
2

, which is

equivalent to a+ b ≥ (a− b)2.
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Figure 31. Left: the toric diagram of the suspended pinch point. Middle: the brane tiling for the

D2-D0 states on the suspended pinch point singularity.

m0

(0, 0) (1, 0)

m2

(1, 1)

m1

Z

�Z
�X

Φ

�Y

Y

X

(0, 1)

m3 m4

(0, 2)

m5

(0, 1)

Figure 32. The dimer model Q∨ and perfect matchings for the suspended pinch point singularity.

The coordinate below each perfect matching expresses the corresponding lattice point of the toric

diagram.

Oblique partition model. We first put a D4-brane on a divisor associated with the

lattice point p1 of the toric diagram. The boundary NS5-branes for the divisor are the first

and the second NS5-branes in figure 31. Since the chiral multiplet Z comes from string

excitations at the intersection of the boundary NS5-branes, it is Z that should be identified

with XF . This implies that our D4-node ∗ is now attached to the blue and red nodes in

the quiver diagram. The additional superpotential induced by the D4-brane is written as

Wflavor = JZI . (4.17)
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Figure 33. Left: the quiver diagram for the D4-D2-D0 states when the D4-brane is on a divisor

associated with p1 in the toric diagram. The D4-node is denoted by ∗. Right: the two-dimensional

crystal for the D4-D2-D0 states, which reproduces the so-called “oblique partition model” proposed

in [14].

As shown in figure 32, the perfect matching associated with p1 is m2, which includes Z

and Φ. The constraint (3.6) on supersymmetric vacua is now written as

Z = 0 , Φ = 0 . (4.18)

This means that Z and Φ become massive with vanishing vev’s in the infrared. The quiver

diagram from which the two massive fields are eliminated is shown in the left picture of

figure 33. The non-trivial F-term conditions are now

Ỹ Y − X̃X = 0 , Z̃XX̃ − Y Ỹ Z̃ + IJ = 0 . (4.19)

Note here that, from the general argument in the previous section, we already know that

J = 0 also follows on the supersymmetric vacua. We here explicitly write J for comparison

with the other examples.

The two-dimensional crystal for the D4-D2-D0 states is expressed as in the right picture

of figure 33, where each atom is assigned the same color as the corresponding quiver node.

The (three or four) sides of each atom are associated with “bonds” attached to it. Our

melting rule of the crystal implies the followings:

• A blue triangle can be removed if and only if its left and lower edges are not attached

to other atoms.

• A red triangle can be removed if and only if its slope edge is not attached to other

atoms.

• A parallelogram can be removed if and only if its left and lower edges are not attached

to other atoms.

This is exactly the “oblique partition model” proposed in [14]. Note that, as mentioned in

the previous section, this two-dimensional crystal is a “slope face” of the three-dimensional

crystal associated with the parent D6-D2-D0 states.
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The BPS partition function is evaluated by counting molten configurations p of the

two-dimensional crystal:

Zcrystal =
∑

p

(−1)dimC(Ma,b,c)xaybzc, (4.20)

where a, b, c are the numbers of blue triangles, red triangles and white parallelograms in

p, respectively. The variables x, y and z are the Boltzmann weights for the atoms. The

sign factor is determined by the dimension of the moduli space Ma,b. We now have seven

non-vanishing chiral fields with (a+b+ab+2bc+2ca) complex degrees of freedom in total.

The non-trivial F-term conditions (4.19) reduce (c2 + ab) of them. The gauge degrees of

freedom reduce further (a2 + b2 + c2) parameters. Thus the dimension of the moduli space

is given by

dimC(Ma,b,c) = a+ b+ 2bc+ 2ca− 2c2 − a2 − b2. (4.21)

Then the sign factor is given by (−1)dimC(Ma,b,c) = 1. In terms of different variables

q = xyz , Q1 = −x , Q2 = z , (4.22)

the partition function is written as [14]

Zcrystal =

∞∏

n=1

1

1− qn

∞∏

m=0

(1− qmQ1)(1− qmQ1Q2) . (4.23)

It was also shown in [14] that (4.23) is consistent with the wall-crossing formula for BPS

D-branes when we identify q with the Boltzmann weight for D0-charge and Q1, Q2 with

those for D2-charges.

Another statistical model. We now put a D4-brane on the divisor associated with p2
in figure 31. The boundary NS5-branes are then the third and fourth ones in figure 31.

Since Ỹ comes from the string at the intersection of the boundary NS5-branes, XF is now

identified with Ỹ . This implies that the D4-node ∗ is attached to the blue and white nodes

in the quiver diagram. The superpotential induced by the D4-brane is now written as

Wflavor = J Ỹ I . (4.24)

The perfect matching associated with the lattice point p2 is m0 in figure 32. The con-

straint (3.6) then implies that

X = 0 , Ỹ = 0 . (4.25)

After eliminating X and Ỹ , the quiver diagram can be depicted as in the left picture of

figure 34. The non-trivial F-term conditions are now

ΦX̃ − X̃ZZ̃ = 0 , Y Φ− Z̃ZY + IJ = 0 . (4.26)

Although J = 0 also follows in the infrared, we here explicitly write it for comparison with

the other examples.
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Figure 34. Left: the quiver diagram of the theory on D4-D2-D0 states with a D4-brane on a

divisor associated with p2 in the toric diagram. Right: the corresponding two-dimensional crystal.

The two-dimensional crystal can be depicted as in the right picture of figure 34. Note

that this crystal is an another “slope face” of the same three-dimensional crystal for the

parent D6-D2-D0 states. In fact, choosing a different divisor D of the same Calabi-Yau

leads to a different slope face of the same three-dimensional crystal. The melting rule of

the crystal now implies

• A blue triangle can be removed if and only if its left and lower edges are not attached

to other atoms.

• A red triangle can be removed if and only if its slope edge is not attached to other

atoms.

• A white rectangle can be removed if and only if its left and lower edges are not

attached to other atoms.

This two-dimensional melting crystal model is, to the best of our knowledge, a new

example of statistical model for D4-D2-D0 states. We therefore examine it in detail. The

partition function of the BPS index of the D4-D2-D0 states is given by

Zcrystal =
∑

p

(−1)dimC(M
′

a,b,c
)xaybzc, (4.27)

where a, b, c are the numbers of blue triangles, red triangles and white rectangles in p,

respectively. The variables x, y and z are Boltzmann weights for the three types of atom.

The sign factor is determined by the dimension of the moduli space M′
a,b,c. We here have

seven massless chiral fields with (a+ c+2ab+ bc+ ca+ c2) complex degrees of freedom in

total. The F-term conditions (4.26) reduce (bc+ca) of them. The gauge degrees of freedom

reduce further (a2 + b2 + c2) parameters. Then the dimension of the moduli space is

dimC(M
′
a,b,c) = a+ c+ 2ab− a2 − b2, (4.28)

which implies (−1)dimC(M
′

a,b,c
) = (−1)b+c.

What is interesting here is that, by changing the variables as

q = xyz , Q1 = −x , Q̃2 = y , (4.29)
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Figure 35. Left: a molten configuration of the crystal. Right: the left configuration is split into

towers of atoms. Each tower has several squares composed of a blue triangle, a red triangle and a

white rectangle. Some of the towers have an additional blue triangle with or without a red triangle

on its top.

we can write (4.27) as

Zcrystal =
∞∏

n=1

1

1− qn

∞∏

m=0

1− qmQ1

1− qmQ1Q̃2

. (4.30)

To see this, let us consider a molten configuration of the crystal as in the left picture

of figure 35, and split it into towers of atoms as in the right picture. Each such tower

includes several squares composed of a blue triangle, a red triangle and a white rectangle.

The relation (4.29) implies that each such square contributes q to the partition function.

Furthermore, some of the towers have an additional blue triangle with or without an

additional red triangle on their top. According to (4.29), an additional blue (or red)

triangle contribute −Q1 (or −Q̃2) to the partition function. Thus, in general, we have the

following three types of tower:

1. A tower which has k(> 0) squares without any additional triangles on its top. This

contributes qk to the partition function.

2. A tower which has k(≥ 0) squares with an additional blue triangle on its top. This

contributes −qkQ1 to the partition function.

3. A tower which has k(≥ 0) squares with an additional blue and a red triangle on its

top. This contributes qkQ1Q̃2 to the partition function.

The whole contribution from a molten configuration p is the multiplication of contributions

from all the towers in p. For example, p in figure 35 contributes q6Q2
1Q̃2. Note here that any

molten configuration p is a collection of some towers, but the converse is not true. Namely,

not all collections of towers give a molten configuration of the crystal. In particular, for

fixed k, a single molten configuration p can include at most one second type of tower, while

the first and the third types have no such restriction. This follows from our melting rule

of the crystal. Thus, the first and the third types are “bosonic” while the second type is

“fermionic”. Summing up all the molten configurations is now equivalent to considering

all the collections of the “bosonic” and “fermionic” towers. The bosonic towers contribute

∞∏

n=1

1

1− qn

∞∏

m=0

1

1− qmQ1Q̃2

(4.31)
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D

β2

β1

Figure 36. A blowup of the suspended pinch point singularity. We have a D4-brane on D.

to the partition function, while the fermionic towers contribute

∞∏

m=0

(1− qmQ1) . (4.32)

Then we find that the total partition function is given by (4.30).

Now, let us show that the partition function (4.30) is consistent with the wall-crossing

formula for the BPS index. We use the same method as in [60–62].23 We first blowup

the suspended pinch point singularity so that the divisor D wrapped by the D4-brane is

topologically C
2. The toric web-diagram after the blowup is shown in figure 36. The

blowup parameters are regarded as the Kähler moduli of the geometry. Varying them

generically changes the BPS degeneracy of wrapped D-branes, which is called the “wall-

crossing phenomenon”. In particular, when we take a large radius limit of the blowup cycle,

the BPS partition function becomes very simple [60–62]. In the large radius limit of the

two-cycle β1, the geometry near the D4-brane is C
3. The two-cycle β1 now transversally

intersects with the divisor D wrapped by the D4-brane. A perturbative string analysis then

tells us that no D2-brane on β1 can form a BPS bound state with the D4-brane.24 The

partition function of the BPS index is then given by the D4-D0 partition function on C
2:

Z0 =

∞∏

n=1

1

1− qn
, (4.33)

where q denotes a Boltzmann weight for D0-charge.

We now shrink β1 and go back to the singular limit of the Calabi-Yau three-fold.

Between the large radius and singular limits, we have an infinite number of wall-crossing

phenomena. Any such wall-crossing is associated with an appearance or disappearance of

BPS bound states in the spectrum. Suppose that a BPS bound state with charge Γ decays

into two BPS states with charge Γ1 and Γ2.
25 The charge and energy conservations imply

that such a decay is possible only if

argZ(Γ1) = argZ(Γ2) , (4.34)

23See also [63] for a pictorial representation of the wall-crossing phenomena of D4-D2-D0 states.
24Note here any α′-correction to the BPS condition is suppressed in the large radius limit.
25Any decay channel involving a non-BPS state does not affect the BPS index.
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where Z(Γ) is the central charge of BPS states with charge Γ. Since the central charge

depends on the Kähler moduli, the equation (4.34) can be solved by the moduli parameters,

which gives us a real codimension one subspace in the moduli space. Such a subspace is

called the “wall of marginal stability”. In our case, we are only interested in the charge

Γ = D +
2∑

k=1

Mkβk −NdV, (4.35)

where βk is the unit charge of a D2-brane wrapping the k-th blowup two-cycle, −dV is

the unit D0-charge, and Mk, N ∈ Z. We take the basis of the two-cycles as in figure 36.

We use the same symbol D in (4.35) to denote the charge for our D4-brane. Since our

D4-brane is non-compact, its central charge is divergent. We therefore regularize it to

write Z(D) = 1
2Λ

2e2iϕ, where Λ → ∞ should be taken in the final expression. The phase

ϕ expresses the “ratio” of the volume and B-field of the D4-brane and is fixed so that

0 < ϕ < π/4 throughout our discussion. This regularization was first given in [64]. By

taking a suitable parameterization of the Kähler moduli space, the central charge of the

D2-D0 states can be written as Z(βk) = zk, Z(−dV ) = 1.26

The possible decay channels relevant for the wall-crossings are then [62]

Γ1 = D +
2∑

k=1

(Mk −mk)βk − (N − n)dV, Γ2 =
2∑

k=1

mkβk − ndV, (4.36)

which implies

Z(Γ1) ∼
1

2
Λ2e2iϕ, Z(Γ2) =

2∑

k=1

mkzk + n . (4.37)

Here mk, n express the charges of the D2-D0 fragment. According to the Gopakumar-Vafa

invariants [65, 66] for the suspended pinch point,27 the non-vanishing BPS indices of the

D2-D0 states turn out to be

Ω(Γ2) = 1 for (m1,m2, n) = (±1, 0, n), (0,±1, n) , (4.38)

Ω(Γ2) = −1 for (m1,m2, n) = (±1,±1, n) . (4.39)

Thus, we have walls of marginal stability for (m1,m2, n) = (±1, 0, n), (0,±1, n) and

(±1,±1, n). The locations of the walls are specified by solving (4.34). In particular,

when we fix z2 = 1/2 then the walls are drawn in the complex z1-plane as in figure 37,

where we denote each wall by Wm1,m2
n . Here Im z2 = 0 means the two-cycle β2 shrinks

to a point. On the other hand, Re z2 6= 0 implies a non-vanishing B-field on β2, which is

necessary to avoid massless singularities associated with D2-branes wrapping β2. Between

the large radius and singular limits, we move Im z1 from Im z1 = +∞ to Im z1 = 0. To

avoid massless singularities, we tune Re z1 so that 0 < Re z1, < 1/2. Then we cross the

walls W 1,0
n and W 1,1

n for all n ≥ 0 (figure 37).

26Here zk ∈ C expresses the volume and the B-field of the k-th two-cycle when Im zk is large.
27For the explicit calculation of the invariants, see appendix D of [62].
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W
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z1

Figure 37. The walls of marginal stability in the complex z1-plane with z2 = 1/2. All the walls

are semi-infinite line from singular points (red dots). Along the red arrow, we move Im z1 from ∞

to 0, crossing the walls W 1,0
n and W 1,1

n for all n ≥ 0.

Since our Γ1 has no positive integer greater than one which divides out Γ1, we can

use the so-called “semi-primitive wall-crossing formula” [67]. The formula tells us that, at

each wall-crossing, the partition function changes as

Z → Z
(
1 + (−1)〈Γ,Γ2〉qnQm1

1 Q̃m2
2

)〈Γ2,Γ〉Ω(Γ2), (4.40)

where Q1 and Q̃2 are Boltzmann weights for D2-branes on β1 and β2 respectively. The

bracket 〈Γ,Γ2〉 is the intersection product of the charges. To be more explicit, it is written as

〈Γ,Γ2〉 =
2∑

k=1

mk〈D, βk〉 = m1 , (4.41)

where 〈D, βk〉 is equivalent to the intersection number of the divisor D and the blowup cycle

βk. By taking into account all the wall-crossings between the large radius and singular

limits, we find that the partition function at the singular limit is written as

ZD4-D2-D0 = Z0

∞∏

n=0

1− qnQ1

1− qnQ1Q̃2

=
∞∏

n=1

1

1− qn

∞∏

m=0

1− qmQ1

1− qmQ1Q̃2

, (4.42)

which agrees with (4.30).

4.4 Orbifold C
2/ZN × C

In this subsection, we study two dimensional statistical models for D4-D2-D0 states on

C
2/ZN×C, where the D4-brane wrapping on a toric divisor. The toric diagram of C2/ZN×

C is represented by the lattice points (0, 0), (1, 0) and (0, N) in Z
2. We listed the toric

diagram, brane tiling and quiver diagram associated with C
2/Z3 × C in the figure 38.

– 44 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
9

Figure 38. Left: the toric diagram of C2/Z3 × C. p3 and p4 represent the lattice point (0, 3) and

(1, 0), respectively. Middle: the brane tiling for D2 −D0 states on C
2/Z3 × C. Right: the quiver

diagram for D2-D0 states on C
2/Z3 × C.

Orbifold partition. The first example is a D4-brane wrapping on a divisor C
2/ZN

associated with the lattice point (1, 0). The blow up geometry of C2/ZN is given by the

AN−1-type ALE space. Since the intersection product of each blow up two-cycle and the

four-cycle wrapped by the D4-brane vanishes, wall-crossing phenomena do not occur [62].

This implies that the BPS index of the D4-D2-D0 states is independent of the size of

compact two-cycles. In the large radii limit of the two-cycles, the D4-D2-D0 states can be

counted in terms of q-deformed Yang-Mills theory [68–70]. The partition function of the q-

deformed Yang-Mills theory is related to the instanton partition function of the Vafa-Witten

theory on the AN−1-type ALE space, which is given by the ŝu(N)1-characters [30, 71].

On the other hand, in the small radius limit of the two-cycles, the D4-D2-D0 states are

described by our melting crystal model. The absence of wall-crossings implies that the

melting crystal model should also reproduce the character of ŝu(N). We will explicitly

show this below.

From the brane tiling, we find that the supersymmetric quantum mechanics on D2-

D0 states is given by the quiver diagram associated with the AN−1-type extended Dynkin

diagram [1]. The superpotential term is given by

W0 =
N−1∑

i=0

tr Φi(Xi−1X̃i−1 − X̃iXi) . (4.43)

The boundary NS5-branes for the lattice point (1, 0) are the first and second red lines in the

middle picture of figure 38. They generally intersect with each other at N different points in

T 2. The D4-node ∗ is located at one of them. The choice is related to the holonomy of the

gauge field at infinity on the D4-brane, which is classified by π1(S
3/ZN ) ≃ ZN [23]. Suppose

that our D4-node ∗ is located at the i-th intersection point for some i = 0, · · · , N−1. There

is a chiral multiplet Φi localized at the point. Then the D4-brane induces an additional

superpotential

Wflavor = tr(JΦiI) . (4.44)

Without loss of generality, we can fix i = 0 and consider the corresponding crystal melting

model. The other choices of i are realized by shifting the labels of the quiver nodes k as

k → k + i (modN) in the final expression.
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Figure 39. The first: the bipartite graph of C2/Z3 ×C, which clearly admits an isoradial embed-

ding. The second: the reference perfect matching. The third: the perfect matching associated with

the lattice point p4. The forth: the perfect matching associated with the lattice point p3.

Figure 40. Left: the reduced quiver diagram of D4-D2-D0 states of C2/Z3 × C. Right: a molten

configuration for D4-D2-D0 states. Each box has one of the N = 3 type color associated with the

Z3 orbifolding.

The dimer model and the perfect matching associated with the lattice point (1, 0) are

shown in the first and the third picture of the figure 39. The perfect matching contains all

the adjoint chiral fields Φk, and the constraint (3.6) implies that they have the vanishing

vev’s:

Φk = 0 , (k = 0 · · ·N − 1) . (4.45)

After eliminating Φk from the massless spectrum, the quiver diagram can be depicted as

in the left picture of figure 40. The non-trivial F-term conditions are now given by

XN−1X̃N−1 − X̃0X0 + IJ = 0 , Xk−1X̃k−1 − X̃kXk = 0 (k 6= 0) . (4.46)

Note here that J = 0 also follows on supersymmetric vacua. The two-dimensional crystal

for the D4-D2-D0 states is now similar to that in the right picture of figure 28. The only

difference is that we here have N different types of box. The melting rule of the crystal

now implies that

• Each atom can be removed if and only if its left and lower edges are not attached to

other atoms.

Each molten crystal is regarded as a colored Young diagram, in which every box has a

color. The color of a box atom is determined by the quiver node associated with it. Since

we have N quiver nodes besides the D4-node, there are N different colors of box. We call
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a box “k-colored box” if it is associated with the k-th quiver node. We show an example of

molten crystal in figure 40; white, blue and red boxes represent color 0, 1, 2, respectively.

We here emphasize that the molten configurations of the crystal correspond to the

torus fixed point set (orbifold partition) of the ADHM moduli space on the ALE space.

Counting the melting crystals is equivalent to evaluating the Euler characteristic of the

ADHM moduli space, which is given by the level-one character of ŝu(N).

Here, the partition function of the melting crystal is given by

Zcrystal =

∞∑

d0,···dN−1=0

(−1)dimC(M~d
)
∑

P(~d)

N−1∏

k=0

xdkk . (4.47)

The second summation is taken over the set P(~d) of all molten configurations with dk
k-colored boxes for k = 0, · · · , N − 1. We denote by xk the Boltzmann weight for the

k-colored box.

To see that (4.47) is equivalent to the character of ŝu(N), we first evaluate the sign

factor determined by the dimension of the moduli space. The chiral fields Xk, X̃k, I and

J contain
∑N−1

k=0 2dkdk−1 + 2d0 degrees of freedom. The F-term conditions (4.46) reduce∑N−1
i=0 d2i parameters, and the gauge transformations further reduce d2i parameters. There-

fore, the dimension of the moduli space is

dimC(M~d
) =

N−1∑

k=0

(2dkdk−1 − 2d2k) + 2d0 . (4.48)

This means that the sign factor is (−1)dimC(M~d
) = 1. We next evaluate the summation

over P(~d) in (4.47). We count the number of colored boxes in a molten configuration. It is

shown in [26] that there exists a one-to-one correspondence between the set of the molten

configurations ∪~d
P(~d) and the set

{
~k = (k0, · · · , kN−1) ∈ Z

N
∣∣ ∑

i

ki = 0
}
×
{
Y

∣∣∣ |Y | = nN, n = 0, 1, 2, · · ·
}
, (4.49)

with the identification

di =
1

2

N−1∑

j=0

k2j +

N−1∑

j=i

kj + n . (4.50)

Here |Y | denotes the total number of boxes in a Young diagram Y . Then the partition

function of the melting crystal factorizes into two parts [26]:

Zcrystal =

( ∑

~k:
∑

i ki=0

N−1∏

i=0

x
1
2

∑N−1
j=0 k2j+

∑N−1
j=i kj

i

)( ∞∑

n=0

∑

Y :|Y |=nN

(x0 · · ·xN−1)
n

)
. (4.51)

If we identify the Boltzmann weights of D0-charge and D2-charges as q = x0x1 · · ·xN−1

and Qi = xi, (i = 1, · · · , N − 1) respectively, the former factor in (4.51) becomes

∑

~k∈ZN :
∑

i ki=0

N−1∏

i=0

x
1
2

∑N−1
j=0 k2j+

∑N−1
j=i kj

i =
∑

(n1,··· ,nN−1)∈ZN−1

N−1∏

i=1

qni(ni−ni+1)Qni

i . (4.52)
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Figure 41. Left: the reduced quiver diagram associated with the lattice point p3. Right: an

example of A molten configuration.

Here we change the variables as ni =
∑N−1

j=i ki. On the other hand, the latter factor

in (4.51)
∞∑

n=0

∑

Y :|Y |=nN

(x1 · · ·xN )n =
∞∏

m=1

1

(1− qm)N
(4.53)

corresponds to the generating function of the Euler characteristics of the Hilbert schemes

of points on the AN−1-type ALE space. Therefore we find that the partition function of

the melting crystal is written as

Zcrystal =
q

N
24

η(q)N

∑

n∈ZN−1

q
1
2
n
TCnQn, (4.54)

where C is the AN−1-type Cartan matrix and Qn :=
∏N−1

i=1 Qni

i . This agrees with the

level-one character of ŝu(N) up to a Qk-independent prefactor.
28

Another melting crystal. We now turn to the second example, in which the D4-brane

is wrapping on a toric divisor associated with the lattice point (0, N). The topology of the

divisor is now C/ZN ×C. In order to be concrete, we will treat the example of N = 3. The

lattice point corresponding to the divisor is denoted by p3 in the left picture of figure 38.

When we identify the boundary NS5-branes as the first and fifth red lines in the second

picture of figure 38, X̃2 is now identified with XF . Then the D4-node is now attached to

the red and white quiver nodes, and induces the following additional superpotential:

Wflavor = JX̃2I . (4.55)

The perfect matching associated with the lattice point p3 is shown in the rightmost picture

of the figure 39. Then the constraint (3.6) now requires

X̃k = 0 (k = 0, 1, 2) , (4.56)

on supersymmetric vacua. After removing X̃k, the quiver diagram can be depicted as in

the left picture of 41. The non-trivial F-term conditions become

Φ1X0 −X0Φ0 = 0 , Φ2X1 −X1Φ1 = 0 , Φ0X2 −X2Φ2 + IJ = 0 . (4.57)

28To be precise, we here obtain the level-one character for the trivial weight. The reason for this is that

we set i = 0 in (4.44). For general i in (4.44), we obtain the character for the i-th level-one weight of ŝu(N),

up to the ni-independent overall factor q
i(N−i)

2N e
∑

j C
−1
i,j

yj with eyj = Qj .
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Figure 42. Left: a molten configuration of the crystal. A white, a red and a blue rectangle respec-

tively represent atoms associated with white, red and blue nodes in the reduced quiver diagram.

Right: division of the left picture into towers of atoms. A white, a red and a blue rectangle form a

single square.

Again, the melting rule of the crystal is the same as for the young diagrams, but the

coloring of boxes is different from the previous example; boxes with the same color sit in

the horizontal direction (right picture in figure 41).

The partition function of the melting crystal is given by

Zcrystal =
∑

p

(−1)dimC(Md0,d1,d2
)xd00 x

d1
1 x

d2
2 , (4.58)

where p runs over all the molten configurations. The integers d0, d1 and d2 stand for the

numbers of white, blue and red boxes in a molten configuration p, and x0, x1 and x2 rep-

resent the Boltzmann weights for white, blue and red boxes, respectively. The sign factor

is determined as follows. The chiral fields contain
∑2

i=0(didi+1 + d2i )+ d0 + d2 parameters.

The F-term conditions (4.57) reduce
∑2

i=0 didi+1 parameters, and the gauge transforma-

tions further reduce
∑2

i=0 d
2
i parameters. Then the sign becomes (−1)dimC(Md0,d1,d2

) =

(−1)d0+d2 . We can find the closed expression for the generating function by the similar

manner to the second example in subsection 4.3. Let us consider a molten configuration

as in the left picture of figure 42, and divide it into towers of rectangles as in the right

picture. We then change the Boltzmann weights as

q = x0x1x2 , Q1 = −x0 , Q2 = x1 . (4.59)

This means that a square composed of a white, a red and a blue rectangle contributes q

to the partition function. An additional white or a blue rectangle contributes Q1 or Q2 to

the partition function. Thus we have the following three types of tower:

1. A tower which has k(> 0) squares without any additional rectangle on its top. This

contributes qk to the partition function.

2. A tower which has k(≥ 0) squares with an additional white rectangle on its top. This

contributes qkQ1 to the partition function.

3. A tower which has k(≥ 0) squares with an additional white and a blue rectangle on

its top. This contributes qkQ1Q2 to the partition function.

The partition function can contain arbitrary number of the three-types of towers, and

therefore can be written as

Zcrystal =
∞∏

n=1

1

1− qn

∞∏

m=0

1

(1− qmQ1)(1− qmQ1Q2)
. (4.60)
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Figure 43. The web diagram of blow up geometry of C2/Z3×C. The grey region D represents the

toric divisor wrapped by the D4-brane. In the singular limit, the topology of D becomes C/Z3×C.

The β1 and β2 represent the blow up compact two-cycles.

To see that (4.60) reproduces the correct BPS partition function of the D4-D2-D0

states, we consider the wall-crossing phenomena of BPS states. We consider the blow up

geometry of C2/Z3×C as in figure 43. In the large radii limit of the two-cycles, the divisor

wrapped by the D4-brane is isomorphic to C
2. Then the D4-D2-D0 state counting reduces

the D4-D0 state counting on C
2, which again gives the partition function in (4.33). To

obtain the partition function in the singular limit, we have to detect the positions of the

walls of marginal stability and evaluate the jumps of the BPS indices. The possible decay

channels are again written as the following form:

Γ → Γ1 + Γ2 (4.61)

with

Γ = D +
2∑

k=1

Mkβk −NdV, Γ2 =
2∑

k=1

mkβk + ndV. (4.62)

The Gopakumar-Vafa invariants tell us that the non-vanishing BPS indices are now

Ω(Γ2) = 1 for (m1,m2, n) = (±1, 0, n), (0,±1, n), (±1,±1, n) . (4.63)

We have the walls of marginal stability for (m1,m2, n) = (±1, 0, n), (0,±1, n), (±1,±1, n).

The position of the walls are identified by solving (4.34). When we fix z2 =
1
2 , the locations

of the walls are the same as in figure 37. However, the intersection products between βk
and D are different from those in subsection 4.3:

〈D, β1〉 = 1 , 〈D, β2〉 = 0 , (4.64)

Using the wall-crossing formula (4.40), we find that the BPS partition function at the

orbifold limit is written as

ZD4-D2-D0 = Z0

∞∏

m=0

1

(1− qmQ1)(1− qmQ1Q2)

=

∞∏

n=1

1

1− qn

∞∏

m=0

1

(1− qmQ1)(1− qmQ1Q2)
, (4.65)

which coincides with (4.60).

In the previous example, the reduced quiver diagram in the figure 40 is same as the

ADHM quiver on C
2/ZN . We also showed that the orbifold partitions are in one-to-one
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correspondence with the torus fixed points of the moduli space of instantons on C
2/ZN .

It is natural to expect that crystal melting model obtained here is related to the instanton

counting on C/ZN×C. Actually, the reduced quiver diagram in the figure 41 is same as the

ADHM quiver on C/ZN×C and the molten configurations are in one-to-one correspondence

with the torus fixed points of the ADHM moduli space on C/ZN × C [72].
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A Stability condition

In [4], the slope function is defined by

µϑ(M) :=

∑
ℓ∈Q̂0

ϑℓ dimMℓ∑
ℓ∈Q̂0

dimMℓ
, (A.1)

and M is called ϑ-stable if every non-zero proper submodule N ⊂ M satisfy µϑ(N) <

µϑ(M). The ϑ-parameters are set in [4] so that ϑ∗ = 1 and ϑk = 0 for k ∈ Q0. We here

describe that the θ-stability we use in this paper is equivalent to this ϑ-stability.

First of all, the ϑ-stability is invariant under the following two types of change

• ϑ→ ϑ+ ζ for any ζ ∈ R,

• ϑ→ ξϑ for any ξ ∈ R+.

We particularly use the first one. For a given A-module M , let us define ϑ′ := ϑ+ ζ with

ζ = −

∑
ℓ∈Q̂0

ϑℓ dimMℓ∑
ℓ∈Q̂0

dimMℓ
. (A.2)

Then the ϑ′-stability of M is equivalent to the ϑ-stability of M . Note that we have

µϑ′(M) = 0, and therefore µϑ(N) < µϑ(M) is equivalent to µϑ′(N) < 0.

We now identify our θ as θ = ϑ′. Although our slope function θ(M) is different from

µθ(M), we can easily show that θ(N) < 0 is equivalent to µθ(N) < 0. Hence, our θ-

stability is equivalent to the original ϑ-stability. Furthermore, it follows from θ = ϑ + ζ

that ϑ∗ = 1, ϑk = 0 implies θ∗ ≥ 0, θk < 0.
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Figure 44. An example of dimer model which does not admit any isoradial embedding, which is

associated with the local P1 × P
1.

B Isoradial dimer model

The necessary and sufficient condition for a dimer model Q∨ on T 2 to admit an isoradial

embedding was given in Theorem 5.1 of [73]. The condition is rephrased in terms of zig-zag

paths as follows:29

• Any zig-zag path of Q∨ is a closed curve without self-intersection,

• In the universal cover Q̃∨, any two zig-zag paths share at most one edge.

All the dimer models shown in this paper admit an isoradial embedding. On the other

hand, for example, the dimer model in figure 44 does not admit any isoradial embedding.

In fact, there are pairs of zig-zag paths in the universal cover which share an infinite number

of edges.

C Perfect matching and toric divisor

When we consider a single D0-brane probe on the Calabi-Yau singularity YΣ, the condi-

tion (3.6) is understood as the condition that the D0-probe is moving in the divisor D. We

here describe this.

Let us first note that the chiral multiplets Xa ∈ Q1 are expressed by commutative

complex variables if we only have a single D0-probe. In this case, the F-term conditions

without flavor branes are known to be solved by [18, 52, 74]

Xa =
∏

m∋Xa

pm , (C.1)

where the product runs over the perfect matchings involving Xa. The variable pm is a

complex variable and regarded as a new “field” associated with the perfect matching m.

These new fields in fact trivialize all the F-term conditions ∂W0/∂Xa = 0. Therefore, we

can regard pm as the fields of a gauged linear sigma model without superpotential. The

moduli space of the sigma model corresponds to the background Calabi-Yau geometry YΣ
in which the D0-prove is moving.

29For the definition of zig-zag paths, see subsection 3.5.
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Now, let us consider the condition (3.6). In the D0-probe setup, the condition is

equivalent to

pmD
= 0 . (C.2)

It was shown in [75] that,30 when D is associated with a corner of the toric diagram, this

condition describes the divisor D in the moduli space of the gauged linear sigma model.

This is physically interpreted to mean that the D0-probe should move in the divisor D in

order to keep the BPS condition with a D4-brane wrapping on D.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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