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Abstract: We propose the design method for broadband acoustic metamaterials based on the concept
of transformation acoustics. Two-dimensional distributed transmission-line (TL) models for full-
tensor anisotropic electromagnetic metamaterials are applied to full-tensor anisotropic acoustic
metamaterials and the design formulas are shown to uniquely determine the structural parameters of
the unit cells. Two-dimensional acoustic waveguide unit cell structures for realizing the TL models
are proposed and an acoustic carpet cloak and an acoustic illusion medium are designed according
to the introduced theory. The complex sound pressure distributions in the acoustic waveguides of
the unit cells are calculated by full-wave simulations to verify the validity of the proposed method,
and the broadband operations of the designed carpet cloak and illusion medium are confirmed from
the results.

Keywords: transformation acoustics; acoustic carpet cloaks; acoustic illusions; full-tensor anisotropic
acoustic metamaterials; transmission-line approach

1. Introduction

In the field of electromagnetic waves, design methods with equivalent circuit models
based on the transmission-line approach [1] have been adopted to designs of electromag-
netic metamaterials since the approach can abstract Maxwell’s equations and leads to
physical insights and rigorous designs. In particular, these have widely been used for
the designs of electromagnetic metamaterials having negative refractive index character-
istics [2–6]. Furthermore, two-dimensional (2-D) equivalent circuit models for full-tensor
anisotropic metamaterials [7,8] have been proposed and have been introduced to the design
of metamaterials based on the concept of transformation electromagnetics [9] that can real-
ize invisible cloaks [9–22], carpet cloaks [7,8,21,23–30], and illusion media [31,32]. Those
lumped circuit elements independently correspond to the permittivity and the permeability
tensor components and, therefore, the models can rigorously design the unit cells of the full-
tensor anisotropic metamaterials without resorting to many calculations by simulators that
are one of the issues in the conventional design methods. The broadband operations can
also be achieved due to the intrinsic nature of non-resonant. Furthermore, 2-D distributed
transmission-line (TL) models have been proposed [8]. The characteristic impedance and
the line length can be determined uniquely by substituting the lumped circuit elements
in the 2-D equivalent circuit models for the design formulas and, therefore, we can easily
implement metamaterials based on transformation electromagnetics with planar structures.
The validity and the usefulness have also been demonstrated experimentally [8,32].

Recently, the theory of the 2-D equivalent circuit models for full-tensor anisotropic
electromagnetic metamaterials has been extended to acoustic metamaterials [33,34] in order
to realize acoustic invisible cloaks [21,35–47], acoustic carpet cloaks [33,48–56], or acoustic
illusion media [34,57–60] based on the concept of transformation acoustics [35]. As is the
same in the case of the electromagnetic metamaterials, the conventional design methods
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have issues like many calculations for designing the unit cell structures or narrowband
characteristics, but the models introduced from the electromagnetic metamaterials can solve
these simultaneously. So far, the correspondences between the lumped circuit elements and
acoustic material parameters (the mass density tensor and the balk modulus) have been
revealed [33] and the broadband operations of an acoustic carpet cloak and an acoustic
illusion medium have been confirmed by circuit simulations [33,34]; however, the 2-D
distributed TL models have yet to be introduced to acoustic metamaterials.

In this paper, we introduce the 2-D distributed TL models for full-tensor anisotropic
electromagnetic metamaterials to the design of full-tensor anisotropic acoustic in order
to theoretically determine the structural parameters of the unit cells and realize acoustic
metamaterials based on transformation acoustics. In Section 2, we recall the theory of 2-D
equivalent circuit models for acoustic metamaterials, and the 2-D distributed TL models for
electromagnetic metamaterials, and update the design formulas of the TL models in order
to determine the structural parameters of unit cells constituting acoustic metamaterials
based on transformation acoustics. We also propose 2-D anisotropic acoustic waveguide
unit cell structures and determine the waveguide widths and lengths for realizing an
acoustic carpet cloak and an illusion medium as examples. In Section 3, the complex sound
pressure distributions in those waveguides are calculated by full-wave simulations in order
to confirm the broadband operations and the validity of the proposed design theory. In
Section 4, this paper is concluded.

2. Methods
2.1. Design Formulas

Firstly, we recall the theory of 2-D equivalent circuit models for full-tensor anisotropic
acoustic metamaterials (see Figure 1a,b) [33] and show the relations of material parameters
and circuit parameters. According to the references of [7,8,33], defining the voltage and
current vectors and the 2-D equivalent circuit models of Figure 1a,b as V = [Vx, Vx+1, Vy,
Vy+1] and I = [Ix, −Ix+1, Iy, −Iy+1], we can obtain those circuit equations as shown in the left
column of Table 1 from Kirchhoff’s voltage and current laws. On the other hand, Maxwell’s
equations and acoustic equations in the 2-D Cartesian coordinate system with z invariance
can be written as in the center and the right columns of Table 1 by assuming z-polarized
TE waves or acoustic waves in a full-tensor anisotropic metamaterials and time harmonic
variation, respectively. Then, considering the correspondences of voltages, currents, electric
fields, magnetic fields, scalar pressures, and fluid velocities, as shown in Table 2, we can
obtain the following relations [7,8,33] between the circuit parameters per unit length (L′x,
L′y, M′, and C′), the parameters of electromagnetic metamaterials (µxx, µxy = µyx, µyy, and
εz), and the parameters of acoustic metamaterials (ρxx, ρxy = ρyx, ρyy, and K′):(

L′x ∓M′

∓M′ L′y

)
⇔
(

ρxx ρxy
ρyx ρyy

)
⇔
(

µyy − µyx
−µxy µxx

)
(1)

C′ ⇔ 1
K′
⇔ εz′ (2)

where the upper signs correspond to the case of Figure 1a (ρxy = ρyx < 0) and the lower
signs correspond to the case of Figure 1b (ρxy = ρyx > 0). Moreover, according to the concept
of transformation acoustics [35], the mass density tensor (ρ′) and the bulk modulus (K′) for
mimicking transformed coordinate system can be calculated from the following formulas:

ρ′ = (detA)(AT)
−1

ρA−1 (3)

K′ = (detA)K (4)

where A is the Jacobian matrix, and ρ and K are the mass density and the bulk modulus for
mimicking the original coordinate system, respectively.
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Figure 1. 2-D equivalent circuit models for full-tensor anisotropic acoustic metamaterials. (a) ρxx < 0
case; (b) ρxx > 0 case.

Table 1. Circuit equations, 2-D Maxwell’s equations, and 2-D acoustic equations for full-tensor
anisotropic electromagnetic or acoustic metamaterials.

Circuit Equations 2-D Maxwell’s Equations 2-D Acoustic Equations

− Ix+1−Ix
∆d − Iy+1−Iy

∆d = jωC′Vc
∂Hy
∂x −

∂Hx
∂y = jωεzEz − ∂vx

∂x −
∂vy
∂y = jω 1

K p
Vx+1−Vx

∆d = ±jωM′ Iy+1+Iy
2 − jωL′x

Ix+1+Ix
2

∂Ez
∂x = jωµyx Hx + jωµyy Hy

∂p
∂x = −jωρxyvy − jωρxxvx

Vy+1−Vy
∆d = −jωL′y

Iy+1+Iy
2 ± jωM′ Ix+1+Ix

2
∂Ez
∂y = −jωµxx Hx − jωµxy Hy

∂p
∂y = −jωρyyvy − jωρyxvx

Table 2. Correspondences of voltages, currents, electric fields, magnetic fields, scalar pressures, and
fluid velocities in the equations of Table 1.

Circuit Equations 2-D Maxwell’s Equations 2-D Acoustic Equations

Vc Ez p
Vx+1−Vx

∆d
∂Ez
∂x

∂p
∂x

Vy+1−Vy
∆d

∂Ez
∂y

∂p
∂y

Ix+1+Ix
2 −Hy vx

Iy+1+Iy
2

Hx vy
Ix+1−Ix

∆d − ∂Hy
∂x

∂vx
∂x

Iy+1−Iy
∆d

∂Hx
∂y

∂vy
∂y

Secondly, in order to theoretically determine the unit cell structures and realize broad-
band acoustic metamaterials based on transformation acoustics, we recall the design formu-
las of 2-D distributed TL models for full-tensor anisotropic electromagnetic metamaterials
(see Figure 2a,b) [8], and extend the theory to acoustic metamaterials. The design formulas
of the TL models for the case with electromagnetic metamaterials can be written as

L′x −M′ =
2Z0x

ω∆d
tan

βl
2

(5)

L′y −M′ =
2Z0y

ω∆d
tan

βl
2

(6)
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M′ =
2

ω∆d
Z2

0M(Y0x + Y0y) tan βl
2 + Z0M(cosecβMlM − cot βMlM)

cos2 βl
2 + Z0M(Y0x + Y0y) sin βl cot βMlM − Z2

0M(Y0x + Y0y)
2 sin2 βl

2

(7)

C′ =
1

ω∆d

{(
Y0x + Y0y

)
sin βl cos βMlM + Y0M cos2 βl

2
sin βMlM − Z0M(Y0x + Y0y)

2 sin2 βl
2

}
(8)

and according to the reference of [8], these can be obtained by comparing Z-parameters of
the equivalent circuit models with those of the TL models. βl = βxlx = βyly is also assumed
to solve these formulas simultaneously. Then, substituting (1) and (2) for (5)–(8), we can
obtain the following design formulas for acoustic metamaterials that are extended from
those for electromagnetic metamaterials:

ρxx ± ρxy =
2Z0x

ω∆d
tan

βl
2

(9)

ρyy ± ρxy =
2Z0y

ω∆d
tan

βl
2

(10)

∓ ρxy = ∓ρyx =
2

ω∆d
Z2

0M(Y0x + Y0y) tan βl
2 + Z0M(cosecβMlM − cot βMlM)

cos2 βl
2 + Z0M(Y0x + Y0y) sin βl cot βMlM − Z2

0M(Y0x + Y0y)
2 sin2 βl

2

(11)

1
K′

=
1

ω∆d

{(
Y0x + Y0y

)
sin βl cos βMlM + Y0M cos2 βl

2
sin βMlM − Z0M(Y0x + Y0y)

2 sin2 βl
2

}
(12)
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Figure 2. 2-D distributed TL models for determining the structural parameters of unit cells of full-
tensor anisotropic acoustic metamaterials to be introduced from electromagnetic metamaterials.
(a) ρxx < 0 case; (b) ρxx > 0 case. In the case of acoustic metamaterials, the phase constants (β and βM)
of TLs correspond to those of acoustic waves.

The upper signs of (9)–(11) correspond to the case of Figure 2a (ρxy = ρyx < 0) and
the lower signs correspond to the case of Figure 2b (ρxy = ρyx > 0). It is seen from these
formulas that we can uniquely determine the characteristic impedances (Z0x, Z0y, Z0M) and
the electrical lengths (βl and βMlM) for acoustic metamaterials.

2.2. Proposed Acoustic Waveguide Unit Cell Structures

Figure 3a,b shows the proposed 2-D acoustic waveguide unit structures for full-tensor
anisotropic acoustic metamaterials and Figure 4a,b is for the background medium to be
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connected to Figure 3a,b, respectively. Furthermore, these waveguides are formed in the
rigid body and are filled with the air. wx, wy, wM, and wb are the waveguide widths, l (=lx =
ly), lM, and lb are the waveguide lengths, and ∆d and ∆db (=∆d) are the waveguide unit cell
lengths. The waveguide widths can be determined as the following formulas:

wx =
Z0b
Z0x

wb, wy =
Z0b
Z0y

wb, wM =
Z0b
Z0M

wb (13)

where Z0b is the characteristic impedance of the 2-D distributed TLs for the background
medium shown in Figure 5. The ratio of the characteristic impedances can be obtained
from (9)–(12). On the other hand, the waveguide lengths can be calculated with

l =
√

2φlb, lM =
√

2φMlb (14)

φ and φM are values of electrical lengths normalized by kb∆db (kb is the wavenumber for the
background medium) and represent the solutions of βl/kb∆db and βMlM/kb∆db obtained
from (9)–(12), respectively.

√
2 denotes the 2-D effect of the unit cell structures [1,8].
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Figure 5. 2-D distributed TL model for the background medium.

2.3. Design of an Acoustic Carpet Cloak and an Illusion Medium

Here, we design an acoustic carpet cloak for hiding a bump on a flat surface of
Figure 6 [33] and an acoustic illusion medium for mimicking a groove on a flat surface of
Figure 7 [34] to show the design examples with the proposed unit cell structures in the
previous subsection. Incidentally, materials of the flat surface, the bump, and the groove
are assumed to the rigid body in the following design.
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Figure 6. Concept of an acoustic carpet cloak. (a) Original coordinate system on a flat surface and the
reflection from the flat surface; (b) transformed coordinate system on a bump and the reflection from
an acoustic carpet cloak covering the bump. The same reflected wave as that from the flat surface is
generated by controlling the trajectory of the incident acoustic wave, with the carpet cloak mimicking
the transformed coordinate system and it looks as if there is not the bump on the flat surface.



Crystals 2022, 12, 1557 7 of 17
Crystals 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 

 174 

≡

Incident wave Scattered waves

 

(a) 

≡

Incident wave

Same scattered waves

as those from the groove

 

(b) 

Figure 7. Concept of an illusion medium. (a) Original coordinate system on a groove and scatter- 175 
ings of the incident acoustic wave by the groove; (b) transformed coordinate system on a flat sur- 176 
face and scatterings of the incident acoustic wave from an illusion medium on the flat surface. The 177 
same scattered waves as that from the groove are generated by controlling the trajectory of the in- 178 
cident acoustic wave with the illusion medium and it looks like as if there is the groove on the flat 179 
surface. 180 

181 

Figure 7. Concept of an illusion medium. (a) Original coordinate system on a groove and scatterings
of the incident acoustic wave by the groove; (b) transformed coordinate system on a flat surface
and scatterings of the incident acoustic wave from an illusion medium on the flat surface. The same
scattered waves as that from the groove are generated by controlling the trajectory of the incident
acoustic wave with the illusion medium and it looks like as if there is the groove on the flat surface.

We first consider defining the original coordinate systems, such as Figures 6a and 7a,
and transforming those to Figures 6b and 7b, respectively. These transformation formulas
are chosen as [33,34]

x′ = x, y′ = y + A
(

1− y
h

){
1−

(
x
p

)2
}2

(15)

x′ = x, y′ =
y + A

{
1−

(
x
p

)2
}2

h + A
{

1−
(

x
p

)2
}2 h, (16)

respectively, and A, h, and p are selected as 30 mm, 100 mm, and 100 mm with ∆d = ∆db = 10 mm,
in the following, for simplicity.

Next, we obtained Z0b/Z0x, Z0b/Z0y, φ, and φM by using (3), (4), (9)–(12), (15), and (16)
with Z0M/Z0b = 1.061 (carpet cloak case) or 1.500 (illusion medium case), and calculated wx,
wy, l, and lM from (13) and (14) with wb = 1.0 mm and lb = 11 mm. Figures 8 and 9 show the
results for the acoustic carpet cloak case (wM = 0.943 mm) and the acoustic illusion medium
case (wM = 0.667 mm), respectively, and these are determined by considering the feasibility.
Furthermore, the designed acoustic carpet cloak and illusion medium are illustrated in
Figures 10a and 11a. We carry out the full-wave simulations and compare those results
with the cases of the flat surface (see Figure 10b), the bump (see Figure 10c), and the groove
(see Figure 11b) in the next section.
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(a) Carpet cloak; (b) flat surface; (c) bump. These sizes are 2p × h = 200 mm × 100 mm (2p × h) and 192 
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Figure 10. Designed acoustic carpet cloak and the additional designed structures for comparison.
(a) Carpet cloak; (b) flat surface; (c) bump. These sizes are 2p × h = 200 mm × 100 mm (2p × h) and
those are discretized by using unit cells of Figure 3 (carpet cloak case) and Figure 4 (flat surface and
bump cases) whose sizes are ∆d × ∆d = ∆db × ∆db = 10 mm × 10 mm. The structural parameters of
Figure 8 are adopted to the unit cells of the carpet cloak, and those for the flat surface and the bump
are wb = 1.0 mm and lb = 11 mm.
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Figure 11. Designed acoustic illusion medium and the additional designed structure for comparison.
(a) Illusion medium; (b) groove. These sizes are 2p × h = 200 mm × 100 mm (2p × h) and those are
discretized by using unit cells of Figure 3 (illusion medium case) and Figure 4 (groove case) whose
sizes are ∆d × ∆d = ∆db × ∆db = 10 mm × 10 mm. Structural parameters of Figure 9 are adopted to
the unit cells of the carpet cloak, and those for the groove are wb = 1.0 mm and lb = 11 mm.

3. Results and Discussion
3.1. Acoustic Carpet Cloak

Figure 12a shows the setup for the full-wave simulations of the acoustic carpet cloak
and the size of the analysis area is set to 400 mm × 200 mm. The designed carpet cloak
in Figure 10a is arranged at the center of the bottom in that area, and the other area
corresponds to the background medium constituted by using the structures of Figure 4.
Forty input ports are connected to the waveguides of the upper boundary and a Gaussian
beam with a beam waist of 100 mm is injected from there. Furthermore, the rigid body
walls are set as the bottom boundary and other boundaries are selected as the absorption
boundary. We calculated the complex sound pressure distributions in the waveguides by
the Acoustics Module of COMSOL and compared the results with those for the cases with
the flat floor in Figure 10b (see Figure 12b) and the bump in Figure 10c (see Figure 12c).
Incidentally, the number of meshes in these simulations was approximately 1.4 million and
the calculation time was approximately one hour.



Crystals 2022, 12, 1557 11 of 17
Crystals 2022, 12, x FOR PEER REVIEW 15 of 21 
 

 

Carpet cloak with a bump

Input port

Sound absorption

boundary

 
(a) 

Flat surface

Input port

Sound absorption

boundary

 
(b) 

Bump

Input port

Sound absorption

boundary

 
(c) 

Figure 12. Full-wave simulation setup. (a) Acoustic carpet cloak; (b) flat surface; (c) bump. The de- 217 
signed structures in Figure 10a-c are placed at the center of the bottom of the background medium 218 
area (400 mm × 200 mm). The bottom boundaries are set as the rigid body walls. 219 

Figure 12. Full-wave simulation setup. (a) Acoustic carpet cloak; (b) flat surface; (c) bump. The
designed structures in Figure 10a-c are placed at the center of the bottom of the background medium
area (400 mm × 200 mm). The bottom boundaries are set as the rigid body walls.



Crystals 2022, 12, 1557 12 of 17

The calculated results of the amplitude and phase distributions of the sound pressure
are shown in Figure 13a–f, and the frequencies are set to 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 kHz,
respectively. The values of the wavelength per unit cell length (λ/∆d) are 22.3, 14.8, 11.1,
8.91, 7.42, and 6.36. It is seen from the results of Figure 13a–d that the carpet cloak can
sufficiently suppress the scattered waves by the bump and mimics the flat surface. On the
other hand, the level of the scattered wave becomes large in the cases of Figure 13e,f. This
reason is that the influence by the discretization error becomes large due to the shorter
wavelength than in the other cases. Therefore, we can conclude from the results above that
the designed acoustic carpet cloak can operate at least up to 2.5 kHz (λ/∆d = 8.91).
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Figure 13. Complex sound pressure distributions for the acoustic carpet cloak, the flat surface, and
the bump. (a) 1.0 kHz (λ/∆d = 22.3); (b) 1.5 kHz (λ/∆d = 14.8); (c) 2.0 kHz (λ/∆d = 11.1); (d) 2.5 kHz
(λ/∆d = 8.91); (e) 3.0 kHz (λ/∆d = 7.42); (f) 3.5 kHz (λ/∆d = 6.36). Left: Amplitude. Right: Phase.
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3.2. Acoustic Illusion Medium

The setup for the full-wave simulations of the acoustic illusion medium is shown in
Figure 14a. The size of the analysis area, the input ports, and the boundary conditions are
set to the same as those for the acoustic carpet cloak, and the designed illusion medium in
Figure 11a is placed at the center of the bottom in that area. As is the case in Figure 13, we
calculated the complex sound pressure distributions in the waveguides by the Acoustics
Module of COMSOL and compared the results with those for the case with the groove in
Figure 11b (see Figure 14b). Incidentally, the number of meshes and the calculation time
were almost the same as in the acoustic carpet cloak case.
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Figure 14. Full-wave simulation setup. (a) Acoustic illusion medium; (b) groove. The designed
structures in Figure 11a,b are placed at the center of the bottom of the background medium area
(400 mm × 200 mm). In the case of (b), the groove is on the lower position than the flat surface level.
The bottom boundaries are set as the rigid body walls.

The calculated results of the amplitude and phase distributions of the sound pressure
are shown in Figure 15a–f, and the frequencies are set to the same values as in the cases of
Figure 13a–f, respectively. Differences of distributions in the background medium region
between the acoustic illusion medium case and the groove case are slightly large in the
cases of the higher frequencies from these results. However, it can be seen that the scattered
waves from the groove are sufficiently mimicked by the acoustic illusion medium and the
performance is better than that of the acoustic carpet cloak. The reason for this is considered
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to be that the area discretized by the unit cells is larger than that in the case of the acoustic
carpet cloak and the influence of the discretization error is small. Therefore, it can be
concluded from the results, and those of the acoustic carpet cloak, that the broadband
operations and the validity of the proposed design method can be shown.
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Figure 15. Complex sound pressure distributions for the acoustic illusion medium and the
groove. (a) 1.0 kHz (λ/∆d = 22.3); (b) 1.5 kHz (λ/∆d = 14.8); (c) 2.0 kHz (λ/∆d = 11.1); (d) 2.5 kHz
(λ/∆d = 8.91); (e) 3.0 kHz (λ/∆d = 7.42); (f) 3.5 kHz (λ/∆d = 6.36). Left: Amplitude. Right: Phase.

4. Conclusions

Firstly, the theory of 2-D distributed TL models for the full-tensor anisotropic electro-
magnetic metamaterials was introduced to acoustic metamaterials in order to theoretically
design unit cell structures constituting broadband acoustic metamaterials based on the
concept of transformation acoustics. The formulas of 2-D equivalent circuit models for
full-tensor anisotropic acoustic metamaterials were recalled, and the design formulas of the
TL models for electromagnetic metamaterials were updated to those for determining the
structural parameters of unit cells of acoustic metamaterials.

Secondly, 2-D acoustic waveguide unit cell structures were proposed and the design
formulas were shown to determine the waveguide widths and lengths according to the
updated theory of the 2-D distributed TL models. To show the design examples and
the usefulness, an acoustic carpet cloak and an illusion medium were designed with the
proposed structures and those structural parameters were determined by using the design
formulas theoretically.

Finally, full-wave simulations were carried out with the Acoustics Module of COMSOL
and complex pressure distributions were calculated. The results show the broadband oper-
ations of the designed acoustic carpet cloak and the illusion medium, and it is concluded
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that the validity of the proposed method introduced from electromagnetic metamaterials
has been demonstrated.
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