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Two-dimensional electron-hole capture in a disordered hopping system
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We model the two-dimensional recombination of electrons and holes in a system where the mean free path
is short compared with the thermal capture radius. This recombination mechanism is relevant to the operation
of bilayer organic light-emitting diodes~LED’s!, where electrons and holes accumulate on either side of the
internal heterojunction. The electron-hole recombination rate can be limited by the time taken for these charge
carriers to drift and diffuse to positions where electrons and holes are directly opposite to each other on either
side of the interface, at which point rapid formation of an emissive neutral state can occur. In this paper, we use
analytical and numerical techniques to find the rate of this two-dimensional electron-hole capture process.
Where one species of carrier is significantly less mobile than the other, we find that the recombination rate
depends superlinearly on the density of the less mobile carrier. Numerical simulations allow the effects of
disorder to be taken into account in a microscopic hopping model. Direct solution of the master equation for
hopping provides more efficient solutions than Monte Carlo simulations. The rate constants extracted from our
model are consistent with efficient emission from bilayer LED’s without requiring independent hopping of
electrons and holes over the internal barrier at the heterojunction.

DOI: 10.1103/PhysRevB.68.245301 PACS number~s!: 73.50.Gr, 72.80.Le, 85.60.Jb
ho
d
e
or

o
fu
th
o
r-
-

w

a
g
e
re
tin

he
p

th
m
id

ier
n
a
n

on
e

tri

a-
-
ar-
an

ke
iers
den-

in
e.
ctric
ion
rrier
xci-

in
ro-
ro-
ja-
ce

the
r

f
m-

nc-
g

ate
ng
y
ive

n.
an
ro-
ne
I. INTRODUCTION

Transport and recombination processes in disordered
ping systems are of particular current interest since they
termine the operation of light-emitting and photovoltaic d
vices based on organic and polymeric semiconduct
Where electrons and holes in these systems are free to m
in three dimensions, their recombination can be success
modeled using the Langevin approach. However, where
recombining particles are confined to move in a tw
dimensional plane~for example on a surface or at the inte
face between two semiconductors!, the physics becomes con
siderably more complicated. This is the problem which
address in this paper.

A particular situation where two-dimensional recombin
tion may be important is in bilayer organic light-emittin
diodes ~LED’s!. Efficient electroluminescence can b
achieved in small-molecule bilayer organic LED’s, whe
electrons and holes are injected into electron-transpor
and hole-transporting layers, respectively.1 Similar structures
can be formed in conjugated polymer LED’s where t
electron-transporting layer~ETL! can be spin coated on to
of the hole-transporting layer.2 In both types of device, the
organic-organic heterojunction provides a barrier to
transport of both electrons and holes, leading to the accu
lation of high densities of electrons and holes on either s
of the interface. Typically, the carrier with the lowest barr
is injected over the barrier into the other layer, where it e
counters a high density of opposite carriers with which it c
recombine. Enhancement of efficiency results from preve
ing carriers escaping from the device without recombinati
and from a redistribution of electric field within the devic
leading to improved balance of carrier injection.

Detailed information about carrier densities and elec
0163-1829/2003/68~24!/245301~7!/$20.00 68 2453
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fields in bilayer LED’s can be obtained by numerical or an
lytical modeling of injection, drift, diffusion, and recombina
tion processes.3–5 Simple models have assumed that one c
rier is first injected over the internal barrier, and then finds
opposite carrier with which to recombine in a Langevin-li
process. Since there is a large backflow of injected carr
across the heterojunction, it is necessary to have a high
sity of charge carriers accumulated at the heterojunction
order to provide reasonable current densities in the devic3,4

The accumulated charge carriers give an enhanced ele
field at the heterojunction, which further assists the inject
process. There is a concern that the high fields and ca
densities predicted by simple models might quench the e
tons produced by recombination, leading to a reduction
overall device efficiency. A number of effects have been p
posed which might enhance carrier injection at the hete
junction when one carrier arrives at a position exactly ad
cent to an opposite carrier. If carrier injection can take pla
directly to form the bound exciton state~which is lower in
energy than the single-particle electron and hole states by
exciton binding energy!, then the barrier to charge transfe
can be reduced, or even removed.6 Even in the absence o
any enhancement in the forward injection rate, rapid reco
bination with a carrier on the opposite side of the heteroju
tion will remove the possibility for backflow, thus increasin
the net injection~and recombination! rate.7 Furthermore, in
some devices it is possible to form a neutral exciplex st
directly at the heterojunction, without either carrier bei
injected over the barrier.8 This exciplex may then itself deca
radiatively, or may undergo energy transfer to an emiss
excitonic state localized on one side of the heterojunctio

In each of these cases, the rate-limiting step in forming
emissive state is not the injection of carriers over the hete
junction, but rather the lateral motion of carriers in the pla
©2003 The American Physical Society01-1



ro
n

th
n-
th
y

in
t

rif
n
is

in
iti
e
en
o

ca
m

w
ou

t

a
i

ac
in
tin
ox
n

ec
on
s

ac
-

-

a
ea
ou
h
ge
es

ec

o

ec
o

ed,

f

ust
n-
sity
a

cal
ift
in

of

e

o
ld.

ion.
r
an

a-
we
-

ical

take

t

fy-

l

N. C. GREENHAM AND P. A. BOBBERT PHYSICAL REVIEW B68, 245301 ~2003!
of the heterojunction to reach a position at which elect
and hole are coincident on opposite sides of the heteroju
tion. The purpose of this paper is to determine the rate of
process by solving the two-dimensional drift-diffusio
recombination problem. We are thus able to investigate
consequences of this mechanism for the operation of bila
organic LED’s.

II. THE TWO-DIMENSIONAL RECOMBINATION
PROBLEM

We consider the problem of electrons and holes arriv
uniformly at a plane, in which they are then constrained
move. The carriers undergo diffusive motion, and also d
under their mutual coulomb attraction. Eventually, electro
and holes will meet, at which point rapid recombination
assumed to occur. We aim to model the overall recomb
tion rate as a function of the mean electron and hole dens
in the plane,nA and pA . In a heterojunction device, th
electrons and holes will in fact be confined by the perp
dicular electric field to a narrow region on opposite sides
the interface. For simplicity, however, we neglect the verti
separation between electrons and holes, and consider the
move within the same lateral plane. The full problem allo
ing both electrons and holes to move in their mutual C
lomb potential is very complex, and we therefore choose
consider one carrier~arbitrarily chosen to be the holes! to be
fixed, and the other carrier~the electrons! to be mobile. Since
the mobilities of electrons and holes on either side of
interface are seldom well matched, this approximation w
frequently be justified in practice. We also neglect inter
tions between the electrons, which should have only a m
influence on the recombination rate under typical opera
conditions where electron and hole densities are appr
mately equal. In practice, long-range Coulomb interactio
will cause some correlation in arrival positions between el
trons and holes. Nevertheless, there will typically be a str
electric field perpendicular to the interface which for mo
carriers will dominate over the long-range Coulomb attr
tion, justifying the assumption of uniform arrival flux men
tioned above.

The problem of diffusion-limited two-dimensional recom
bination has previously been analyzed,9 however here we
wish also to include the drift of carriers due to their mutu
Coulomb attraction. In organic semiconductors, carrier m
free paths are typically much shorter than the thermal C
lombic capture radius, so ballistic effects are negligible. T
three-dimensional analog of this problem, known as Lan
vin recombination, has been extensively studied, and giv
recombination rate per unit volume of (mn1mp)enp/e,
where n and p are the electron and hole densities, resp
tively, mn and mp are the electron and hole mobilities,e is
the permittivity of the medium, ande is the electronic
charge. This result is obtained by integrating the drift flux
electrons through a spherical surface of radiusr surrounding
a hole. Since the electric field scales asr 22 and the surface
area of the sphere scales asr 2, the value ofr chosen is
unimportant, leading to a simple solution with constant el
tron density, thus justifying the neglect of diffusion. In tw
24530
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dimensions, however, the problem is more complicat
since the electric field still scales asr 22, but the integration
now takes place over a circle of circumference 2pr . To
achieve a recombination current which is independent or
requires a density of electrons which varies withr. The pres-
ence of a carrier density gradient means that diffusion m
be explicitly included in the problem. Solutions which co
sider a single recombination center give an electron den
which diverges asr→`, thus it is necessary to include
distribution of recombination centers in the problem.

III. APPROXIMATE ANALYTICAL SOLUTION

We begin by attempting to find an approximate analyti
solution to the problem, using a continuum picture of dr
and diffusion. The two-dimensional electron flux density
the plane,J(r ), is related to the local surface density
electronsn(r ) by the sum of the drift and diffusion flux
densities:

J~r !52mn~r !E~r !2D“n~r !, ~1!

wherem is the surface mobility of the electrons,E the elec-
tric field, andD the diffusion constant. In this section, w
will assume thatD is related tom by the Einstein relation
D5mkT/e whereT is the absolute temperature. We will als
assume that the mobility is independent of the electric fie

The electron density is maintained by a uniform influxf of
electrons from the bulk onto the plane under considerat
For a surface densitypA of recombination sites, we conside
each site to be surrounded by a ‘‘catchment area,’’ with
average area of 1/pA , in which electrons arriving from the
bulk will eventually be captured by that specific recombin
tion site. At the boundaries between catchment areas
should haveJ(r )50. The central approximation in this sec
tion is the replacement of all catchment areas by ident
disc-shaped regions with radiusr c51/AppA in which we
have a radial electric fieldE(r )5e/4pe0e r r

2 of just the hole
at the center of each area. Throughout this paper we
e r54. The flux density within each area should obey

“•J~r !5 f @12pr c
2d~r !#, ~2!

where the uniform influxf is balanced by a removal term a
the origin.

The radial flux density obeying this equation and satis
ing the boundary conditionJ(r c)50 is

J~r !5
f

2 S r 2
r c

2

r D . ~3!

Combination of Eq.~1! in its radial form and Eq.~3! leads
to a first-order inhomogeneous differential equation forn(r ),
which can readily be solved to give

n~r !5
e

mkT

f

2 F S a2

2
2r c

2Dea/rEi~2a/r !1
1

2
~ar2r 2!G ,

~4!

wherea[e2/4pe0e rkT and Ei(x) is the exponential integra
function
1-2
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Ei~x!52E
2x

` e2z

z
dz. ~5!

A quantity of specific interest is the recombination timet
5nA / f , the average time it takes for an electron to reac
recombination site after arrival at the surface@nA is the sur-
face average ofn(r )]. Within our approximation, we have

t5

2pE
0

r c
dr rn~r !

f pr c
2

. ~6!

Introducing xc5r c /a and performing the integral in thi
equation, we find the important result

t5
e

mkT
a2t8~xc

2!, ~7!

wheret8(xc
2) is the function

t8~xc
2![S xc

22
1

2DG23
31S 1

xc
U 0,3

0,0,2D 1
1

2
xcS 1

3
2

1

4
xcD , ~8!

expressed in terms of a MeijerG function. The functiont8 is
plotted versus the inverse reduced recombination site den
1/p8[xc

251/ppAa2 in Fig. 1. The function can be describe
rather well by the power lawt8'0.14(1/p8)1.43. The surface
recombination rateR is related to the recombination time b
R5nA /t. If t were linearly dependent on 1/pA , we could
describe the recombination as a conventional bimolec
process withR5gAnApA . However, due to the superlinea
dependence of the recombination rate on the recombina
site densitypA , the recombination process can only be d
scribed using second-order kinetics if the recombination
is taken to depend onpA , giving

R5gA~pA!nApA , ~9!

FIG. 1. The functiont8 of Eq. ~8!, determining the recombina
tion time of the two-dimensional recombination process, plotted
the inverse reduced recombination site densityxc

251/p8 ~circles!,
and a power-law fit to this function~line!, t850.14(1/p8)1.43.
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wheregA(pA) is ~weakly! dependent onpA . In the following
sections, we will investigate the problem in more det
within a numerical approach.

IV. MONTE CARLO SIMULATIONS

The analytical approach developed above provides a c
venient universal solution, however it is limited in its trea
ment of the electric-field distribution, the need to define
effective ‘‘catchment area,’’ and the assumption of a fie
independent mobility. For a system where the transpor
limited by energetic disorder, mobility measured on mac
scopic length scales is found to vary with field asm
5m0exp(bAE).10 However, it is not clear that these mobil
ties can be applied directly in problems where the elec
field varies significantly on microscopic length scales.
address these issues, we now attempt to simulate the
dimensional recombination problem at a microscopic le
using the Monte Carlo approach developed for disorde
hopping systems by Ba¨ssler and co-workers.11,12 This ap-
proach been successfully applied to describe transport
cesses in molecularly doped polymers and in conjuga
polymers.10

For simplicity, we first consider a regular square lattice
recombination sites~holes! with separationL. We consider
electrons arriving with a fluxf within one unit cell of this
lattice, and the aim is to determine the mean time for reco
bination of an arriving electron with a hole. The unit ce
under consideration is divided into an array ofN3N hop-
ping sites of dimensiond, where d51 nm. Electrons are
then allowed to hop from their existing site~energyEi) to a
nearest-neighbor site~energy Ej ) according to Miller-
Abrahams hopping rateswi j , where

wi j 5H n0expS 2
~Ej2Ei !

kT D if Ej.Ei

n0 if Ej,Ei .

~10!

Hopping energies are determined by first calculating the fi
at each hopping site due to a 1003100 lattice of holes cen-
tered on the unit cell under consideration. A random en
getic disorder is then superimposed on the electrostatic
ergy at each site according to the probability distribution

p~E!5
1

sA2p
expF2

1

2 S E2E0

s D 2G . ~11!

Cyclic boundary conditions are imposed so that electr
hopping out of one side of the unit cell reappear at the ot
side. Recombination is assumed to occur when the elec
reaches a site with a positive charge at its corner. Elec
densities are assumed to be small enough that state-fi
effects within the distribution of site energies can be n
glected.

In the Monte Carlo simulation, a random disorder co
figuration and a random arrival position were selected
each arriving electron. At each site occupied by the electr
the hopping ratesku , kd , kl , andkr for up, down, left, and
right hops were calculated according to Eq.~10!. The mean

s

1-3
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N. C. GREENHAM AND P. A. BOBBERT PHYSICAL REVIEW B68, 245301 ~2003!
hopping timet5(ku1kd1kl1kr)
21 was calculated, and a

actual hopping timeth was selected randomly from a distr
bution p(th)5(1/t)exp(2th /t). Total recombination times
were then recorded form arriving electrons, and used t
calculate a mean recombination timet. Figure 2 shows the
recombination time as a function of hole density fors50
and s50.1 eV ~a typical value for disorder in organic sys
tems!. Fors50, m5500 was sufficient to obtain reasonab
statistics. Fors50.1 eV, the statistics were more problem
atic, since the mean recombination time was dominated
the tail of the distribution of recombination times where t
recombination was particularly slow~since the electron wa
trapped at a deep minimum in the disorder!. Larger values of
m ~between 2000 and 5000! were therefore used, and there
considerable uncertainty in the magnitude of the error b
shown.

V. MASTER EQUATION SIMULATIONS

Monte Carlo techniques proved unfeasibly slow for lar
N in the presence of disorder, so to obtain a larger datase
alternative approach was used, based on direct solutio
the master equation.13 The hopping sites within the unit ce
are labeledi 51, . . . ,N2, and the steady-state population
each sitepi satisfies

dpi

dt
5 f i1(

j
~wji pj2wi j pi !50, ~12!

FIG. 2. Recombination time vsN2 ~inverse hole density! for
various values of disorder (s) as labeled. For all simulations th
temperatureT was 300 K, and the spacing between lattice sites w
1 nm. s ’s represent Monte Carlo results and1’s represent maste
equation results. Solid lines represent fits to the master equa
results, and the dashed line represents the approximate anal
result of Sec. III using the same parameters. Results shown ar
regular lattices of recombination centers, except3 ’s which repre-
sent master equation results for a random lattice of recombina
centers withs50.
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wheref i is the flux arriving at thei th site. This equation can
be recast in matrix form

(
j

M i j pj52 f i , ~13!

where

Mii 52(
j

wi j ~14!

and

M ji 5wi j , j Þ i . ~15!

M is a sparse matrix, with entries on nine diagonals to
count for up, down, left, and right jumps, including jump
where the cyclic boundary conditions are invoked. Equat
~13! was solved using standard matrix routines withinMAT-

LAB, to give the carrier population as a function of positio
for various value ofN. The mean recombination time wa
then calculated as( i pi /( i f i . Initially we assumed that car
riers arrive equally at each site such thatf i51 for all i. The
problem is linear inf so the value off i is unimportant in
determiningt.

Figure 3 shows the carrier density in one unit cell forN
520 and s50. Away from the region immediately sur
rounding the recombination center, the carrier density
creases with distance from the recombination center.
buildup of carrier density close to the recombination cente
a consequence of the high field, which for Miller-Abraham
hopping rates in the absence of disorder causes a decrea
mobility with respect to the low-field value. For a field
independent mobility@Eq. ~4!#, the carrier density would
scale linearly withr for small r. However, since the numbe
of carriers in the region of high field is a small fraction of th
total number of carriers, this effect does not significan
alter the calculated recombination time for largeN. For
larger values ofs, such ass50.1 eV, for example, the car
rier density is strongly dominated by the energetic disord
with variations of more than four orders of magnitude b
tween different sites, and the recombination time is sensi

s

on
cal
for

n

FIG. 3. Carrier population per site as a function of position
N520, s50, determined by solving the master equation withn0

51 Hz.
1-4
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TWO-DIMENSIONAL ELECTRON-HOLE CAPTURE IN A . . . PHYSICAL REVIEW B68, 245301 ~2003!
to the exact random configuration of disorder. To obtain
liable mean recombination times it is therefore necessar
average over a large number of disorder configurations
the following work Eq.~13! was solved 1000 times for dif
ferent random disorder configurations to obtain a mean
combination time. Figure 2 shows the recombination time
a function of inverse hole density for various values ofs. As
expected, the values calculated using the master equa
agree to within the statistical error with the results of t
Monte Carlo simulations discussed earlier. The recomb
tion time increases markedly with increased disorder, du
the lower mobility. Relative uncertainties in the recombin
tion time also increase with disorder, due to the larger va
tion between individual random disorder configurations. T
recombination time scales superlinearly with the inverse c
rier density, witht}(N2)s. Best-fit values ofs are shown in
Table I. The values ofs are typically slightly smaller than the
value of 1.43 predicted by the analytical model. This is pa
due to the different electrical field patterns taken in the t
models, and, fors50, partly because the reduced mobili
near the recombination centers becomes less importan
largeN. For s50, at largeN (N>40) the numerical results
are larger than the analytical result by a geometrical facto
only about 1.1.

In the case ofs50, n0 is related to the low-field mobility
by

m5
n0ed2

kT
. ~16!

Using Eq.~16!, we obtain

gA5
kT

pAtn0ed2
m. ~17!

For N520 ~corresponding topA52.531015 m22), this be-
comes

gA5~0.43 V!m. ~18!

From the analytical continuum solution@Eq. ~4!#, one would
expectg to scale linearly withm, and hence Eq.~18! should
apply generally for given values ofN and temperature. If this
is true in the microscopic model, then disorder should h
the same effect ongA as on mobility. Figure 4 shows th
relative variation ofg with s for N520. The effect of dis-
order on mobility for three-dimensional transport has be
studied extensively by Ba¨ssler and co-workers, who find tha
the zero-field mobility scales as

TABLE I. Exponent s determined from an unweighted leas
squares fit of the data in Fig. 2 to the equationt}(N2)s.

s ~eV! s

0 1.2260.02
0.6 1.3560.01
0.8 1.2960.03
1.0 1.2360.05
1.2 1.4660.14
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m5m0expF2S 2s

3kTD 2G ~19!

in the absence of positional disorder.11,12As can be seen from
Fig. 4, the recombination rate decreases more quickly w
increasing disorder than the three-dimensional~3D! mobility
from Eq. ~19!. However, in the recombination problem co
sidered here the carriers are confined to move only in
dimensions, and are therefore unable to move in the th
dimension to avoid particularly high-energy sites. Hence o
would expect the two-dimensional mobility to be more se
sitive to disorder than the three-dimensional mobility. Qua
titative simulations of 2D mobility were therefore performe
using the same master equation approach described abov
this case, though, a constant small electric field
104 V m21 was applied over a 40 nm340 nm square. Carri-
ers were supplied with a constant flux along one edge of
square, and removed along the other edge. Under these
field conditions, the current was dominated by diffusion, a
diffusion coefficients were extracted from the mean carr
density gradient, averaging over the square and over 100
different random disorder configurations for each value ofs.
As can be seen from Fig. 4, the diffusion coefficient~and
hence the mobility! varies with disorder in a very simila
fashion to the recombination rate. This confirms that the
combination rate does indeed scale with the relevant 2D
bility.

In the results above, it was assumed that the carriers
rive uniformly at the interface. This assumption ignores t
relaxation within the Gaussian density of states which m
occur as carriers are injected into and transported through
device. To test the opposite limit of full relaxation, the i
coming flux was adjusted to have the form

f i5 f 0expS 2Ei

kT D . ~20!

FIG. 4. Relative recombination rate as a function of disorder,s,
for N520 ((). Variation of relative mobility withs is also shown,
for 3D mobility according to Eq.~19! ~line! and for the 2D simu-
lation described in the text (3).
1-5
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N. C. GREENHAM AND P. A. BOBBERT PHYSICAL REVIEW B68, 245301 ~2003!
With N520 ands50.1 eV, this was found to give a reduc
tion in the recombination rate by a factor of'4.

In a further refinement to the model, the effect of allowi
a random distribution of recombination sites was examin
The problem was solved on a 1003100 grid, with cyclic
boundary conditions. A random hole distribution with
specified mean density was then generated. The electric
was calculated including not only the holes within the 1
3100 grid, but also a random distribution of holes in
600 nm3600 nm area centered on the grid. A sample stea
state carrier distribution withs50 is shown in Fig. 5. Re-
combination times fors50 are shown in Fig. 2, forN
510–40, averaging over 20 random distributions of hol
With the random distribution of recombination sites, the
combination rate is reduced by roughly a factor 2 compa
with a regular lattice.

VI. DEVICE MODELING

In this section, we will apply the results obtained above
investigate charge densities and electric fields in bila

FIG. 5. Carrier population per site as a function of position fo
random lattice of recombination centers with an average den
equal to that in Fig. 3 (N520).
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LED’s. Devices were modeled by numerically solving th
drift-diffusion-recombination equations for electrons a
holes, allowing for the effect of internal charges on the el
tric field within the device. Figure 6~a! shows the results
where electrons and holes are required to jump over a ba
at the heterojunction, followed by Langevin-like recombin
tion with opposite charges. Figure 6~b! shows the case wher
no carriers are allowed to jump over the barrier, but tw
dimensional recombination is taken to be the rate-limiti
step in exciton~or exciplex! formation at the interface. In
both cases, ohmic injection was assumed at the electro
and, for simplicity, constant mobilities of 1025 cm2 V21 s21

were used for both carriers. For case~a!, barriers of 0.6 eV
and 0.9 eV were used for hole and electron injection, resp
tively, roughly the values found in bilayer devices based
poly(p-phenylenevinylene! and its cyanosubstituted deriva
tive CN-PPV.2 The smaller barrier for hole injection leads
recombination overwhelmingly in the ETL. The model fo
carrier injection was similar to that reported by Staudig
et al.,4 which considers thermal injection and backflow at t
heterojunction with a Gaussian density of states of width
eV, but neglects carrier relaxation effects. For the numer
simulation, the device was divided into slices of thicknes
nm. Although the details of this model are open to questi
the main result is clear: there is a large buildup of electro
and holes at the interface, leading to a significantly enhan
electric field. Both effects promote charge injection over t
barrier.

In case~b!, carriers within 1 nm of the interface are a
lowed to recombine by two-dimensional motion according
Eq. ~18!. We use a lateral mobility of 1025 cm2 V21 s21, the
same value as the perpendicular mobility. To account for
motion of both carriers, we use an ‘‘effective mobility’’ o
twice the mobility of the individual carriers. A problem the
arises in the functional dependence of the recombination
on the electron and hole densities when both carriers h
equal mobilities, since Eq.~9! is not symmetric in electron
and hole density. To avoid this problem, we use Eq.~9! with
a constantg determined by Eq.~18!, which is valid for car-
rier surface densities of the order of 2.531015 m22 ~corre-

ty
al

ext. The
FIG. 6. Electron density (s), hole density (h), and electric field~dashed line! as a function of position in a device with an intern
voltage of 5 V.~a! represents a device where recombination occurs after hopping over the interfacial barrier~0.6 eV for holes and 0.9 eV for
electrons!. ~b! represents a device where recombination is limited by two-dimensional recombination. Other details are given in the t
current densities predicted were 1950 A m22 and 2187 A m22 for ~a! and ~b!, respectively.
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sponding to volume densities around 2.531024 m23 in the
first 1 nm of polymer!. The results shown in Fig. 6 confirm
that the interfacial charge densities are indeed in this ran
These densities are small compared with the site den
justifying our neglect of state-filling effects in the micro
scopic simulation of recombination rates. In conjuga
polymer devices, the in-plane mobility~measured in field-
effect transistors! is in fact found to be significantly highe
than the perpendicular mobility~extracted from modeling
space-charge-limited currents!, due at least in part to the
preferential alignment of chains in the plane of the devi
Hence, irrespective of the uncertainties discussed above
simulation is likely to underestimate the true recombinat
rate in real devices, and the calculated interfacial carrier d
sities represent an upper limit.

The simulations therefore show that efficient recombi
tion can occur in the case where formation of neutral exc
states is limited by lateral drift and diffusion of charge ca
riers at the interface. This process leads to some buildu
charge density at the interface, but this can be much less
is necessary when charges have to be injected over typ
barriers before recombination. We note that in case~b! the
interfacial charge densities will scale with light outputL as
Lr where r ,0.5, which allows high intensities to b
achieved with reasonable charge densities. The slight
crease of electric field at the interface is a consequence o
buildup of charge density, and does not itself assist the
combination. This contrasts with case~a! where the in-
creased electric field plays a major role in promoting inje
tion of carriers over the barrier. We note that mechanism~b!
can work equally well in a polymer blend device where
terfaces are not necessarily perpendicular to the exte
electric field. The calculated current densities are simila
both ~a! and ~b!, which indicates that the additional voltag
drop produced by the carrier buildup at the interface is sm
compared with the applied voltage, and hence both dev
will show similar current-voltage characteristics limited b
the bulk mobility. However, the high fields and charge de
nd
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24530
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sities present at the interface in case~a! could be damaging
to the efficiency of the device, since they may provide ad
tional nonradiative decay channels for excitons which will
produced close to the interface.

VII. CONCLUSIONS

We have modeled the process of electron-hole capture
drift and diffusion within a plane. There is good agreeme
between analytical approximations and microscopic simu
tions. The effect of energetic disorder has been examin
and has been found to have a similar effect on tw
dimensional mobility as on the recombination rate. The p
cess can therefore be conveniently parametrized in terms
two-dimensional mobility. Direct solution of the microscop
hopping problem using the master equation approach
vides more rapid solutions than Monte Carlo simulatio
and has allowed systems with a random distribution of
combination sites to be studied. Rate constants derived f
these simulations have been used to set boundary condi
in numerical models of charge and field distributions in
layer organic devices, which has shown that only mod
buildup of charge densities is required at the interface w
recombination is limited by two-dimensional drift and diffu
sion of carriers to adjacent sites where rapid formation of
emissive state can occur. These results help to explain
efficient operation of polyfluorene blend LED’s, where em
sion has recently been shown to occur via an exciplex s
which can form without hopping of either carrier over th
heterojunction barriers.8 Our model for the rate of two-
dimensional recombination may also find application in oth
areas, for example in the study of chemical reactions
tween charged species on a surface.
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