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ABSTRACT

The finite element technique is a powerful method to study the dynamic
response of a structure taking into account the effects of ground condi-
tions. However3 limitations of computer storage capacity and cost present-
ly prevent its general application to three-dimensional problems. In this
thesis dt is shown that three-dimensional problems can be analyzed by
applying appropriate modification factors to two-dimensional (plane strain)
analyses.

Modification factors are first determined analytically by comparing
the dynamic response of both strip and rectangular footings (uniform shear
stress) for a range of input frequencies. It is found that for input fre-
quencies which are less than.the fundamental period of the soild layer the
modification factor is essentially indepéndent of the input frequency. This
suggests that the modification factors could be obtained from static analy-
ses. Modification factors based on static stiffness analyses for both uni-
form shear stress and uniform shear displacement (rigid foundation)
conditions were obtained and were found to be in close agreement with those
obtained from the dynamic ana1yses. Variation of the modification factor
with both the depth of the layer and the ratio of the sides of the rect-
angular base are given in graphical form. These factors may be applied to
finite element place strain analysis to predict the dynamic response of

three-dimensional structures.
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CHAPTER 1
INTRODUCTION

In the design of some structures it may be important to consider the
safety of the structure for dynamic loading as well as static loading.
Dynamic loading is especially important fof structures in seismic zones,
machine foundations, missile facilities and some structures which must be'
resistant to explosions. These structures may bé built on'or under the
ground surface.

An energy exchaﬁge takes place between the structure and the ground
when the structure-ground system is subject to a dynamic loading. This
energy exchange is called the soil-structure interaction phenomenon and it
is important that it be properly taken into consideration.

Until recently, it was believed that a structure founded on soft
ground suffered more earthquake damage than a similar structure founded on
firm ground. However, during the Kanto earthquake more damage occurred to
rigid structures on a firm ground. Now, it is recognized that it is not
only the properties of the structufe or the ground alone that governs the
earthquake damage, but it is the properties of the soil-structure system
that are important.

. As an example to show the importance of the soil-structure interaction
during earthquakes, the recorded acceleration response spectrum (5) at the
base of a building is shown in Fig. 1. The maximum response does not occur
at the resonant period of the building; instead, the response at that
period is close to a minimum. The same tendencies may be found in other
records (5, 6).

These tendencies may be attributed to the feedback of the motion of

the structure into the ground and the response depends on the dynamical



300

200

ACCELERATION (GAL.)

100

Ti: NATURAL PERIOD OF THE BUILDING

=0.5

-

1 1 1 L

0 1.0 2.0
PERIOD ( SECOND)

FIG.| ACCELERATION RESPONSE SPECTRUM AT
THE BASE OF A BUILDING.



properties of the soil as well as those of the structure.
In the analysis of soil-structure systems, interaction between the
ground and the structure may be taken into account by:
1. replacing the ground with some mass, spring, dash-pot
combinations,
2. taking the ground as a continuous medium and applying
wave propagation theory,
3. assuming that the ground is an assembly of a finite
number of small elements and applying finite element
technique.
The first approach involves important approximations in choosing a
mass, spring, dash-pot system equivalent to a continuous medium. The
| second approach gives an exact solution under the idealized conditions of
soil. However, mathematical difficulties make it almost impossible to con-
sider complicated ground forms and unusual geometries. In the third
approach, these complexities are treated without any mathematical difficulty.
In the investigation of soil structure Systems, the finite element
technique based on plane strain analysis has been used by several authors.
* However, when the raiio between the.length and width of the foundation slab
is small, the solution obtained using the plane strain analysis does not
adequately represent the response of the system. A rigorous solution of
this problem requires a three-dimensional analysis. However, storage limi-
tations and economical reasons prevent the use of the three-dimensional
finite element technique for such dynamic problems.
In this thesis, the problem of a structure with a rectangular rigid
base resting upon a homogeneous elastic soil layer, which in turn rests

upon a rigid base subject to a horizontal harmonic excitation, is investi-



gated. A method is proposed whereby this problem can be reduced to an
equivalent p1ane-strain problem by modifying the soil properties to account:

for the three-dimensional effect of the foundation.



CHAPTER 2

STEADY STATE RESPONSE OF A STRUCTURE OVER A SOIL LAYER FOR A
HORIZONTAL EXCITATION AT THE BASE OF THE SOIL LAYER

A structure with a rigid rectangular base (2a x 2c) overlying a soil
layer and subjected to a harmonic excitation at the base of the soil layer
(bedrock) is shown in Fig. 2, where:

U, : Input harmonic displacement at the bedrock.
u; : Steady-state displacement response at the free
surface of the soil layer alone.
u, : Steady-state displacement response at the base
of the structure.
The processes involved in the computation of u, for a given u, ére as
follows:
1. Excitation at the bedrock gives the response u, at the
free surface of the soil layer.

2. Displacement at the base of the structure is influenced
by the motion of the structure, which gives the displace-
ment response u, at the base. This response is trans-
mitted into the structure and creates the force Q at the
base of the structure.

3. The created force Q at the base of the structure gives

the additional displacement u, at the contact surface
between the structure and the soil layer.

4. Finally, this additional displacement u; and the dis-

placement at the free surface of the soil layer u, are

1
combined to give the displacement at the base of the

structure U, .
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The above process to compute the displacement response at the base for a
given harmonic excitation is diagramatically illustrated in Fig. 3.

If the response of the structure and soil layer system is linear then
the processes from 1 to 4 can be expressed mathematically using Fourier

transformation and transfer functions as follows:

1. u; = H(iwuy, : | (2:1)

2. Q@ = H,(iw)u, (2:2)

3. uy = H,(iw)Q (2:3)

4. u, = u +up (2:4)
where:

Ugs Ups Uy, U, Q . Fourier transformations of Ugs Uy,

| u,, ué and Q respectively.
H (iw), Hy(iw), Hy(iw) : Transfer functions in the processes
1, 2 and 3 respectively.

Substitution of the righthand side of Equation 2:2 into Equation 2:3
gives:

u, = H,(iw)H;(iw)u, (2:5)
Substitution of the righthand side of Equations 2:1 and 2:5 into Equation
2:4 gives:

u, = H(fw)uy + H,(iw)H, (iw)u, (2:6)
Simplifying,

u, = I(ie)spu, (2:7)
where:

I(iu)  (Hu) (2:8)

1-H2(iw)H3(id)
The steady-state displacement response at the base of the structure can

therefore be obtained by solving Equation 2:7.

If the structure is assumed to be infinitely long, then for the two-



~dimensional case Equations 2:1 to 2:4 become:

u, = K (iw)u, (2:9)
Qp = Hiiw)(W,),p (2:10)
(W), = Hi(ie)y (2:11)
(u)op = U, + (u)yp (2:12)

Substituting in the same manner as for the three-dimensional case,

(u))pp = Ippliuly, (2
where:
Hl(im)
1—Hé(iw)Hé(iw)

If the three-dimensional response is to be obtained from a two-

IZD(iw) = (2
dimensional analysis, then the two-dimensional analysis must be modified
such that the displacement and shear force at the base of the structure
will be the same as for a three-dimensional analysis, i.e.,

(uz)ZD = (uz)3D (2

%o

and

From Equations 2:7 and 2:13:

Lpli) = Iy(ia) (2:
hence:

H; (iw) . Hi(iw) (2:

1-H; (1w)H3(iw) 1-H, ({w)H,({w) ‘ )

From Equations 2:16, 2:2 and 2:10:

iy L1 . |
Hz(lw) = EE-H2(1w) (2:

If a plane strain analysis is applied for the soil-structure system

Q/2c¢ (2:

:13)

:14)

:15)

16)

17)

18)

19)

with the rectangular base (2a x 2c), H,(iw) will not change but H,(iw) and



and H;(iw) respectively.

Ha(iw) will be replaced by Hzi;w)

The term Hé(iw) is the ground compliance when a soil layer is subject
to a horizontal load Q over a rectangular area on the surface. Similarly,
the term H;(iw) is the ground compliance when a soil layer is subject to a

horizontal load Q/2c over the per unit length of a strip. These terms will

be evaluated in the following chapters.
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CHAPTER 3

DYNAMIC GROUND COMPLIANCE FOR UNIFORM TANGENTIAL
LOADING OVER A SOIL LAYER

In Chapter 2 it is mentioned that the response of a structure on a soil
layer, subjected to harmonic excitation at bedrock, can be obtained if the
transfer functions are known. The transfer function Hl(im) for the'strip
base of a structure is the same as that for the rectangular base since it is
not related to the structure but only related to the dynamical character of
the soil layer. The transfer function H,(iw) changes simply into Hy(iw)/2¢c
when plane strain analysis is applied to a structure with rectangular base
(2a x 2¢) instead of three-dimensional analysis. However, the change of the
transfer funétion Ha(iw)_is not easiﬂ§(ﬁetermined. This transfer function,
termed the dynamic ground compliance, will be considered in this chapter.

The following assumptions will be made:

1. Stress distribution under the base is assumed uniform.

2. Soil layer is assumed to be homogeneous, isotropic and

linear e]astfc material. |

3. Soil layer is assumed to be fixed at the rigid bedrock.

3.1 Analytical Solution, Plane Strain

A soil layer which is subject to a uniformly distributed dynamical
shear loading over a strip is shown in Figure 4.

The equations of motion in terms of displacements are:

32u ' 3A 2
P2 (A +u) =+ | . (3:1)
%v  _ 3A

e, (A +u) 5;+ uv2y (3:2)
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32w A
p —— = (A + p) — + pVZW (3:3)
at2 ) 3z ,
U , 3V , ow
= _— ¢ — —
where A X 5y 57
2 2 2
vz = 22, % 3

Here X and u denote Lame's constants. p is the mass density of the soil
layer. u,v,w are displacement components.
Since displacement components are independent of the longitudinal co-

ordinate y, we have:

= du ., oW .
A= oyt (3:4)
' 32 32
v2 = 9 4 o 3:5
ax2  az2 ' : (3:5)
Defining two potentials ¢, (x,z,t) and ¥; (x,z,t) as follows:
( 4 - 8%, N Y, (3:6)
U ix.z, C o ez |
3%, aY,
w (x,z,t) = 3z " 3% (3:7)
Equations 3:1 and 3:3 reduce to:
o] BZQI
— = y2p 3:8
A+ 2p at? 1 (3:8)
[o] 82W1
—_ = vzw ! 3:
u ot? ‘ 1 (3:9)

Since the applied boundary stress is harmonic, the potentials should

have the following form:

o(x,z) e'®t

i

¢, (x,2,1t)

(3:10)

v, (x,2,t) = ¥(x,z) e'®t

In view of Equation 3:10, Equations 3:8 and 3:9'reduce to:

(v2 + p2) ¢ (x,2) = 0 (3:11)
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(v2 +q2) p (x,2) = 0 (3:12)
where:
2 2
= P = puw” .
P Aop q " (3:13)

" The stress-strain relations (Hooke's Law) can be expressed as:

= W - ou = U 4 W
Opg = M FTa2ugy s Oy T OMAUR S Ty w57+ 3%
The boundary conditions of the problem are:
u(x,h,t) = w(x,h,t) = 0 . (3:14)
czz(x,o,t) = 0 (3:15)
. 0 Ix|>a
. . 2% iwt [ Sinag = )
rxz(x,o,t) ——e ac Cosxzdz . (3:16)
0 —roeWt le<a

Taking Sine Fourier transform and Cosine Fourier transform in x of

Equations 3:11 and 3:12 respectively, we get:

27 -
R R p2) ¢ = O (3:17)
dz?
27 -
4N _(p2-q2)F = 0 (3:18)
dz2
where: -
¢ (z,2) = //§ J ¢ (x,2) Sinxzdx
0
v (z,z) = //g J v (x,z) Cosxzdx
0

From the general solution of Equations 3:17 and 3:18, the two potenfials

become:

o (x,z) = J [A Coshaz + B Sinhaz] Sinxzdg (3:19)
0
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v (x,2) = J [C Coshgz + D Sinhgz] Cosxzdg (3:20)
0

where:
o = (g2-p)M2, g o= (g2 - q2)V/2 (3:21)
and A,B,C,D are arbitrary functions of z. Employing boundary conditions of

Equations 3:14, 3:15 and 3:16, we get:

(¢Coshah)A + (zSinhah)B + (8Sinhgh)C + (BCoshgh)D = 0
(aSinhah)A + (aCoshah)B + (zCoshgh)C + (zSinhgh)D = 0
(82 + c2)A + 208D = O

27,4
2caB + (82 + g2)C = - =2

s(azg)

(3:22)

Sin azg

Here: s§(az) = az .

From these equations, A(z) and D(z) are obtained as:

2t.a 6(ac)
_ 0
A(z) = —
228 (aBSinhghCoshah-z2CoshghSinhah)
yz2aB(c2+82)+ap[uct+(z2+82)2]CoshghCoshah-z2[ (z2+82)2+,0282]SinhshSinhah
(3:23)
_ 2142 s(az)
D(z) = —

2z8(agSinhghCoshah-z2CoshghSinhah) (82+2)

yg2ap(g2+82)+ap[u g+ (z2+82)2]CoshghCoshah-z2[(z2+82)2+42282]SinhghSinhah
(3:24)
From Equations 3:6, 3:10, 3:19 and 3:20, displacement component u on the

surface of the soil Tayer can be expressed as:

[}

u(x,o0,t) = etut J [zA(z) + 8D(z)]Cosxzdg (3:25)
0

Substituting the righthand side of Equation 3:23 and Equation 3:24 for A(g)
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D(z), into the righthand side of Equation 3:25, finally we get:

' : o
P ae]wt

u(x,0,t) = ——1%ﬁr——— . [
0

8(82-z2) (agSinhshCoshah-z2CoshghSinhah)s(8z) - Cosxzdg

yz2a8(82+72)+aB, z*+(2+82)2]CoshshCoshah-z2[(z2+82)2+,4282]SinhghSinhah
| (3:26)
The dynamical ground compliance of a soil Tayer for a tangential strip load-

ing can be expressed by the ratio:

u(o,0,t) a
qeiwt K

where q is the amplitude of the total dynamical force acting per unit

Tlength of the soil layer, i.e. q = 2t,a. In view of Equation 3:26, the

0
dynamical ground compliance becomes:

u(0,0,t) a =

-t
ae )

2|

fwt

8(B2-z2) («gSinhghCoshah-z2CoshghSinhah)s(8z)de

bz2ag(82+72)+aB[(82+22)2+uz%]CoshghCoshah-z2[(z2+82) 2+44282]SinhghSinhah

(3:27)
Employing change of variable ¢ éL £ in Equation 3:27, we get:
2
u(o,0,t _a [ _ /%) D(e : .
2ol va = o2 [ - 5 M eaasintageree (3:28)
q 0
where: v -
0(g) = {g2Coth(v£2-1 a;) - v/£2-n2 /g2-1 Coth(/g2-n2 a,)} Coth(v/g2-1 a,)
E(g) = tanh (v&2-1 al)
F(g) = vg?(2¢2-1)vg2-n%2 /£2-1 Cosech(v/g2-n2a,)cosech(vE2-1 a;)

- {ug*+(2£2-1)2} Vg2-n2 /E2-1 Coth(vE2-n? a,)Coth(VEZ-1 a,)
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+ £2 {u(£2-n2)(&2-1) + (282-1)2}

>

N

"
N
| -
1
NS
< |<
g

-

o

N

i
;72\
-

o

[

"

The functions vg2-1 and v£2-n2 have branch points £ = 1, £ = n, for £ > o,

respectively. To stay on one branch of these functions,

(iv1-£2 - 0<g <1
1/52_1 = 1 A 4

VE2-1 £ >1

(ivn2-¢Z 0<E<n

l/€2_n2 = <

LI/EZ_nZ g > n

Also, £=0, £=1 and ¢ = & k = 1,2,...,N are poles of the integrand
where g, k = 1,2,...N are the finite number real zeros of F(£). Since the
integrand in Equation 3:28 have some singularities such as branch points
and poles, the integral on the righthand side of Equation 3:28 must be
numerically evaluated in the complex plane. From the integration in the

complex plane:

20 _ & , J /g2-1
1

f eF(¢)

D(e)E(g) Sin(aye) de (3:29)
0

2D a_ g [ vg2-y

f = D(&g)E(e) Sin(a,g)]. _ 3:30
2 89 k=, &dF(g)/de (e) (2, )]g_gk ( )
where: __
et - Al (3:31)
qe

and P denotes Cauchy principal value of the integral. The numerical study
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2D

of'F(g) = 0 shows that f]~ has three types of singularities as follows:

. 2m-1
(i) a, >

LA m = 1,2,...

(i) a, = 2.7012, 7.455, . . .

(iii) a 2.7207, 8.162, . . .

The second and third type singularities correspond to double real roots of
F(g) = 0. The function F(g) does not have any real root for a; < /2,
hence ng = 0 for a; < n/2. The flow chart for the computation of f%D is

given in Fig. Al. (Appendix 1).

3.2 Solution by the Finite Element Method, Plane Strain

In the finite element method the mass of each element is concentrated
at the nodal points of each element. The equations of motion of nodal points

in a soil layer subjected to forced excitations are:

Q) (3:32)

[M{u} + [C]{u} + [KI{u} =
where: [M]. : mass matrix
| [(cl : damping matrix
[K] : stiffness matrix
"{Q} : exciting force matrix
(U}, {U}, {u} : acceleration, velocity and displacement

matrices respectively.
Equation 3:32 represents a system of coupled equations. These coupled equa-
tions can be-;;coupled by an orthogonal matrix [4] to yield:
(€) + 2t [w JUE + [w2]e} = [M17M4QM) (33
where: {£}, {£}, {g} : acceleration, velocity and disp]écement

in normal coordinates
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0, :  the natural frequencies

z : % of the critical damping
(<] = [e1'[MILe]

©0* = [61T(Q}

where the column vectors of [¢] are the mode shapes.
If the excitation is harmonic, the displacement in the Sth normal co-

ordinate can be obtained from Equation 3:33 as:

{1 - %)2} - i{2z -‘*-’S-}
S - “n “n Q*s
1 - ()22 + fop 232 M
“n Y
= £+ g (3:34)
where:
1 - (&)2
(wﬁ) Q*S
S
£ = - (3:35)
r 1 - (59212 + {2z 32 M*S
“n “n
—or W
* o, Q*
E: = ‘ : (3:36)
! {1 - (232 + (20 32 M*S |
o) o)

The horizontal displacement in the nodal coordinates at the center of the

loaded area is:

g S S
u. = b &
¢ ss1 C
N S £S 4 S £$
= L (8 gp + 102 £3) (3:37)
5=1
where: u. ¢ horizontal displacement in the nodal coordinates at

the center of the loaded area

¢Z : horizontal displacement at the center of the loaded
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area in the Sth normal coordinate

N : calculated number of modes

From the definition, the ground compliance can be expressed as:

N
- hua S .S
fi = 1 Z b Er
s=1
A . (3:38)
f, = M % > €3
2 z£Q s=p © 1

It should be noted here that the imaginary part does not appear when the
damping matrix is zero.

To obtain mode shapes and natural frequencies, the existing computer
program DYNAMIC was used. This program may be obtained from the Department
of Civil Engineering Computer Program Library. The Flow chart for the above

computations is shown in Fig. A2. (Appendix 1)

3.3 Analytical Solution for Three-Dimensional Case

Kobori (7, 8) obtained the dynamical ground compliance for this case
and extended it for viscoelastic multi layers (9). According to his analy-

sis, the displacement at the center of the load as shown in Fig. 5 is:

® T
. 2 s 2 2_
u(x=0, y=0, z=0, t) = ——il——-J J S1n"¢  _ Y8721 p(g)cos2e
o 0

un2agc 4 g/g2-1  gF(g)

E(g)S(ayg,0)dede (3:39)
where:
F(g) = ugz(zgz-l)/gzr;; /EETT cosech(al/Ez-nz)cosech(al/EE:IB
- {ugt + (282-1)2} /EE:EE'/EETT'éoth(aIJEETEE)coth(alvéz:T)
+ g2 {u(g2-n2)(g2-1) + (2£2-1)%)
E(g) = tanh(a,/e2-1)
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D(g) = {Ezcoth(a1/£2-1) - /£2-n2 /g2 coth(aIVgZ-nZ} COth(aIVEZ-l)

sin{ay&coso) sin(g a Esine)

S(aogse)
cos8® sing

Singularities in the integrand in Equation 3:39 are:

Branch points £=n, &=1

£=0, £71, £=g > E%Ep
(k=1’2’--N) (k=1323--:N‘)
where:
£, ¢ real roots for F(g) = 0
g, ¢ real roots for (E(g))" ' = 0

Integrating Equation 3:39 in a complex plane, the ground compliance can be
obtained as:
3D

u _ 3D, 3D .
—a—'au = fl + 1f2 (3.40)

~ where:

R S j __5'(5) - =~ D(g) Si(e)} E(e)de

! naog £/E2-1 £F ()
N' 2.
1 g
£ = — D(e)E(E) Sy()] g

nags k=1 £dF(g)/de k

1 Nz' s;(¢) |
+
C \k 2 E5g

LR k=1 a, g k

d
Si(g) = Iz S(g,8) sin2ede
! ,



22

L

s3(6) = |7 s(z,0) coszeds
0

P : Cauchy's principal value of the integral.

The real part is the Céuchy's principal value of the integral. The
imaginary part is the radius about the poles &y and g&. Resonant frequencies
are those where the equation F(g) = 0 has double roots. The equation
(E(g))'1 = 0 does not govern resonant frequencies since this equation does
not have double roots. These two equations do not have a real root for

frequencies less than a, = 1.57.
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CHAPTER 4

COMPARISON OF TWO-DIMENSIONAL AND THREE-DIMENSIONAL
RESPONSE OF SOIL-STRUCTURES

The dynamic response of a structure located on a soil layer can be ob-
tained for plane strain (two-dimensional) conditions using the finite element
method of analysis. However, for the three-dimensional case the number of
unknowns becomes very large and computer storage space and cost limit the
size of the problem that can be solved.

For a harmonic base excitation it has been shown (Chapter 2) that both -
the two and three-dimensional responses depend essentially on the fransfer
function termed the ground compliance. The ground compliance for both the
two and three—dimensiona] cases have been derived in Chapter 3. In this
chapter these ground compliances will be compared and it will be shown that
the three-dimensional response may be estimated from a twd-dimensiona] plane
strain analysis.

A comparison of the dynamic response of strip (two-dimensional) and
rectangular (three-dimensional) loaded areas shows the following:

1. Resonant frequencies for a strip load and a réctangu1ar

load are identical since the functions F(g) governing the
resonant frequencies for them are the same (équations
3:28 and 3:39).

2. Radiational dampings for a strip load and rectangular
Toad do not appear for frequencies less than a; = 1.57,
since the equations F(g) = 0 and (E(g))'1 = 0 governing
the radiational damping do not have any real roots for
these frequencies (Equations 3:31 and 3:40).

3. Radiational damping does not appear in a finite element
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method as shown in Section 2, Chapter 3.  However, material
damping may be used to simulate the radiational damping.
Substituting u3D/Q from Equation 3:40 into Equation 2:3, the transfer

function Hs(iw) is given by:

Ha(in) = 2= (£ +if)0) (4:1)

and the transfer function I(iw)3D from Equation 2:8 is given by:

H, (w)

(4:2)
(£30 + i¢30) W ()

I(1w)3D = L
_ ™

If a plane strain analysis is used for the same system, then substituting

u/q from Equation 3:31 into Equation 2:11, the transfer function H3(iw) can

be expressed as:
V(s 1 .
Hy(ie) = o= (50 + 9620 (4:3)
and the transfer function I(iw)ZD from Equation 2:11 is given by:

Hy (w)
f20 fZD

1 1 . 2
- e [ 4 £
' au (2c ! 2c) Hz(w)

(4:4)

I(iw)ZD

The difference between the transfer functions I(im)3D in Equation 4:2 and
I(iw)ZD in Equation 4:4 is the error which would arise by the use of a plane
strain analysis for the structure with a rectangular base.

If the system has no radiational damping the transfer functions I(iw)3D

and I(1'u>)2D will be:

I{w) = Hl(w) (4.5)
R LAY |
H, ()
Holp = —m (4:6)

1 - 21 H ()
ay 2¢ 2
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A modification factor o will be defined as:

ffolzc
a 30 (437)
i
Multiplying I(w),p by % in Equation 4:6 gives:

' Hl(w)

I(w)ZD = fZD, (4:8)
1 - 11 Ho(a)
auya C

This is identical with a three-dimensional transfer function I(w)3D. There-
fore, if a plane strain finfte element analysis is modified to yield the
transfer function I(m)éD , the three-dimensional effect is obtained for a
harmonic motion at the bedrock.

Although it may be possible to give the response with three-dimensional
radiational damping effects by choosing a suitable material damping, this
thesis will not discuss such damping but only the modification factor a.

Since radiational damping does not appear at frequencies less than the funda-
mental frequency in ground compliance (a1 = 1.57), the precise considerations
will be given for this range.

The ground compliances ffD and ffD for frequencies of a harmonic exci-
tation Tess than a, = 1.57 are shown in Fig. 6, where ffD is combuted as
shown in Appendix 3 and ffD is cited from Reference 8. The modification
factor o calculated from these ground compliances is shown in Fig. 7. The
results show that the modification factor o for a square footing (2a = 2c)
is almost constant with frequency (except near the resonant frequency). For
a depth of soitT, h, equal to the width of the footing, 2a, i.e. h/a = 2,

a = 1.25 and for h/a = 4, a = 1.6.

The fact that the modification factor « is essentially independent of

frequency for a given geometry is important because it indicates that «
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could be obtained from a static analysis and this will be considered in
Chapter 5.

The analyses performed so far have been based on the assumption that
the shear stress distribution at the contact between the structure and the
soil layer is uniform. However, it is more likely that the displacements
rather than the shear stresses would be uniform at the contact. The ground
compliances (plane strain) for these two cases were obtained using a finite
element dynamic analysis. The finite element mesh used is shown in Fig. 8.
A flow chart for the computér program used is shown in Fig. 9. The ground

compliance factors ffD

for the two assumptions are compared in Fig. 10 where
it may be seen that the aésumption of a uniform shear stress at the contact
gives a higher (approximately 20%) ground compliance for the range of fre-
quencies ¢ < a5 < 1.

It would appear reasonable to assume tﬁat the ground compliance factors

fD for the cases of uniform stress and uniform displacement would be

f
similar to those for the two-dimensional case and hence the modification
factor o obtained for the case of uniform stress would also apply for the

case of a rigid foundation.
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CALCULATE BY EXISTING PROGRAM "DYNAMIC"
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FIG.9 PROGRAM FOR COMPUTATION OF GROUND
COMPLIANCE BY FINITE ELEMENT METHOD.
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CHAPTER 5

AN APPROXIMATE TWO-DIMENSIONAL SHEAR STIFFNESS ANALYSIS BASED
ON THE STATIC SHEAR STIFFNESS OF THE SOIL LAYER

Chapter 4 indicates that the dynamic response of a three-dimensional
structure involving soil-structure interaction may bevestimated from a two-
dimensional analysis if the appropriate modification factor is used. Since
the modification factor o is almost constant for frequencies less than
a; = 1.57, the constant value of a based on a static analysis may be used.
In this chapter, the modification factor « based on a static shear stiffness

will be evaluated.

5.1 Shear Stiffness of a Rigid Rectangular Foundation and Soil Layer
System

’ .
As shown in Fig. 11, the displacement at the surface of a soil layer

of depth h subjected to a surface load is approximately given as (10, 11):

u(x,y,0) = ui(x,y,0) - u2(x,y,h) | (5:1)
where u : displacement at the surface of a soil layer of depth h.
ur : displacement at the surface of a half space.

u2 : displacement at the depth h in the half space.
The displacements u1 and u2 at any point in a horizontal plane for a uniform
- rectangular load can be calculated as follows.
If a horizontal point Toad is app]iéd on the surface of a semi-infinite
elastic body (Fig. 12), the displacement at the point (x,y,z) will be giQen
by Cerruti's formula:

Wxoy,z) = 3 S R X
Yo ynG |R2 R+z R(R+z)

) (5:2)

where Q : applied horizontal point load.
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) |

FIG.I2 HALF SPACE SUBJECTED TO A CONCENTRATED
LOAD

FIGV. 13 UNIFORM SHEAR LOAD OVER A RECTANGULAR
AREA ON A HALF SHEAR. |
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G,v : shear modulus and poisson's ratio of soil.

R = /x2+y2+ 22
Integration of Equation 5:2 over the rectangular area, as shown in Fig. 13,
with z = 0 will lead to the displacement at the corner of the uniform rect-

angular shear load as:

-1
tan "¢'/a' ;a'/cose
corner _ 1 - Coein2
ul E J (1 - vsinZe)de dr
0 0
/2 c¢'/sine |
+ J 1 [ (1 - vsin2g)de dr
tan G'/a' 0
= ) | (5:3)
271G
: /122
where F(x) = (1-v) log(V1+22 + 1) + Alog —1—5X—i—l
A= c‘/a'

This displacement at any point (x,y,0) within the loaded area may be deter-
mined by considering the loaded area to be comprised of four rectangular
areas with the point (x,y) a common corner to the four areas. The displace-
ment ui(x,y,0) is then obtained by adding the contributions from each of the

four areas:

e R - FO5E)) - (x-a ) (FGELD) - FESIT wat, yee!

75 DFE) + FOSE)) - (ea) (R - FESENT wea', yoc!
ui{x,y,0) = . '
2 IFED) - FOEEN - ()R - FIEENT oaxaa’, yoc!

] 1 ] 1
205 (57 x=% , y=% | (5:4)

The integration of Equation 5:2 over the rectangular area is difficult
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for z = h. If the sides of a uniform rectangular load are small compared
with the depth of a soil layer, the horizontal displacement at the depth h
can be obtained from Equation 5:2 under the coordinates shown in Fig. 13

replacing an area load with a concentrated load at the center of the area

as:
_ ta'c" 1 (x-a'/2)? 1-2v o . (x-a'/2) )
uz(x,y,h) w6 R [ e +1 4+ Ro+h Ri{1 EITEI?FT_}] (5:5)
where Ry = Ax-a'/2)2 + (y-c'/2) + h2

Now the displacements ui and u2 are obtained from Equation 5:4 and
Equation 5:5 respectively. Substituting these values into Equation 5:1, the
horizontal displacement ontthe surface of a soil layer subjected to a uni-
form rectangular surface shear load can be calculated.

The above solution is for a uniform shear stress over the loaded area.
It was mentioned in earlier chapters that it is much more likely that the
displacement rather than the shear stress will be uniform over the area.

The solution for a uniform displacement will now be considered.

" The shear stiffness of a rectangular rigid foundation on a soil layer
is the total shear force on a rigid foundation to cause a unit horizontal
displacement. Dividing a rigid foundation into 2m x 2n number of small ele-
ments with uniform load distributions as shown in Figure 14, this force
will be calculated as follows:

The unit horizontal displacement of the element (i,j) in a rigid found-
ation subjected to a horizontal force can be expressed by superposing the

influences due to each element as:
2m

2n
k,2 _ .
kzl ggl U5 Tk T 1 (5:86)

where g uniform shear stress applied on the element (k,2)
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FIG.I5 RECTANGULAR AREA (2a x 2c) DIVIDED
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u?’? : horizontal displacement of the element (i,j) due
to a unit uniform shear stress on the element
(k,2).
Each quarter of theAfoundatibn area will be denoted as I, II, III and
IV as shown in Fig. 15. Separating the influences of the element stress by

the séction I, IT, III and IV, Equation 5:6 can be rewritten as:

I II ITI
m n am n m 2n
K% k,2
oY oulte + ] Iougt ot + Fooust ot
k=1 g51 a3 KRy g2y T ket Ly ooy TR0 kR
IV
am  2n
K,2
+ u;’. T = ]
k=%+1 z=g+1 1,3 kst
or
u g (uk,z + gmks2 yMsNH2 + gmkente ) =1
Wl gl I T TG Tk T LG Tk T ML Mk ,n+L
(5:7)

Since the contact shear stress distribution under the rigid foundation is
symmetrical with respect to x and y axes, the uniform shear stresses in the

sections II, IIT and IV can be replaced with those in the section I.

|
1 Tam-k+1,2

ITI Tk, 2n-2+1 = .2 (5:8)
v Tam-k+1,2n-2+1 )

Substituting these relationships from Equation 5:8 into Equation 5:9 gives:
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m n
7 (uk,z + u2m-k+1,1 + uk,zn-z+1 + uzmik+1,2n-£+l) o, " 1 (5:9)

kzl =1 1’-] 1’.] 1,j ’ , 'I,J

Applying Equation 5:9 to all elements in the section I gives:

m n ~

) (uk,z + g2kl o kpon-edl uzm—k+1,2n-z+1) c - 1

k=1 a2y Dol 1,1 1,1 1,1 k,%

ToD ke, 2m-k+l,e . k,2n-g+1 | om-k+l,2n-2+1

) (U +uy 500+ ugs tups ), = 1 P M X n

k=1 ¢2=1 »J »J »J >J i equations
? E (uk,z + u2m-k+1,z + uk,zn-2+1 + u2m—k+1,2n-z+1) < = 1 (5:10)
KE1 g2, M m,n m,n m,n ks ) )

where the dfsp]acements can be obtained by Equations 5:1, 5:4 and 5:5 and
the stresses can be obtained by solving Equation 5:10. Equation 5:10 has
been put in a more compact form in Appendix 2.

The shear stiffness of the rectangular rigid foundation and soil layer
system K3D can be calculated as:

Kyy = 222§ T (5:11)

5.2 The Shear Stiffness of the Rigid Strip Foundation Soil Layer System

The rigid strip foundation area is divided into 2m number of elements
as shown in Fig. 16 and a shear stress distribution on each element is
assumed uniform. Then a unit horizontal displacement of the element (i) in
a rigid foundation subjected to a horizontal force can be expressed by super-

posing the influences due to each element as:

k = .
U_i Tk = ] (5.]2)
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a | a9
1,

FIG.16 STRIP AREA DIVIDED INTO 2m ELEMENTS.

FIG.17 STRIP AREA DIVIDED INTO TWO SECTIONS.
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where L uniform horizontal stress applied on the element (k).

u? : horizontal displacement of the element (i) due to a
unit uniform shear stress on the element (k).
Separating the influences of the element stress by the section I and II

as shown in Fig. 17, Equation 5:8 can be rewritten as:

I II
m 2m
k k
Youw ot + ) ust, = 1 (5:13)
k=1 0 K keme 1K
Tk m+k

Since contact shear stress distribution under the rigid foundation is symm-
etrical with respect to y axis,-the uniform shear stresses t in section II

can be replaced with those in section I.

Tom-k+1 = T (5:15)
Substituting Equation 5:15 into Equation 5:14 gives:
Tk 2m-k+1
kZ (ui T U sz—k+1) = 1 (5:16)
=1
Applying Equation 5:16 to all elements in section I gives:
m 3
k 2m-k+1
kZ1 (uy + a0 % =1
m k 2m-k+1 .
SR C )t = 1 m equations (5:17)
k=1
m
k 2m-k+1
E (um Uy ) Kk = ! ‘
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where the displacements can be obtained by Equation Al:5 (Appendix 3) and
the stresses can be obtained by solving Equation 5:17.
The shear stiffness of a rigid strip foundation and soil Tayer system

K2D can be calculated as:

K = 2a

2a (5:18)
2D m K

Hes-13

T
) k

5.3 Calculation of Two and Three-Dimensional Stiffness for the
Rigid Foundation

The static shear stiffnesses for the two and three-dimensional cases
are given by Equations 5:18 and 5:11. The width of the footing is 2a in both
cases but a unit length of footing is considered for the two-dimensional case
while a length, 2c, is considered for the three-dimensional case. To compare
sfiffnesses then,'the stiffness for the three-dimensional case must be divi-
ded by the length of the footing, 2c. Also, if both stiffnesses are
divided by Young's modulus, E, a dimensionless stiffness is obtained.

"~ The stiffness values obtained will depend on the number of area elements
used. This is shown for the three-dimensional case in Fig. 18. It may be
seen that if 30 x 30 elements are used, little error will occur. The stiff-
ness values computed and shown in the next section were obtained using 30
area elements for the two-dimensional case and 30 x 30 area elements for the

three~-dimensional case.

5.4 Comparison of Two and Three-Dimensional Stiffness

Dimensionless stiffnesses for the three-dimensional case are shown in
Table 1 for various ratios of c/h, h/a and Poisson's ratio, v. Values
shown range from 1.31 to 0.48. Dimensionless stiffnesses for the two-

dimensional case are shown in Table 2 for various ratios of h/a and Poisson’s
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TABLE 1

3-D SHEAR STIFFNESS O THE SOIL LAYER
YOUNG MODULUS x LENGTH OF THE FOUNDATION

20

2-D SHEAR STIFFNESS OF THE SOIL LAYER

4
h V = Poisson's ratio
T
[ h/a:= 4. h/a = 8. h/a = 16.
o |v=0.lv=2|v=.3|v=0.lp=2|p=.3|v=0.lv=.2 |p=.3
I, L3141 21111.1801.222 1.128{1.100]1.179{1.09011.065
3. .898] .850} .842].796} .754].748} .746].708].702
5. .798] .763] .7611.690}f .661] .660]| .634] .609]|.608
{O. .712].691] .695/.598] .581].586] .535].520] .524
20. .690] .670}] .665}.550] .538] .542] .489}.478] .483
TABLE 2

YOUNG MODULUS

_L U =Poisson's ratio
129 h ‘
,T
h/a=4. h/a= 8 h/a = 16.
U:=0 V=03 V=0 U=03 V=0 V=03
697 683 536 .538 434 .443
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ratio, v, equal to 0.0 and 0.3. Values range from 0.70 to 0.44. 'As expected
the three-dimensional stiffness is greater than the two-dimensional stiff-
ness. However, as the length of the footing, 2c, becomes large compared with
the width, 2a, the three-dimensional stiffness approaches the two-dimensional
stiffness.

The dimensionless stiffness for a square and strip foundation are shown
in Fig. 19. It may be seen that the square footing is considerably stiffer
than the strip footing and that both decrease as.the depth of the soil layer
increases. | |

The dimensionless stiffness for the three-dimensional case is shown as
a function of c/a and h/a'in Fig. 20. It may be seen that the stiffness

decreases with increasing values of both c/a and h/a.

5.5 Modification Factor

The modification factor, o, was defined in Chapter 4, Equation 4:7 as

£2D
= —13625 and is the ratio of the stiffnesses, namely:
fi :
K
i v 4 (5:19)
2D

The variation of o with the geometry for Poisson's ratio equal to 0.3 are
shown in Figs. 21, 22 and 23. It may be seen that the effect of the deptH
of soil is as follows:
1. The modification factor increases with the depth of a

soil_]ayer and will be infinite for an infinité depth since

the displacement for a strip load on the surface of a

semi-infinite body is infinite but not for a rect-

angular load. (Fig. 21)

2. The modification factor for a square foundation on a
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soil layer with the ratio h/a = 1 is about one (Fig. 21).
The error caused by the use of a plane strain finite ele-
ment method for this case will be negligible if radia-
'tiona1 damping is ignored.

The effect of the ratio of the sides (c/a) of a rectangular foundation

are as follows:

1. The modification factor decreases with the increase in
sides ratio c/a and will be one for infinite sides ratio
c/a. (Fig. 22, Fig. 23)

2. The modification factor is almost one at the ratio
2c/h =5. The error caused by the use of a plane strain
finite element method for the ratio 2c/h 2 5 will be neg-
ligible if radiational damping is ignored. (Fig. 23)

It should be noted here that the above-mentioned results are based on

the following assumptions.

1. The rigid foundation is divided into small equal area
elements and the stress distribution on each element is
assumed uniform.

2. The displacement of an element is assumed to be uniform
and is equal to that at the centre of the element, although
the displacement within an element is not uniform because
of assumption 1.

3. The displacement at the surface of a soil layer is assumed
to be the difference between the surface displacement and
the displacement at a depth equal to the depth of soil
layer (semi-infinite analysis).

4. The displacement in a semi-infinite body at the same depth



as that of a soil layer is calculated by replacing an
area load on the element with a concentrated load at

the centre of the element.

These assumptions lead to the following errors:

1.

The error due to assumption 4 increases as the ratio
of c/a increases. However, it reduces as the ratio
h/a increases.

The error due to assumption 3 increases as h/a reduces.
The error due to éssumption 2 gives a smaller stiff-

ness under any conditions.

52
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CHAPTER 6

APPLICATION OF THE EQUIVALENT SHEAR STIFFNESS ANALYSIS TO THE DYNAMIC
RESPONSE OF A RECTANGULAR FOUNDATION OVER A SOIL LAYER

" In this chapter a plane strain finite element analysis is modified to
model the case of rigid rectangular base on a soil layer (Fig. 24), The

results are compared with the analytical solution.

6.1 Transfer Function

The force Q created by a harmonic horizontal excitation u, under the

rectangular rigid body is:

d2u,
Q = -M— - (6:1)
dt?
where M : total mass of the rigid body on a soil layer.

Fourier transformation of Equation 6:1 gives:

q = Me?u, | (6:2)
where Q, u, : Fourier transformations of Q and u, respectively.
w : angular frequency of the excitation.

Therefore, the transfer function H,(w) is:
Hplw) = Me? (6:3)

Substitution of the transfer function Hz(m) from Equation 6:3 into Equation

4:2 gives:
(i) (o)
1w
3D T 7730 . .30
1= o (0 +i60) M2
H, (w)
= 2 13D 3D (6:4)
1 - bag (f1 +if) )
M

where b = ——
: pa3
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- wa
a, = /ﬁ
)

p : mass of a unit volume of soil.

The absolute value of the complex transfer function in Equation 6:4 is:

I(w)3D = HI(M) . (6:5)
A1 - bag £30)2 + (bad £30)2

Ignoring ng gives:

H, (w)
35 - (6:86)

2
1 - ba0 f1

Also, the absolute transfer function I(m)20 by a plane strain analysis in
Equation 4:4 is:

H, (w)
Hwlpp = 2D (6:7)

f
b - bag ()

Modification of the transfer function I(m_)20 to get I(m)3D gives:
H, (w)

2D
1 2 f
1 abao (ZC)

I(w)éD (6:8)

The transfer function H,(w) can be obtained by the methods discussed
in reference 12. For this special case considered here, it can be given as:

Hy(w) = sec a; (6:9)

For frequencies corresponding to a, < n/2, no radiational damping will

where a

occur (Chapter 3).
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6.2 Fundamental Frequency of the System

The fundamental frequency is the lowest frequency at which the term

I(w) goes to infinity. This may occur when:

H(w) = Seca; = « (6:10)
or when 1 - bag ffD = 0 (three-dimensional analysis)
or 1 - ba% ffD = 0 (plane strain analysis) Vo (6:11)
2D
or 1 - bag 7i; = 0 (modified plane strain ana]ysis)J

/2. Now ag = ma//g-(Equation

From Equation 6:10, H{{w) = = when a;

h/a. For h/a = 4, then

6:4) and a; = wh//§3 hence the ratio a;/aqg
Hi(w) = = when ap = % a;. Therefore resonance occurs when ag = % a; = /8
= 0.391. Resonance may also occur for frequencies corresponding to agp less
than 0.391 (a; < w/2) provided Equation 6:11 is satisfied and, since a; will
be less than w/2 for these cases, no radiational damping will occur.

The fundamental frequencies for a; < n/2 or ag < 0.391 are calculated
as follows: |

1. f%D and f?D are obtained from Fig. 6b for values of ag

from zero to 0.39.

2. The mass ratio, b, required tovsatisfy Equation 11 is

then calculated.

The analytical relationships between ag and b are shown in Fig. 25 for
both the plane strain and square footing cases. Modification factors based
on static shear stiffness were calculated in Chapter 5. For a square
footing with h/a = 4 the modification factor is 1.73 (Fig. 23). The plane
strain result when modified for a square footing is also shown in Fig. 25

and it may be seen to be in close agreement with the analytical solution.
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The fundamental frequencies were also obtained from a finite element
analysis. The finite element mesh used is shown in Fig. 26. The results
for the plane strain case and for the square footing (a = 1.73) are also
shown in Fig. 25 and it is seen that they are very similar to the analytical

results.

6.3 Discussion of the Results

The modification of a plane strain analysis based on the static modi-
fication factor gives the fundamental resonant frequency in shear close to,
or the same as, that from a three-dimensional analysis as shown in Fig. 25.
It is interesting that the results show no significant difference between
the plane strain analysis and three-dimensional analysis for the mass ratio
Tess than five. |

The smaller ground compliance f; for the same frequency agp gives a
1arger resonant frequency of the system and the larger one gives a smaller
_ resonanf frequency under the constant mass ratio. The larger and smaller
resonant frequencies obtained by a modified plane strain transfer function

analysis than those by a three-dimensional one may be explained by
L fP > £3D and-i 0 < f30 respectively. When the mass ratio is about 54

¢ 2C 2C
these two analyses give the same results for this particular case, where

£2D ,
i'Ti? and f?D will be the same values. The resonant frequencies from a

finite element method are larger than those from a transfer function because
the ground compliance f, for the uniform displacement distribution over the
contact area under the foundation is smaller than that for the uniform stress
distribution. Since the constant modification factor o is used for the
modification on a finite element method, the same tendencies as mentioned

above for the transfer function occur.
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It will be possible to get exact fundamental resonant frequencies for
this system if a correct modification factor is used for each frequency ag.
Even a constant modification factor based on statical case will give a

satisfactory result.
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CHAPTER 7
CONCLUSIONS AND SUMMARY -

If a structure with rectangular rigid base (2a x 2c) is attached on the
surface of a homogeneous, isotropic and Tinear elastic soil layer, the trans-
fer function between the input harmonic excitation on the bedrdck and response
at the base of the structure can be expressed with_the ground compliance
ignoring damping as:

) H, (@)
Wegyp = 771 0
a

H, ()
If a plane strain analysis is used for the same system the transfer function
is:

Hy (w)

Iw) gy

If a plane strain analysis with the modification factor « is applied, the

transfer function I(w)3D becomes :

Hl(w)

I{w)pp

The following procedures will give this modification in a plane strain
finite element method:

f%D/zc
1. Find the modification factor o from o = 3 -
fi
2. Multiply the mass and Young's modulus of soil by a.
For the frequencies of a harmonic excitation lower than a; = 1.57, the
constant modification factor o based on the static shear stiffness can be

used because no radiational damping occurs. For these frequencies of harm-
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onic excitation, there will be no significant difference in the response of
a structure between a plane strain and three-dimensional analysis for the
following conditions:

1. Ratio 2c/h is larger than 5.

2. Ratio h/a is about one.

3. Mass ratio is smaller than certain ratio (i.e. = 5 for

the ratio h/a = 4 and square foundation).
The modification factor based on the statical shear stiffness has the follow-
ing tendencies:

1. Modification factor o is larger for larger ratio h/a.

2. Modification factor is smaller for larger ratio c/a.

3. Variation of Poisson's ratio of soil from O to 0.3 has

negligible influence.

The calculated modification factor in this thesis can be applied to any
shape of structure as long as the structure has a rectangular base and the
same ratios h/a and c/a as those of calculated ones. Although this thesis
considered the application of a plane strain finite element method to the
structure with rectangular base on a soil layer only, it may be possible fo
apply this method for any case if the transfer functions Hé(iw)2D and

H3(iw)3D are known.
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by Finite Element Method
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>( READ(h/a, Vl)“
LREAD'( ,, B ))

65

CALCULATE
STATIC f,

'CALCULATE
DYNAMIC f,

NO

FIG.Al PROGRAM FOR COMPUTATION OF GROUND

COMPLIANCE BY ANALYTICAL METHOD.
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CALCULATE } BY EXISTING PROGRAM " DYNAMIC"

{wa}, [¢], K}

( READl([#’], 09
l o

CALCULATE
READ (w)
(47 ( ?
CALCQLATE CALCULATE
{Q}, (K7}, (M7} C fi,fe
YES

FIG.A2 PROGRAM FOR COMPUTATION OF GROUND
COMPLIANCE BY FINITE ELEMENT METHOD.



67

APPENDIX 2

A COMPACT FORM FOR THE LINEAR SYSTEM
OF EQUATIONS ARISING IN CHAPTER 5

The coefficients of unknowns in Equation 5:10 can be written in terms of

P,q

2m x 2n displacements u1 P = l,%¢+,2M, Qq = 1,+++,2n, using the relation:

?

p = 1’...’2"]
Psq . ,Ip-il+1,]q-i]+1 g = 1,-++,2n :
uiaj ulsl i= 1,00, m (AZ.])
j = 1,000, n
ks = lk-ilHnfe-dlH
K,2n+1-2 o ylk-i]#1,2(n1) - (0 +3)
u. s = u
1,J 1,1 Fk= 1.00e.m
I e
u2m+1-k,9. - u2(m+1)—(k+1'),|z-j +1 ’ >
i:j 1,1
amt1-k,2n+1-2 _2(mr1)-(k+i),2(n+1) - (e+3)
i,Jd 1,1 '
In view of Equation A2:2, Equation 5:10 becomes:
L [k=i|+1,]e-3]*1 [k-1]+1,2(n+1)-(2+])
LT e Yua T
k=1 2=1 ? >
¢ 2(mr)=(k+i), | e-dl+r uz(m+1)-(k+1'),z(n+1)-(2+j):}T -
1,1 1,1 k,
i = 1’.oo,m .
j: ly°°°,Nn (A2.3)

This system of equations can be rewritten in matrix notation as:
[al{t} = {d} (A2:4)

where:

[k-i]+1,]2-j|+ [k-i]+1,2(n+1)-(2+])
An(G-1)+i,m(i-1)+k Y11 U
+ uf(T+1)-(k+i),|z-j|+1 + uf(T+1)‘(k+i)’2("+1)'(1+j)
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k"i = l,o.o’m .
253 = 1,°%+,N (AZ.S)

_ 'i: 1’.--’m .
Tm(i-)+ YL i=aaeeem (A2:6)
d. = 1 r = 1l,e°+,mn (A2:7)

r

1,2,*++,2m) in Equation 5:16 can be

Similarly, the displacements u? (k

expressed with the displacements u? (k = 1,2,++,2m) as:

Koo lk-iln (A2:8)
1 1
Using this relationship, Equation 5:17 can be written as:

m ,

) (”lk-1|+1 + Uf(m+1)'(k+l))1k -

m . .

kz (ulk-1|+1 + u%(m+1)-(k+1))rk' = 1 (A2:9)
=1

m

-m|+ -(k+

kz (ulk ml+1 u?(m+1) (k m))Tk -1

=1

Therefore, if the displacements u? (k = 1,2,+++,2m) are known, the stresses

Tk (k = 1,2,+++,m) can be obtained by solving Equation A2:9. The displacement
u§ can be calculated by Equation Al:5.

Finally the shear stiffness is obtained by Equation 5:18. Computer pro-
grams for the computation of two-dimensional and thrée—dimensiona] shear stiff;

ness of a soil layer is described in Fig. A3 and Fig. A4 respectively.
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MAIN PROGRAM SUB PROGRAM "DISP"

CALCULATE
ulyy v w2

l

CALCULATE
READ U’
(a,c,m,n, h,E,V) l
l . ‘ CQ%CULATER'
CALL DISP Ux’s FROM U

CALCULATE
-~ Tk,

l

CALCULATE
K/2C

FIG.A3 PROGRAM FOR COMPUTATION OF SHEAR

STIFFNESS OF SOIL LAYER AND RECTANGULAR
RIGID FOUNDATION.
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READ
\la,m,n, E,V)

'

CALCULATE
ut

l

CALCULATE
U; FROM U*

|

CALCULATE
Tx

:

CALCULATE
K

FIG.A4 PROGRAM, FOR COMPUTATION OF SHEAR
| STIFFNESS OF SOIL LAYER AND RIGID

STRIP FOUNDATION .




71

APPENDIX 3
TWO-DIMENSTONAL STATICAL GROUND COMPLIANCE

The static compliance can be obtained from the dynamic compliance

(Chapter 3.1) when
New variable n will be denoted as:

n = th (A1:1)
Expressing a, B, coshah, coshgh, sinhch and sinhgh with the new variable,
Maclaurins expansion for these gives:

T (1 - nze - %n"*ez + oooo-on)

o

T (1 - g =- %ez + ooo-ooo)

B
. 1 _
cosh h = coshn - enn2sinhn + Esznzn“coshn - esesees
1 (A1:2)
coshgh = coshn - ensinhn + Eeznzcoshn - eeees .o
. . 1 .
S]nhah = S1nhn = Enn2COShn + Eeznznqs]nhn - es0scasn
. . 1 .
sinhgh = sinhn - encoshn + 532n251nhn - cesecan
1 W
2 ) (AT:3)

n2 = (§)2

where € =

1-2v
PYEEY) (A1:4)

SubstitUting~into'the-appropkiate-equatidns in Chapter 3.1 and

ignoring ¢ terms of higher order when w -~ 0 or € > 0 gives:
0.t) = 2th f'{(1+n2)sinhncoshn + (1-n2)n}sin(n@/h)cos(n*/h) dn

Tu 2[1 + (1-n2){(1+n2)sinh2n + (1-n2)n2}]n2
5 _

u(x,z =

(A1:5)

Therefore, the ground compliance for a static case with x = 0 is:

dn (A1:6)

UZD - ﬂ.T {(1+n2)sinhncoshn + (1-n2)n}sin(n3/h)
K3

— a
q ) 2[1 + (1-n2){(14n2)sinh?n + (1-n2)n2}]n2

where q = 2art



