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Two-dimensional flexible nanoelectronics
Deji Akinwande1, Nicholas Petrone2 & James Hone2

2014/2015 represents the tenth anniversary of modern graphene research. Over this decade,

graphene has proven to be attractive for thin-film transistors owing to its remarkable

electronic, optical, mechanical and thermal properties. Even its major drawback—zero

bandgap—has resulted in something positive: a resurgence of interest in two-dimensional

semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps.

With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in

place to advance integrated flexible nanoelectronics, which uniquely take advantage of the

unmatched portfolio of properties of two-dimensional crystals, beyond the capability of

conventional thin films for ubiquitous flexible systems.

T
wo-dimensional (2D) atomic sheets are atomically thin, layered crystalline solids with the
defining characteristics of intralayer covalent bonding and interlayer van der Waals
bonding1–3. The expanding portfolio of atomic sheets illustrated in Fig. 1a currently

include the archetypical 2D crystal graphene3–14, transition metal dichalcogenides
(TMDs)1,2,15–21, diatomic hexagonal boron nitride (h-BN)3,22–25, and emerging monoatomic
buckled crystals collectively termed Xenes, which include silicene2,26,27, germanene2 and
phosphorene28–31. These materials are considered 2D because they represent the thinnest
unsupported crystalline solids that can be realized, possess no dangling surface bonds and show
superior intralayer (versus interlayer) transport of fundamental excitations (charge, heat, spin
and light). The portfolio is expected to grow as more elemental and compound sheets are
uncovered.

The outstanding properties of 2D crystals have generated immense interest for both
conventional semiconductor technology and the nascent flexible nanotechnology because,
amongst other considerations, these atomic sheets afford the ultimate thickness scalability
desired in a variety of essential material categories, including semiconductors, insulators,
transparent conductors and transducers3,16,18. In particular, flexible nanoelectronics stand to
greatly benefit from the development of 2D crystals because their unmatched combination of
device physics and device mechanics is accessible on soft polymeric or plastic substrates17,18,32,33,
which can enable the long sought after large-area high-performance flexible devices that can be
manufactured at economically viable scales. As a result, existing flexible technology is expected to
be transformed from low-cost commodity applications, such as radio-frequency identification
tags and sensors, to integrated nanosystems with electronic performance comparable to silicon
devices, in addition to affording mechanical flexibility and manufacturing form-factor beyond
the capability of conventional semiconductor technology34. Hence, a new era in integrated
flexible technology founded on 2D crystals is emerging.
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This article serves as a general, albeit focused, review of flexible
2D nanoelectronics covering their progress, prospects and
contemporary challenges. Remarkably, in the 10 years since basic
academic studies of small graphene flakes was pioneered,
commercial products are now available including smart phones
with graphene touch panels. In general, 2D atomic sheets are
under rapid development leveraging the understanding gained
from graphene.

A soft introduction
One might wonder: why flexible nanoelectronics? Can ubiquitous
silicon electronics not fulfil the evolving technology aspirations of
modern society? For some new technologies at the forefront of
the innovation horizon, 2D atomic sheets offer a unique and
compelling capability. A case in point is wearable electronics such
as smart glasses, smart watches, smart fabrics and electronic
tattoos35, which ideally require large-area nanomanufacturing of

devices based on ultra-thin functional materials that are
transparent and energy efficient, and can afford radio-frequency
(RF) wireless connectivity on a flexible substrate. Another new
example is an integrated communication and computation
system, such as a universal ultra-portable gadget that can
transform into several user-reconfigurable form factors
including a smart phone, smart tablet and computer with the
desirable benefits of low-cost manufacturing on soft substrates
that are foldable, rollable, environmentally benign and recyclable.
This sort of universal gadget has attracted the imagination of
technology companies, embodied by Nokia’s ‘Morph’ concept34.
In addition, the applications of 2D atomic sheets towards other
emerging concepts, such as origami inspired foldable systems,
flexible bioelectronics and wireless structural health monitors,
could also substantially benefit from the atomic profile and high-
performance transport properties. For clarity, we note that a
‘smart system’ can be understood simply as any gadget with
embedded wireless connectivity that at a minimum can interact
with the user or environment. Examples of some highly
anticipated flexible smart systems are shown in Fig. 1b.

The importance of mobility. Historically, organic, amorphous
and metal oxide thin-film transistors (TFTs) have been explored
for flexible electronics; however, their low charge mobility (m) has
limited their prospects to specific low-frequency applications such
as tags and control electronics for displays34. Figure 2 compares
the charge mobility of several candidate semiconducting
materials, clearly demonstrating that large-bandgap TMDs (for
example, MoS2 and WSe2) offer experimental mobilities
approaching single-crystal silicon TFTs, with two orders of
magnitude thinner profile and higher strain limits.
Encouragingly, recent reports have shown that another 2D
semiconductor, phosphorene, can afford even higher transistor
mobilities around 1,000 cm2V� 1 s� 1 at room temperature28, a
significant advancement for TFTs. The mobility of TFT materials
is of great interest because it influences several performance
metrics, such as current density, energy efficiency, switching delay
and cutoff or transit frequency (fT), a critical parameter for
realizing GHz wireless connectivity. At low electric fields, the
intrinsic fT¼ mEDS/(2pL), where L is the transistor channel length
and EDS is the drain-source lateral electric field described by
EDS¼VDS/L within the gradual channel approximation36. VDS is
the drain-source voltage. It follows that the charge mobility
directly determines the low-power frequency capability and the
likely applications comprising connectivity, communication and
computation that can be realized in practice.

Achieving high mobilities in films that are atomically thin
(Fig. 2c) is also noteworthy because the 2D thickness limit
represents the ideal conditions for realizing maximum electro-
static control16, maximum optical transparency6,18,37, maximum
chemical sensor sensitivity1 and maximum mechanical
flexibility7,20,32.

A role for graphene for flexible nanoelectronics. In Fig. 2, it can
be seen that graphene affords the highest field-effect transistor
(FET) mobilities, owing to its small effective mass (m*). However,
the lack of a bandgap and the associated inability to electrically
switch off precludes its use for digital transistors4. Nevertheless,
its high charge mobility and saturation velocity (4107 cm s� 1)
coupled with its intrinsic ambipolar character make it an
attractive material for flexible RF analogue TFTs32,38, which
have already been employed to demonstrate several RF circuit
blocks such as frequency multipliers39, and multi-modulation
wireless circuits37. In addition, non-transistor applications
including transparent conductive films, heat spreaders, acoustic
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Figure 1 | Illustration of 2D monolayer materials and examples of flexible

smart systems. (a) Three-dimensional illustrations of contemporary 2D

monolayers revealing diverse physical structures based on an underlying

hexagonal lattice. (b) 2D atomic sheets can fulfil many of the electronic,

optical and mechanical functions required in a flexible smart system, and

especially enable ‘RF wireless communication & connectivity,’ which has

become an indispensable feature in modern smart systems. (Image of the

smart tablet and wearable system courtesy of Graphene Square Inc.; Image

of smart glasses courtesy of E. Guy; Image of E-tattoo courtesy of N. Lu,

University of Texas—Austin).
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speakers and mechanical actuators can all be enabled by flexible
graphene, where the lack of a bandgap is not a limitation.

Table 1 summarizes the basic optical, electrical, mechanical
and thermal properties of several 2D atomic sheets that span the
range from semimetals to insulators. This table is a useful
reference for guiding the selection of material(s) and device
design for flexible nanoelectronics. As a general material,
graphene offers the fastest charge transport, stiffness and thermal
conductivity. Phosphorene and semiconducting TMDs are well
suited to serve as the semiconducting channel for digital
electronics. In addition, direct bandgap monolayer TMDs can
be used for optoelectronics. For atomically thin insulating sheets,
multilayer h-BN has been proven to be the ideal dielectric for
enhanced charge transport for 2D TFTs, owing to its atomically
smooth surface, large phonon energies, high dielectric breakdown
field and high in-plane thermal conductivity compared with
conventional dielectrics3,18,39.

In addition, semiconducting metal dichalcogenides (for
example, SnS2 and SnSe2) and buckled graphene analogues
(Xenes) have recently emerged as candidate 2D crystals for
flexible nanoelectronics and are currently under growing
theoretical and experimental studies26–28,40. At the moment, the
study of Xenes is at a nascent state compared to the other 2D
crystals, with many basic questions of interest, including their air
stability and further understanding of the effects of a wide range
of interfaces on their electronic properties.

Beyond the glass ceiling
The desire to integrate electronics onto novel, non-planar and
malleable surfaces has motivated the need for flexible devices,
which demonstrate uniform electronic properties across a wide
range of applied strains. Using pliable electronic materials, such
as semiconducting polymers and organic molecules, to fabricate
TFTs on soft substrates has had limited applications due to the
low-field-effect mobilities34,41,42. Enhanced device performance
has been achieved by utilizing thin films or membranes of
conventional semiconductor materials, including crystalline and
polycrystalline Si and III–V semiconductors that offer improved
electronic properties albeit at the cost of overall device flexibility
and thickness scalability43–45 (see Fig. 2).

Strain on the surface of a material subject to flexural bending
decreases linearly with substrate thickness; hence, even materials
that are brittle in bulk form can be flexed to a degree when
produced as a thin film. Under pure bending, the strain, e, at any
given point in the substrate is a function of both the bending
radius, r, and the perpendicular distance, z, from the neutral axis
(axis running through the geometric centre of the device), given
by the relationship e¼ z/(2r). From this relationship, it is evident
that the minimum bending radius that a flexible device can be
subjected, before mechanical failure, is limited by both the
material’s elastic strain limit, as well as by the geometry of the
device and substrate. Thus, increased device flexure can be
achieved in two ways: (i) by utilizing materials with a high strain
limit and (ii) by modifications to device design that minimize the
distance of the TFT from the neutral axis of the substrate.
Strategies to minimize this distance include thinning the substrate
or moving the device from the substrate surface (where strains
reach a maximum) nearer to the neutral axis (where strains
vanish), for instance by two-sided encapsulation. Although
practical design requirements may complicate the ability to move
the TFT device plane to coincide with the neutral axis of the
substrate, in principle it is possible to design a highly flexible
device out of a relatively brittle material. Indeed, TFTs fabricated
from crystalline Si on 25-mm thick substrates and encapsulated to
maintain the device plane within 2 mm of the substrate’s neutral
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Figure 2 | Mobility and strain comparison of candidate materials for

flexible TFTs. (a) Comparison of experimentally reported FET mobilities of

candidate synthetic materials for flexible TFTs, including mobility variations

reported across a wide variety of experimental samples at room temperature.

Semiconducting TMDs (s-TMDs) offer mobilities higher than ordinary TFTs,

and comparable to single-crystal Si (sc-Si). The first report of phosphorene

(non-flexible) FETs offers maximum mobility around 1,000 cm2V� 1 s� 1,

while graphene affords the highest mobilities, though it lacks a bandgap.

Data taken from refs 17,18,28,32,34,38,40,43–45,60,62,76,78–83.

(b) Maximum elastic strain limits of candidate materials for flexible TFTs.

2D materials offer higher theoretical and measured strain limits

than conventional bulk semiconductor materials. Data taken from

refs 7,11,20,32,66,84–91. (c) Comparison of the thicknesses of selected

high-mobility TFTs. The thinner profile of 2D atomic sheets can result in

better device electrostatic control and mechanics while affording mobility

similar to bulk semiconductors. ‘Bulk materials’ denote bulk solids made to

be or deposited to be thin, while nanomaterials refer to van der Waal-layered

materials that are intrinsically scalable to a single layer. Data taken from

refs 16,18,28,32,43,45,79,81,83.
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axis have achieved bending radii below 400 mm while maintaining
tensile strains of less than 0.2% in the active devices46.

However, highly bendable devices are not necessarily equiva-
lent to highly flexible devices. In general, device stretchability is
also desired to enable applications such as conformal electronics,
surface-mountable smart sensors or bioelectronics35,47. In
stretching, it is purely the elastic properties of the component
materials that determine the strain limits of the overall flexible
device. While techniques such as prestraining or texturing
materials used in the fabrication of flexible TFTs can reduce
strain transferred from a deformed substrate to the active
electronic components42, the flexibility of a device under
stretching is ultimately limited by material properties. Design
criteria for highly bendable and stretchable electronics thus
require materials that possess high strain limits and can be
processed in thin layers.

The difference in strain limits between three-dimensional
ionically bound semiconductors and 2D covalently bound
semiconductors can be understood from simple interatomic force
models. These models calculate the bond strength of covalently
bound crystals to be significantly higher than those in ionic
crystals, translating to typical yield strains in ionic crystals
ranging from 7 to 18% (ref. 48), whereas the rupture of covalent
bonds occurs at strains typically ranging between 20 and 40%, but
up to 60% for H–H bonds49. For example, crystalline Si has a
theoretical yield strain ofB10%, above which plastic deformation
results in irreversible degradation to the lattice. In contrast,
covalently bonded 2D crystals can show fully elastic behaviour up
to strains of B25–30%, at which point brittle fracture occurs at
the ultimate strain limit of the constituent bonds11,20. Thus, the
potential elastic limit for 2D crystals is significantly higher than
that of bulk semiconductors. However, reaching this limit
requires minimization of both internal grain boundaries and
highly strained crystal edges, both of which can initiate fracture at
strains significantly lower than the bulk50. Furthermore, the
practical channel thickness of a 2D TFT can be significantly less
than that of thin films of bulk semiconductors (see Fig. 2c),
affording a further advantage for flexible electronics. Thus, 2D
materials possess clear advantages, both in material thickness and
elastic limit, in comparison with traditional semiconductors for
flexible nanoelectronics, which demonstrate high electronic
performance as well as high flexibility and stretchability.

Contemporary flexible performance
Over the last decade of intense focus and investigation, graphene
material understanding and devices have advanced sufficiently to

substantiate its potential for analogue RF circuits4,13,32,37,39.
However, the limitation of graphene to realize a digital switch
owing to its lack of a bandgap caused great concern4.
Hearteningly, this concern has been laid to rest by the
emergence of semiconducting 2D crystals, namely TMDs and
phosphorene, which can offer a sizeable bandgap above 1 eV (refs
1,2,28). The heterogeneous cointegration of graphene and
semiconducting 2D crystals on the same flexible substrate can
collectively fulfil all primitive electronic functions at the thin-film
limit.

The earliest work on flexible graphene TFTs was reported by
Williams and coworkers51 in 2007, based on exfoliated graphene
and a lithography-free transfer printing method that avoids
chemical contamination, resulting in transistor mobilities of
10,000 cm2V� 1 s� 1 and 4,000 cm2V� 1 s� 1 for holes and
electrons, respectively, under ambient conditions. Their results
indicated that the outstanding transport properties of graphene
were indeed accessible on soft substrates, though large-area
synthesized sheets are required for practical applications. Since
then, synthesized graphene TFTs and circuits have made
remarkable progress, featuring state-of-the-art TFT mobilities of
B8,000 cm2V� 1 s� 1, enabled by advancements in: (i) large-area
chemical vapour deposited synthesis52, (ii) post-synthesis
transfer53 and (iii) transistor device structure32,38,54. Readers
interested in graphene synthesis will find the 2010 review article
by Chhowalla and coworkers55 an excellent resource. For large-
area graphene, monolayers grown on copper surfaces have
afforded outstanding material quality with post-transfer devices
showing electronic performance comparable to devices made
from exfoliated single-crystal flakes5,13.

Initial graphene TFTs featured a top-gate device structure.
Thereafter, it was realized that fabricating a top-gate stack directly
on graphene presented several challenges, owing to the complex
post-transfer gate dielectric integration and device lithography,
which often resulted in reduced yield and degraded perfor-
mance54. One approach to overcoming these challenges is to
fabricate the gate stack separately on another substrate with
subsequent transfer onto graphene for device completion. This
method has been successfully employed to demonstrate
outstanding graphene devices on rigid substrates56.
Alternatively, by embedding the gate in or on the flexible sheet
(Fig. 3a), based on a gate-first process32,54, many of the
fabrication challenges can be resolved, including: (i) seed-less
gate dielectric deposition, (ii) thickness scalability of gate
dielectric that is not limited by a seed layer, (iii) ease of
realizing an arbitrarily large number of gate fingers for increased
current drive with reduced gate resistance and noise, and

Table 1 | Room temperature solid-state properties of selected 2D crystalline materials.

2D Material Optical Electrical Mechanical Thermal References

Band

gap (eV)

Band

Type

Device Mobility

(cm2V� 1 s� 1)

vsat
(cm s� 1)

Young’s

Mod. (GPa)

Fracture strain

(%) Theor (Meas)

j (Wm� 1K� 1) CTE (10� 6K� 1)

Graphene 0 D 103–5� 104 1–5� 107 1,000 27–38 (25) 600–5,000 � 8 4–11

1L MoS2 1.8 D 10–130 4� 106 270 25–33 (23) 40 NA 1,19–21,27,92

Bulk MoS2 1.2 I 30–500 3� 106 240 NA 50 (||), 4 (>) 1.9 (||) 1,15,62,92–95

1L WSe2 1.7 D 140–250 4� 106 195 26–37 (NA) NA NA 1,16,84,96

Bulk WSe2 1.2 I 500 NA 75–100 NA 9.7 (||), 2 (>) 11 (||) 1,93,97–100

h-BN 5.9 D NA NA 220–880 24 (3-4) 250–360 (||)

2 (>)

� 2.7 22–25

Phosphorene 0.3–2* D 50–1,000 NA 35–165 24–32 10–35 (||) NA 28–30

h-BN, hexagonal boron nitride; NA, not available; 2D, two-dimensional.

All listed values should be considered estimates. In some cases, experimental or theoretical values are not available (NA).

*The precise value for the bandgap, which is a maximum for a monolayer is a matter of ongoing research.

The || symbol signifies the in-plane direction; > signifies the out of plane direction.
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(iv) simpler post-transfer device completion with two
lithographic steps. In addition, the embedded-gate process may
be more adaptable to large-area nanomanufacturing on rolls or
sheets using nanoimprint lithography because the entire
fabrication is done on a single soft substrate.

Graphene TFTs employing the embedded-gate structure with
a 500-nm channel length have achieved intrinsic fT B25GHz
at a modest lateral field of 1Vmm� 1 on plastics (Fig. 3b)32,
corresponding to fT LB12.5GHz-mm, the current state-of-the-art
for flexible graphene. This result compares favourably with
fTB53GHz at a similar channel length on crystalline SiC
substrate57 at a much higher field of B4.5 Vmm� 1. Increased
lateral fields on flexible substrates should in principle afford
commensurate increases in fT. However, the associated Joule
heating can lead to channel peak temperatures that exceed
the glass transition temperature (Tg) of soft substrates
(TgB350–400 �C for polyimide (PI), lower temperatures for
other plastic substrates), resulting in local deformation of the
plastic and ensuing device damage. This irreversible damage
limits investigation of the ultimate high-field performance of
high-mobility TFTs on plastic substrates, an issue that has only
recently been brought to light58. We shall discuss the thermal
management challenge in a later section.

An equally important frequency metric is the so-called
maximum frequency of oscillation, fmax. While fT can be viewed

as the upper frequency limit on the amplification of elementary
electronic signals (for example, current), fmax can be interpreted
as the upper frequency limit for achieving power gain. An
eloquent discussion of these two frequency metrics can be found
in the review article by Schwierz4. In general, simultaneously
achieving both high fT and fmax is essential for analogue and RF
electronics. In addition, fT and fmax should be (approximately)
greater than 3–5� the desired operating circuit frequency.
Figure 3c shows a graphene TFT with extrinsic fmaxB3.7GHz
(ref. 38). The true intrinsic fmax, commonly obtained by de-
embedding the measurement probe pad parasitics, is likely
higher. Promisingly, the high experimental fT and ongoing efforts
to improve fmax into the microwave regime by contact and gate
resistance reduction paints a positive prospect for graphene TFTs
to enable future smart flexible systems with wireless connectivity.
Experimental results on rigid (diamond-like carbon) substrates
supports this optimism, with reported fT and fmax of about 120
and 45GHz, respectively, an fT/fmax ratio B2.7 at a modest
channel length of B150 nm (ref. 14). Further improvements of
the frequency response have been achieved at sub-100-nm
channel lengths by using physically transferred gate stacks56.

Regarding mechanical flexibility, tensile strains of up to 8%
have been applied to high-frequency graphene TFTs32,59, which is
substantially larger than what has been achieved with thin-film
Si and III–V flexible transistors (Fig. 3c). Figure 3d details the
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electromechanical robustness of the mobility and contact
resistance of a graphene TFT down to a bending radius of
0.7mm. Even higher strains are expected to be possible since the
intrinsic breaking strain of graphene is 420% (see Table 1).

Furthermore, several encapsulation coatings have been
explored to improve the robustness of embedded-gate flexible
graphene TFTs immersed in water or subjected to harsh
conditions. The motivation for this type of investigation is that
future smart systems have to be designed from the bottom-up to
withstand common harsh conditions such as liquid spills and
drops. Lee et al.32 determined that a top-side bilayer coating of a
hydrophobic fluoropolymer and a chemically inert silicon nitride
diffusion barrier coupled with the low moisture absorption of PI
substrate can provide effective protection against continuous
immersion in water for up to 2 days (Fig. 3e).

By taking advantage of the unique ambipolar properties of
graphene, several workers have demonstrated reconfigurable
modulation circuits useful for wireless communication sys-
tems37,39. One particular example by Zhong and coworkers37 is
shown in Fig. 3f, in which a flexible all-graphene circuit on a
transparent plastic sheet was employed to achieve three
information modulation schemes: amplitude, phase and
frequency modulation that would otherwise take a more
complex circuit based on conventional semiconductors to realize.

Mind the gap. A primary limitation of graphene is the strength of
semiconducting TMDs; the sizeable bandgap exhibited by TMDs

affords near ideal electronic switches with on/off current ratios
typically exceeding seven orders of magnitude. Combined with
thickness scalability down to a monolayer that allows ideal
electrostatic switches, TMDs are highly attractive for flexible
digital electronics1,2,16. Early work on monolayer and multilayer
flexible TMD transistors, mostly exploring MoS2 TFTs, has been
encouraging17,18,60. Figure 4a shows the electronic performance
of a bendable n-type MoS2 TFT on PI with integrated high-k
dielectric in a back-gated device structure featuring on/off ratio
4107 and near ideal sub-threshold slope. The device low-field
carrier mobility and contact resistance are B30 cm2V� 1 s� 1

and o40KO-mm, respectively, extracted from the modified
Ghibaudo Y-function method, a technique that provides the
benefit of independent estimation of both parameters from two-
point transistor measurements61. The carrier mobilities of
contemporary flexible MoS2 TFTs are still several times lower
than that of comparable state-of-the-art devices on hard Si
substrates15. This might be related to several factors, including the
optimum film thickness and dielectric environment, in addition
to differences in material quality and residual stresses.

For optoelectronic devices, monolayer thick (B0.7 nm)
semiconducting TMDs are preferred, owing to their direct
bandgap character1. However, for transistor electronics, the
optimum number of layers for the usual device parameters of
interest, such as carrier mobility, current drive, contact resistance
and electrostatic control, remains unclear. In this context,
Appenzeller and coworkers15 investigated unpassivated MoS2
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back-gated devices on SiO2/Si and concluded that films
around 10 nm thickness offered the highest mobility
(B184 cm2V� 1 s� 1), owing to competing effects of interface
screening and interlayer resistance. In contrast, Fuhrer and
coworkers62 evaluated multilayer MoS2 TFTs with a polymer
back-gate dielectric surrounding and found that B47 nm thick
film yielded the highest mobility (B480 cm2V� 1 s� 1) in their
experimental study. Separate work by Javey and coworkers16

demonstrated that a single layer of WSe2 in a top-gated device
structure can yield higher mobility (B250 cm2V� 1 s� 1) than
reported for few-layer MoS2.

Though differences in effective mass is a factor in carrier
transport (W-TMDs have a lower effective mass than
Mo-TMDs), theoretical studies by Ma and Jena63 indicate
that charged impurities and the effect of the top and bottom
dielectric environment are prominent factors in contemporary
experimental devices. Indeed, comparing the results of
Appenzeller and Fuhrer suggests that is the case with TMD
thickness and dielectric environment significantly influencing
mobility and charge transport in fabricated TFTs. Intriguingly,
the polymer environment on the thick MoS2 device also afforded
almost symmetric ambipolar electron and hole transport
(Fig. 4b), a fairly rare occurrence for MoS2 transistors. The
inconclusive nature of experimental findings to date calls for
continued investigation of TMD TFTs to further elucidate on the
device physics and structures for accessing their maximum
electronic performance.

A topic related to 2D materials that has yet to be thoroughly
considered for the case of TMDs is the likely tradeoff between
carrier mobility and the minimum contact resistance due to their
opposite dependence on effective mass. On one hand, low
effective mass is desirable for fast transport (mp1/m�). However,
low effective mass also translates to low density of states, hence
increasing the minimum contact resistance (Rc;min / 1=

ffiffiffiffiffiffi

m�p
)64

due to the reduced availability of states for charge injection. To
the extent that this tradeoff holds true in scaled experimental
devices (that is, extrinsic factors do not dominate the transport or
contacts), then it might not be straightforward to directly
determine the most suitable semiconducting TMD simply based
on mobility alone. Additional studies are needed to shed light on
the conditions for optimizing charge injection and transport.

High-frequency transport in 2D semiconducting crystals is an
important performance metric for high-speed digital and RF
electronics. Theoretical estimates for the intrinsic fT can be
derived from classical semiconductor physics based on the
velocity (v) model, v ¼ mEDS

1þ mEDS=vsat
, (refs 27,36).

fT ¼ v

2pL
� 1

2p

mEDS

L

� �� 1

þ vsat

L

� �� 1
" #� 1

ð1Þ

where the former term within the bracket defines the low-field
limit and the latter term sets the high-field limit, governed by
velocity saturation (vsat). For low-power nanoelectronics,
constant-field (EDS) channel length scaling leads to a fTp1/L
dependence in both the low- and high-field limits. It is
worthwhile to note that equation (1) depends on two material
properties, low-field m and vsat, and can be universally applied to
the portfolio of semiconducting 2D crystals. To gauge the range
of intrinsic fT that can be expected from TMD TFTs, we examine
the case of a modest mobility (mB30 cm2V� 1 s� 1) for the low-
end low-field limit, and a theoretically estimated vsatB4� 106

cm s� 1 (ref. 27) for the high-end high-field limit. Under this
treatment, the expected fT performance range is shown in Fig. 4c,
essentially reflecting all mobility values above the low-end value
and all velocities below the high-end value. It follows that the two
limiting cases translate to two important performance values,

fTLB0.4GHz-mm and fTLB6GHz-mm, for the low-end and
high-end frequency performances, respectively. For channel
lengths in the 100–250 nm range, the high-field fT is in the
microwave band, which is sufficient to realize high-speed digital
and GHz circuits. Phosphorene offers mobilities as high as
1,000 cm2V� 1 s� 1 (Fig. 4d)28 which will lead to higher intrinsic
frequency performance compared to semiconducting TMDs.
Indeed, phosphorene might very well be the most promising of
the current portfolio of 2D semiconductors owing to its higher
mobility while affording a suitable band gap28,31.

However, to access the full high-frequency capability of 2D
semiconductors, the effects of contact resistance, charge impu-
rities and remote phonon scattering are detrimental device
parameters that need to be minimized.

Device mechanics. Regarding mechanical flexibility, the limited
studies on device mechanics have introduced an additional con-
straint relating to the question on the optimum thickness for
flexible nanoelectronics. Chang et al.17 evaluated the bendability
of back-gated MoS2 TFTs and found that the TFTs were robust
down to a few mm bending radius followed by device failure
initiated by two distinct thin-film mechanics58, namely: (i) cracks
in the dielectrics were responsible for off current degradation
(Fig. 4e) and (ii) buckle delamination resulted in on current
degradation as shown in Fig. 4f. The former can be mitigated by
patterning the dielectric into islands, as has been demonstrated
for graphene TFTs59 or using ion-gel gate dielectrics60.

Buckle delamination of MoS2 shows a quasi-linear dependence
of the buckling height on the film thickness58, which can be
attributed to the thickness dependence of the buckling driving
force. It follows that a monolayer TFT is preferred from a device
mechanics point of view, in contrast to the conclusion from
mobility considerations that indicate a few layers are optimum15,
thereby suggesting a tradeoff in the number of layers that afford
optimum device physics and device mechanics. This tradeoff
might be mitigated by using high-quality h-BN gate dielectric
where its atomic smoothness and high phonon energy are
expected to enhance monolayer TMD mobilities as is the case for
graphene3,9. Beyond bending studies, hydrostatic compressive
strain of MoS2 of about 15% has been recently reported to
produce a semiconducting to metallic transition, which can
enable new flexible or straintronic device or switch concepts65.

Atomic sandwiches. Heterostructures composed of different
atomic layers have been recently recognized as a new playground
for material designers where the desired composite properties
can be tailored and the whole can potentially be greater than the
sum of its parts1,2,9,66. Synthesizing or preparing 2D hetero-
structures is currently a major research activity with increasing
worldwide interest because of the seemingly unlimited range of
application prospects. 2D heterostructures can enable flexible and
transparent electronic, memory, optical, sensor and energy
conversion devices. Recent work on soft substrates has focused
on graphene-, h-BN- and TMD-layered heterostructures for
flexible device applications18,39,66. The simplest and perhaps the
most obvious heterostructure is a bilayer consisting of a stacked
channel and dielectric such as graphene and its ideal dielectric,
h-BN. The high phonon energies and thermal conductivity of
h-BN can result in mobility enhancement and improved
electronic performance3,9,13. For this reason, Lee et al.39

realized a flexible device based on a monolayer graphene—
multilayer h-BN heterostructure, which resulted in record 2D
TFT current densities on plastics (Fig. 5a).

The next evolutionary development is a trilayer heterostructure
that can draw from the individual properties of three different
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atomic nanomaterials, such as TMD semiconductors, h-BN
dielectrics and graphene electrodes. This offers the advantage of
an intrinsically transparent transistor that benefits from the low
absorption of the individual layers as demonstrated recently on
polyethylene naphthalate (PEN) substrates18 (Fig. 5b). Moreover,
the source and drain electrodes that are typically metals can be
replaced with single or few-layer graphene as contacts, which not
only enables a fully transparent TFT but also improves the overall
device flexibility and provides contact tunability of the graphene-
channel Schottky barrier resulting in reconfigurable n- or p-type
TFTs33.

For field-effect tunnelling transistors, more complex 2D
heterostructures are needed if one aims to realize the entire stack
with layered materials. Mishchenko and co-workers66 achieved
this feat by sequential exfoliation and transfer of five different
layers with graphite serving as the gate, h-BN as the dielectric,
few-layer WS2 electron tunnel barrier and monolayer graphene
contacts, as illustrated in Fig. 5c. As materials growth advances,
integration of layered sheets for heterostructure realization will
become more manufacturable and enable comprehensive studies
for flexible nanoelectronics.

Bendable challenges
In light of the outstanding potential for 2D atomic sheets for
advanced flexible nanoelectronics, it is prudent to balance this
perspective with a discussion of the pressing challenges that need
to be addressed before Si-like large-scale integration and
performance can be realized on soft substrates. Foremost amongst
these challenges is the need for research and development of
complementary n- and p-type 2D transistors. Complementary
transistor technology has been the foundation of modern low-
power integrated electronics for the past five decades.
Any practical vision for integrated flexible smart systems will
require complementary TFTs for essential circuits, including
bias circuitry, data converters, signal processing blocks and
microprocessors.

Much of the progress on semiconducting atomic sheets have so
far found that intrinsic 2D semiconductors typically exhibit either
n- or p-type device transport1,2,15,16,67, instead of ambipolar
behaviour expected in the absence of intentional doping68. A case
in point is MoS2 and MoSe2, which typically afford n-type
FETs, even when high work function contacts that should
theoretically favour hole transport are used1,12,67. Likewise, WSe2
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and phosphorene typically afford p-type FETs16,28,31. For TMDs,
this observation has been attributed to a variety of factors
including Fermi level pinning at the contacts15 and material
defects such as vacancies or interstitials that can result in n- or p-
type defect levels69. Also, one can expect contaminants and
adsorbates from the ambient and lithography process to influence
the device polarity, in addition to the observed effects of certain
dielectric interfaces (for example, polymeric or ion-gel
dielectrics), which are not yet well understood60,62. Clearly,
sustained research is warranted in terms of synthesizing high-
purity materials with negligible defects and continued studies in
understanding the contact—2D and dielectric—2D interfaces to
achieve the desired carrier transport.

It should be noted that conventional substitutional doping of
the 2D semiconductor channel is generally not envisioned as a
viable technique for controlling carrier type, owing to the high
likelihood of crystal damage and mobility reduction. Similar to
the case of semiconducting carbon nanotubes, contact engineer-
ing is regarded as a suitable method based on low or high work
function electrode interfaces to obtain n- and p-type FETs,
respectively12. Moreover, the gate electrode can be selected to
tune the threshold voltage. Alternatively, self-assembled
monolayers can be applied to polymer substrates to effectively
dope overlaying graphene layers70. Such doping can be spatially
controlled by patterning of the self-assembled monolayers.

Facing the heat barrier. Soft substrates cannot tolerate heat
compared with bulk semiconductors or ceramics that typically
have melting temperatures much higher than practical device
operating temperatures. For this reason, thermal management is a
more pronounced challenge for flexible electronics, particularly
for 2D channel materials in which high current densities needed
for the maximum speeds can lead to peak temperatures that are
comparable to or can exceed the glass transition temperature of
plastic substrates. In the case of graphene, channel hotspots from
Joule heating can exceed 300 �C (ref. 71), which results in plastic
substrate deformation and irreversible device damage58 (Fig. 6a).
Typical power density limits for bottom-gated GFETs are
B20 kW cm� 2 (0.2mW mm� 2) and B45 kWcm� 2 on PEN
and PI substrates, respectively. Overcoming the heat barrier
requires use of thermal management materials to prevent the
substrate from experiencing temperatures beyond its reliable
limit. It is significant to note that the overall RF performance (for
example, gain and cutoff frequencies) of flexible graphene TFTs is
ultimately limited by thermal constraints of the substrate rather
than by electronic characteristics of the device.

Unlike conventional electronics where the substrate is
thermally conductive and metallic heat sinks can be used, most

flexible substrates are poor thermal conductors, and there is very
limited research on strategies for thermal management. Lee
et al.58 proposed employing h-BN for thermal management,
because its anisotropic thermal properties (Table 1) appear to be
ideal for in-plane heat spreading to metal contacts and out-of-
plane heat isolation as depicted in Fig. 5d. The main question
regards the minimum h-BN thickness required to ensure that the
substrate stays within its reliable temperature range during high-
field TFT operation. In general, the minimum h-BN thickness will
depend on the maximum channel temperature, channel thermal
conductivity, channel—h-BN thermal interface resistance,
substrate Tg, radiation efficiency to the ambient and channel
length, with shorter channels providing increased assistance in
heat spreading to the contacts. An alternative material stack that
achieves a similar goal of anisotropic thermal management can be
constructed from a bilayer film with thermally conductive (for
example, BeO) and insulating thin layers facing the hot channel
and soft substrate, respectively. Ongoing research on thermal
management for flexible nanoelectronics is expected to provide
guidance for reliable device design and optimum operation.

Rolling forward
Large-scale nanomanufacturing of 2D thin films and devices on
soft substrates is an essential prerequisite for practical flexible
nanoelectronics. In this regard, much of the public and technical
imagination has focused on nanomanufacturing based on sheet or
roll-to-roll (R2R) processing72,73 for large-area or high-volume
nanotechnology that can be as ubiquitous as modern Si very
large-scale integration. Either nanomanufacturing method will be
rather complex, involving material growth, transfer and
lithography in a benign manner to minimize contamination
and defects (Fig. 6b). Defects present in 2D semiconductors
and dielectrics grown by chemical vapour deposition and
subsequently transferred onto process substrates encompass: (i)
growth-related crystal imperfections such as vacancies,
interstitials, grain boundaries and slip planes in multilayer films
and (ii) process related defects such as wrinkles, bubbles, tears
and chemical contamination.

For the manufacturing of graphene, large-area growth and R2R
processing has experienced substantial progress in the last few
years55,56, as depicted in Fig. 7a,b showing the state-of-the-art in
graphene R2R that has enabled 100m long transparent
conductive rolls73. Indeed, graphene has recently penetrated the
consumer market replacing indium tin oxide as the touch screen
panel in some smart phone products in China (Fig. 7c). The
current flexible technology maturity of 2D sheets is summarized
in Fig. 7e revealing several demonstrated advances of large-area
graphene in contrast to the emerging 2D nanomaterials which are
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Figure 6 | Device and material challenges. (a) Scanning electron microscope images of flexible back-gated graphene FET devices before and after

irreversible damage from PEN substrate deformation due to Joule heating at high electric fields. The heat-affected zone in the vicinity of the device channel

is highlighted by the dashed region for clarity. Measured power density limit is B0.2mW mm� 2 for a device with 500nm channel length, source-drain

spacing of 900nm and 6 nm thick high-k gate dielectric. (b) Examples of material defects commonly found in synthesized and transferred large-area

graphene sheets on soft substrates (courtesy of Dr Young Duck Kim). For flexible integrated nanoelectronic systems, minimizing materials defects is

essential for yield, cost, performance and reliability.
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still at a nascent stage. We expect that much of the progress in
graphene R2R development will benefit the nanomanufacturing
of other 2D atomic sheets with substantial advancement needed
in terms of: (i) understanding and minimizing crystal grain
boundaries, defects and doping1,2,69 and (ii) development of
large-area growth techniques and benign transfer integration onto
soft substrates2. It is worth noting that current graphene R2R
transfer is based on the complete etching of copper foils, a scheme
that may be unsustainable for cost, scale, or waste processing
reasons. Alternative transfer methods that show strong promise
include electrochemical and dry delamination, both of which
preserve the foil for reuse74,75. Figure 7d demonstrates recent
electrochemical delamination of graphene directly onto PI.

Direct growth or integration of assorted layers of 2D
semiconductors, dielectrics and conductors is of course the ideal
method for realizing high-performance integrated flexible smart
systems, which is a grand technology vision for 2D materials as
stated in Fig. 7e. We anticipate that flexible smart systems will
likely be commercial products over the next 10 years based on the
rapid progress so far, which is generally in-line with the time
frame of the 10-year EU Graphene-Flagship project (http://
graphene-flagship.eu/).

We note that carbon nanotube is another candidate nanoma-
terial that is under development for flexible nanotechnology.
Nanotube smart phone touch panels (produced by Tianjin’s
CNTouch (http://www.cntouch.com/) in China) have also recently
penetrated the consumer market in 2014 and directly competes
with graphene as an indium tin oxide replacement. Moreover,

flexible integrated systems based on nanotubes have been
demonstrated12,76,77; however, it is too early to determine how
nanotubes will fare with 2D films for commercial flexible systems.
At present, graphene has experienced a more rapid large-scale
development in transitioning into the touch panel market given
that nanotubes have been researched for longer. The challenge
facing nanotubes produced by large-scale manufacturing is the
need for both high tube density and carrier mobilities while
affording sufficiently large on/off ratios for high-performance
transistors12, a long-standing research topic.

We conclude by noting that research on flexible 2D atomic
sheets began only a few years ago, with the first papers on flexible
graphene, flexible TMD and phosphorene transistors in 2007,
2012 and 2014, respectively. In this time frame, the achieved
electronic performance has already substantially exceeded those
of organic, amorphous and metal oxide thin-film transistors
that have enjoyed decades of research activity. The remarkable
high mobility of few-layer phosphorene, which is superior to
that of TMDs and silicon TFTs could have a transformational
impact in enabling flexible high-performance electronics. The
recent graphene penetration of the consumer smart phone market
is a major milestone and could be a launch pad for the
development of large-scale active electronics. The path to further
commercialization is, of course, not exactly predictable. However,
sustained research effort that address the major challenges
will be indispensable in translating the potential of 2D nano-
materials into a practical high-performance flexible ubiquitous
nanotechnology.
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