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Abstract. The stochastic motion of a two-dimensional vesicle in linear shear flow is studied at finite
temperature. In the limit of small deformations from a circle, Langevin-type equations of motion are
derived, which are highly nonlinear due to the constraint of constant perimeter length. These equations
are solved in the low-temperature limit and using a mean-field approach, in which the length constraint is
satisfied only on average. The constraint imposes non-trivial correlations between the lowest deformation
modes at low temperature. We also simulate a vesicle in a hydrodynamic solvent by using the multi-particle
collision dynamics technique, both in the quasi-circular regime and for larger deformations, and compare
the stationary deformation correlation functions and the time autocorrelation functions with theoretical
predictions. Good agreement between theory and simulations is obtained.

PACS. 87.16.D- Membranes, bilayers, and vesicles – 87.15.Ya Fluctuations – 47.15.G- Low-Reynolds-
number (creeping) flows

1 Introduction

The dynamics of soft objects such as drops, capsules and
cells in flow represents a long-standing problem in sci-
ence and engineering, but has received increasing interest
recently, in particular due to its relevance to biological,
medicinal and microfluidic applications. This problem is
challenging from a theoretical point of view, because the
shape of these objects is not given a priori, but determined
dynamically from a balance of interfacial forces with fluid
stresses. Improved experimental methods have revealed in-
triguing new dynamical shape transitions due to the pres-
ence of shear flow. The phenomenology of the dynamical
behavior depends distinctively on the specific soft object
immersed in the flow with fluid bilayer vesicles and elastic
microcapsules as the most prominent classes.

Fluid bilayer vesicles assume a stationary tank-
treading shape in linear shear flow, if there is no viscosity
contrast between interior and exterior fluid [1]. If the inte-
rior fluid or the membrane becomes more viscous, a tran-
sition to a tumbling state can occur [2–7]. Tank-treading
was observed experimentally in infinite shear flow [8,
9] and for vesicles interacting with a rigid wall [10,11],
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where a dynamic lift occurs [12–15]. The tank-treading–
to–tumbling transition was observed for the first time con-
vincingly in experiment only very recently [16,17]. In ad-
dition to the tank-treading–to–tumbling transition, an os-
cillating motion was predicted theoretically [18] and ob-
served experimentally [16] and in simulations [19]. This
type of motion has alternatively been called vacillating-
breathing [18], swinging [19], or trembling [16,20]. The
theoretical description has been extended recently beyond
first order in the shear rate [19–21].

At finite temperature, stochastic fluctuations of the
membrane due to thermal motion affect the motion of the
object. Due to the dissipative nature of the hydrodynamic
interactions, vesicles in shear flow form a non-trivial model
system for studying non-equilibrium stochastic dynamics.
Since the effect of thermal noise on the transitions between
the different modes of motion in general is a challenging
task, in this paper we concentrate on the stochastic mo-
tion in the stationary tank-treading state. Our theoretical
approach is similar to that of reference [22], where stochas-
tic equations of motion were derived for quasi-spherical
vesicles.

Most numerical methods solving the equation of mo-
tion of vesicles or capsules [1,2] operate in the absence
of thermal forces. An exception, which naturally includes
thermal noise, is multi-particle collision dynamics (MPC),
also known as stochastic rotation dynamics (SRD) [23–26].
In this method, the fluid part is modeled on a particle



310 The European Physical Journal E

Fig. 1. Snapshot of the vesicle and the velocity field around
it, taken from simulation data for reduced area A∗ = 0.95 and
reduced shear rate χ ≃ 5.6 (see Eq. (28)). The disks represent
the beads forming the membrane and are plotted to scale.

rather than a continuum level. The microscopic equations
of motion for the effective fluid are chosen to be evalu-
ated efficiently on the one hand, and on the other hand
to lead to the correct macroscopic hydrodynamics. This
method has successfully been applied to flow around rigid
objects [27,28], polymers [29,30] and viscous vesicles [5,6,
31,19]. We employ the MPC simulation method to com-
pare our theoretical predictions of correlation functions,
inclination angles, and tank-treading frequencies with sim-
ulation data of vesicles. In order to obtain good statistics,
we focus here on two-dimensional (2d) vesicles with a lin-
ear boundary.

The paper is organized as follows: After formulating
the problem in Section 2, we outline the derivation of
nonlinear stochastic equations of motion for quasi-circular
vesicles in Section 3. These are solved approximately using
a mean-field approach and a low-temperature expansion
in Section 4. We also present the 2d version of the deter-
ministic Keller-Skalak theory [32] in Section 5, which takes
into account the influence of the vesicle shape on the flow.
The simulation method used is discussed in Section 6. Fi-
nally we compare the calculations with simulation data in
Section 7 and discuss our results. The detailed derivation
of the equations of motion is given in the Appendix.

2 Problem formulation

We consider a model 2d vesicle immersed in a fluid of
viscosity ηout with a 1d membrane boundary surround-
ing a fluid of viscosity ηin and at finite temperature T . A
snapshot of a vesicle together with the fluid velocity field
taken from simulation data (cf. Sect. 6) is shown in Fig-
ure 1. Due to the incompressibility of the membrane and
of the enclosed fluid, the area A0 and the length L0 of the

membrane are constants. The membrane resists deforma-
tion with a bending rigidity κ, which is defined rigorously
below in Section 2.1. The fixed area defines a length scale

R0 ≡
√

A0

π
, (1)

which can be used to define a number of dimensionless
quantities. In the following, we use the excess length

∆ ≡ L0

R0
− 2π (2)

and the dimensionless viscosity contrast

λ ≡ ηin

ηout
. (3)

Alternatively one can derive a length R∗ ≡ L0/(2π) from
the length constraint, and use it to define a reduced area
A∗ ≡ A0/(πR∗2). The reduced area is connected to the
excess length by

A∗ =

(
1 +

∆

2π

)−2

. (4)

In a quiescent fluid, thermal stochastic forces acting on
the membrane lead to a fluctuating shape, where the prob-
ability of any specific deformation can be calculated using
the Boltzmann weight corresponding to the deformation
energy H[r]. If an external flow field v

∞ is switched on,
the system ceases to be in equilibrium, and the statistical
weight of a deformation cannot be calculated a priory us-
ing Boltzmann weights. We first derive the force balance
governing the motion of a vesicle in Stokes flow, before we
simplify the equations of motion in the limit of small de-
formations from a circular shape. Thermal noise is added
by assuming equilibrium statistics.

2.1 Constitutive equation of the membrane

We employ conventions of differential geometry following
reference [33]. The shape of the vesicle is given by the
shape function r(s), where 0 ≤ s ≤ L denotes the arc
length. The tangent vector t(s) ≡ dr(s)/ds is of unit
length. The unit normal vector n(s) is defined to point
to the outside of the vesicle, and the orientation is chosen
such that the pair (n, t) forms a right-handed system. The
curvature k(s) is defined via the relation

dt(s)/ds = −k(s)n(s). (5)

The 2d analog of the bending energy of a certain mem-
brane deformation is given by the Helfrich term [34]

Hκ[r] ≡ κ

2

∫ L

0

ds k(s)2, (6)

which corresponds also to the bending energy of a semi-
flexible polymer [35]. Note that for 3d vesicles, a sponta-
neous curvature C0 can appear in the bending energy for
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intrinsically asymmetric monolayers or asymmetric liquid
environments. In 2d vesicles, we can ignore the sponta-
neous curvature, since it shifts the bending energy only
by a topological constant, much like the Gaussian curva-
ture contribution to the curvature energy can be ignored
in 3d.

All deformations of the vesicle must preserve the length
L. In addition, the fluid membrane is locally incompress-
ible. This is ensured by introducing the tension σ(s) as a
Lagrange parameter. The total energy thus reads

H[r] = Hκ[r] +

∫ L

0

ds σ(s). (7)

From the Euler-Lagrange equations we can deduce the
force acting on the membrane

f
el = −δH[r]

δr
= tσ′ + n

(κ

2
k3 + κk′′ − kσ

)
. (8)

Here the prime denotes a derivative with respect to the
arc length s.

2.2 Stokes flow

The elastic forces given by equation (8) are balanced by
hydrodynamic forces mediated by the surrounding fluid.
The motion of the fluid and the vesicle is only considered
on time scales on which the fluid is incompressible, i.e.

∇ · v = 0. (9)

The length and time scales in typical experiments and sim-
ulations is such that the Reynolds number is very small.
We only consider fluctuations on time scales on which the
inertial term in the Navier-Stokes equation can be ne-
glected. Although we could start from the steady stochas-
tic Stokes equation [36], we first consider the deterministic
Stokes equation in the absence of thermal noise.

−∇p + ηα∆v = 0. (10)

Here α ∈ {in, out} indicates the inner or outer fluid. Af-
ter deriving the deterministic equations of motion, we add
stochastic noise heuristically by adding a noise term. We
assume that noise obeys the same statistics as in equi-
librium. Comparison with simulation data will show that
this assumption is justified. At the vesicle membrane we
must have force balance between the hydrodynamic force
and the elastic forces

f
el + [Tout − Tin] · n = 0. (11)

Here, T denotes the deterministic hydrodynamic stress
tensor with Cartesian components

Tik ≡ −pδik + ηα[∂ivk + ∂kvi]. (12)

Far away from the vesicle the velocity field assumes the
externally given values

v(x) → v
∞(x), |x| → ∞, (13)

which is ensured by separating an induced part from the
velocity field

v ≡ v
∞ + v

ind, (14)

and requiring that the induced part drops to zero far away
from the vesicle. Assuming no-slip boundary conditions,
the vesicle is advected by the flow, which implies

∂tr(s, t) = v(r(s, t), t). (15)

Here the dynamics still depends implicitly on σ(s), which
has to be chosen such that s remains the arc length, en-
suring incompressibility. Equations (8, 10–15) determine
the stochastic motion of the vesicle.

3 Quasi-circular approximation

These equations can be simplified considerably if we re-
strict ourselves to vesicle shapes close to the circle. We
parameterize the shapes as a function of the polar angle φ

r(φ) = R0er(φ)(1 + u(φ)), (16)

and consider small distortions u. The deformation ampli-
tude u(φ) is a real periodic function of φ and can therefore
be expanded into complex Fourier modes

u(φ) ≡
∞∑

m=−∞
um

exp(imφ)√
2π

. (17)

The constraints and equations of motion are now ex-
panded in terms of the amplitudes um. Since the technical
details are rather intricate, we summarize the physically
important aspects here and refer the reader to the Ap-
pendix for the details.

Area conservation is used to eliminate the u0 mode
from the expansion. The excess length then reads

∆ =
1

2

∑

m �=0

(
m2 − 1

)
|um|2. (18)

The global length constraint (18) is added with a La-
grangian multiplier

Σ ≡ κσ/R2
0 (19)

to the quadratic part of the bending energy. This leads to
a quadratic expression for the total energy (7)

H =
κ

2R0

∑

m �=0

Em(σ)|um|2. (20)

with

Em(σ) ≡ (m + 1)(m − 1)[m2 − 3/2 + σ]. (21)

The bending moments and the homogeneous tension con-
tribute a purely normal part of the elastic forces

fel,κ
m = − κ

R2
0

Em(σ)um, (22)
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while the position-dependent part of the tension gives rise
to both normal and tangential forces, which are obtained
from equation (8).

We now calculate the resulting velocity field of the
fluid. Technically, this is achieved by expanding the flow
field in terms of fundamental solutions of Stokes’ equa-
tions (10) and imposing the force balance (11) at the cir-
cular membrane. In this expansion, we exclude constant
external flow to avoid the Stokes paradox [37]: For viscous
2d flow around a disc no solution of the Stokes equations
exist which satisfies the boundary conditions on the disc
surface and at infinity. Since the effect of the disc extends
to very large distances, where the Reynolds number be-
comes of the order of unity, inertial effects can no longer
be neglected. While this paradox can be resolved using
matched asymptotic expansions to the far field, this is
outside the scope of the present treatment. The position-
dependent part of the tension is determined from the local
incompressibility condition, while the homogeneous ten-
sion σ must be determined self-consistently to preserve
the global length constraint (18). The details of the cal-
culations are given in the Appendix.

In a quiescent fluid the flow induced by the elastic
forces at the membrane in Fourier space reads

vm = (1/ηout)Γmfel
m , (23)

where

Γm ≡ |m|
2(λ + 1)(m2 − 1)

(24)

is the mobility. The external flow also contributes to the
flow field, both directly and via hydrodynamic forces. Fi-
nally, the membrane is advected with the flow. The result-
ing advection equation reads (cf. Ref. [22])

∂tum = iΩmum−(κ/ηoutR
3
0)ΓmEm(σ)um+DmΦ∞

m , (25)

with

Dm ≡ 2m

λ + 1
. (26)

Here, Φ∞
m is the expansion coefficient of the external flow

into fundamental modes and is given for linear shear flow

v
∞ ≡ γ̇yex (27)

by equation (A.13). In the following, we will also use the
dimensionless shear rate

χ ≡ γ̇
ηoutR

3
0

κ
(28)

and vorticity

Ω̃ ≡ Ω
ηoutR

3
0

κ
= −χ

2
. (29)

At non-zero temperature, thermal noise becomes im-
portant. The force balance must then be supplemented by
thermal forces. The deterministic equation of motion (25)
then becomes a Langevin equation

∂tum = iΩmum − (κ/ηoutR
3
0)ΓmEm(σ)um +DmΦ∞

m + ζm.
(30)

The form of the thermal noise ζm can in principle be ob-
tained directly from the stochastic hydrodynamic equa-
tions. It is much easier, however, to determine ζm from
the Einstein relation, which must be valid in equilibrium.
We assume that the equilibrium noise is valid also for non-
vanishing shear flow and choose

〈ζm(t)ζm′(t′)〉 = 2(kBTΓm/ηoutR
3
0)δm,−m′δ(t − t′). (31)

Equation (30) is the correct stochastic equation of mo-
tion for the vesicle deformation modes um. The tension σ
is at each instance determined such that the length con-
straint (18) is fulfilled. Taking the time derivative of equa-
tion (18) and using equation (30), we can solve for the
tension

σ =

⎡

⎣
∑

m �=0

(m2 − 1)2Γm|um|2
⎤

⎦
−1

∑

m �=0

(m2 − 1)
[
iΩm|um|2

− κ

ηoutR3
0

ΓmEm(0)|um|2+Dmu∗
mΦ∞

m +u∗
mζm

]
. (32)

When this expression is inserted back into equation (30),
the resulting noise term becomes dependent on the in-
stantaneous values of the um. While such non-linear noise
terms hold interesting physics, we first concentrate on
tractable approximate solutions to the stochastic equation
of motion.

4 Approximate solutions

4.1 Mean-field treatment

At finite temperature, higher-order modes are excited by
stochastic thermal forces and therefore cannot be ne-
glected. The full non-linear set of Langevin equations (30)
in combination with the expression (32) for σ is too com-
plex to admit a general solution. We can, however, gain
further insight in the tank-treading regime using a mean-
field description. We replace the fluctuating tension σ in
equation (30) by a constant, which has to be determined
self-consistently from the length constraint. The Langevin
equations (30) then become linear and decouple. In the
stationary state, only the m = 2 deformations have a fi-
nite mean,

〈u2〉 =
ηoutR

3
0

κ

D2Φ
∞
2

Γ2E2(σ) + iχ
. (33)

The terms in this equation can be interpreted physically
as follows. The elongational part of the external flow,
proportional to Φ∞

2 , stretches the vesicle. The combina-
tion of bending moments and tensile force, given by the
E2(σ) term, counteracts this stretching. Competing with
the elastic force is the advection term iχ arising from the
rotational part of the external flow. For a given amplitude
|〈u2〉| the tension must scale like E2(σ) ∼ (−5/2+σ) ∼ χ.
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On average, the vesicle is elliptical. As a measure of
the deformation from the circle we define the Taylor de-
formation parameter

D ≡ L − S

L + S
, (34)

where L and S denote the long and short axis of the ellipse.
In the mean-field treatment we have

D =
2

3

χ

[(5/2 + σ)2 + 9χ2(1 + λ)2]
1/2

. (35)

The inclination angle is obtained from equation (33)

Θ =
1

2
arctan

5/2 + σ

χ(1 + λ)
. (36)

The deviations from the mean

δum ≡ um − 〈um〉 (37)

obey the homogeneous Langevin equation

∂tδum = imΩδum− (κ/ηoutR
3
0)ΓmEm(σ)δum +ζm. (38)

The stationary noise correlations are best evaluated using
a time Fourier transform

δ̂u(ω) ≡
∫

dt exp(−iωt)δu(t), (39)

leading to

iωδ̂um = −imΩδ̂um − (κ/ηoutR
3
0)ΓmEm(σ)δ̂um + ζ̂m.

(40)

We can solve for δ̂um(ω) and obtain the correlations

〈δ̂um(ω)δ̂u−m(−ω)〉 =
2kBTΓm/ηoutR

2
0

(ω + mΩ)2 +
[

κΓmEm

ηoutR3

0

]2 . (41)

We have left the σ-dependence of Em implicit for clarity.
The time correlation function becomes (∆t > 0)

〈δum(0)δu−m(∆t)〉 =∫
dω

2π
exp(iω∆t)〈δ̂um(ω)δ̂u−m(−ω)〉 =

kBTR0

κEm
exp

[
−

(
κΓmEm

ηoutR3
0

+ imΩ

)
∆t

]
, (42)

with the stationary equal-time correlations

〈δum(t)δu−m(t)〉 =
kBTR0

κEm(σ)
. (43)

The amplitudes um with different m are uncorrelated at
all times. The equal-time correlations are identical with
the equilibrium spectrum. However, the tension σ is de-
termined by the non-equilibrium conditions.

The fluctuating um contribute to the excess length ac-
cording to equation (18). Although the length constraint

cannot be obeyed exactly with a constant tension, we de-
termine σ such that the constraint (18) is fulfilled on av-
erage. The total excess length has a systematic and a fluc-
tuating part

∆ = ∆̄(σ) +
∑

m≥2

∆m(σ), (44)

with

∆̄(σ) ≡
∑

m>0

(m2 − 1)
D2

m|Φ∞
m |2

Γ 2
mEm(σ)2 + m2Ω̃2

=
3π

2

χ2

(5/2 + σ)2 + χ2(1 + λ)2

(45)

and

∆m(σ) ≡ (m2 − 1)〈|δum|2〉 =
kBTR0

κ(m2 − 3/2 + σ)
. (46)

Thus σ is determined implicitly by the solution of equa-
tion (44). For future reference, we note that the contribu-
tion of the fluctuating parts to the excess length can be
determined analytically to be

∑

m≥2

∆m(σ) =
kBTR0

κ
√

2 (4σ2 − 8σ + 3)

[√
2(7 − 6σ)

+π
√

3 − 2σ(2σ − 1) cot
(
π
√

3/2 − σ
)]

.

(47)

While this expression is exact, its behavior as a function
of σ is not obvious (for example, the “singularities” at
σ = 1/2 and σ = 3/2 are only apparent). We therefore
give the leading asymptotic behavior

∑

m≥2

∆m(σ)≈ kBTR0

κ

{
1/(σ + 5/2)+25/48, σ → −5/2,

π(4σ)−1/2, σ → ∞.

(48)
We can thus identify two limiting cases. In the fluctuation-
dominated regime near the tumbling instability, σ →
−5/2, the amplitude of the fluctuations with m = 2 be-
come very large, while the higher-order modes store a fixed
excess length. In the tension-dominated case (σ → ∞), the
excess length stored in each mode is independent of the
mode number up to m ∼ √

σ, where the bending forces
become larger than the tensile forces.

4.2 Zero temperature

At large shear rates, nearly the entire excess length is
stored in the systematic part ∆̄. As a crossover shear rate
χc, we can define the shear rate at which the two contri-
butions in condition (44) become equal

∆̄(σ, χc) ≡
∑

m≥2

∆m(σ) =
∆

2
. (49)
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Fig. 2. Critical shear rate χc versus reduced temperature
kBTR0/κ. Data are obtained numerically from equation (49)
for ∆ ≃ 0.163 and λ = 1 (straight line). The dashed lines vi-
sualizes the asymptotic scaling (50) for low and high values
of the temperature, respectively. A significant portion of the
excess length ∆ is stored in the thermally fluctuating higher
order modes m > 2 for χ < χc.

This set of equations must be solved numerically for each
∆. In the limit χ ≫ χc we can ignore the thermal forces.
In this case, the equation of motion (30) becomes the de-
terministic equation (25), and the tension is determined
by equation (32) with ζm = 0. The scaling relations (48)
imply

χc ≈ 1√
3π − ∆(1 + λ)2

×
{

2∆−1/2 (kBTR0/κ) , kBTR0

κ∆ ≪ 1,

π2∆−3/2 (kBTR0/κ)
2
, kBTR0

κ∆ ≫ 1.
(50)

A plot of χc as a function of reduced temperature together
with the asymptotic scaling laws is shown in Figure 2.

We can easily obtain the stationary state from ∂tu
0
m =

0, i.e.

u0
m =

ηoutR
3
0

κ

Dm

ΓmEm(σ0) + imΩ̃
Φ∞

m . (51)

The homogeneous tension σ0 is determined from the
length constraint (18). In the case of constant linear shear
flow, only the m = ±2 components are non-zero and
are equal in magnitude. The length constraint thus reads
|u±2| = (∆/3)1/2, or

∆ = 3
D2

2

Γ 2
2 E2

2 + 4Ω2

2πχ2

64

=
3π

2(1 + λ)2
χ2

(5/2 + σ0)2/(9(1 + λ))2 + χ2
.

(52)

The homogeneous tension in the stationary state is thus
given by

σ0 = −5/2 + 3χ(1 + λ)

[
3π

2∆(1 + λ)2
− 1

]1/2

. (53)

We see that in the large shear rate limit the tension grows
as σ ∼ χ to counteract the stretching of the elongational
flow. The stationary solution becomes unstable when E2

vanishes, which happens at a critical viscosity ratio

λc =

√
3π

2∆
− 1. (54)

This corresponds to a tank-treading to tumbling transi-
tion, as can be seen when we allow for time-dependent σ0:
In linear shear flow, only the m = 2 modes are excited.
In the long time limit we can therefore assume that all
other modes have decayed. In analogy with the 3d treat-
ment [18], we can write u2 in polar form

u2 ≡ (∆/3)1/2 exp(−2iΘ), (55)

where Θ is the inclination angle of the vesicle with respect
to the shear direction. Taking the real and imaginary part
of equation (25) gives the familiar Jeffery’s equation [38]

Θ̇ = γ̇

[
−1

2
+

1

2

√
3π

(λ + 1)
√

2∆
cos(2Θ)

]
. (56)

For λ < λc, equation (56) admits two stationary solutions,
of which only the positive is linearly stable

Θ0 ≡ 1

2
arccos

(
(λ + 1)22∆

3π

)1/2

. (57)

This corresponds to stationary tank-treading motion,
where the tank-treading frequency at zeroth order is given
by the external flow

ωQC
tt ≡ γ̇

2
. (58)

For λ > λc, the right-hand side of equation (56) is always
negative, and the vesicle starts to tumble. In two dimen-
sions, no analogy to a swinging motion (cf. Refs. [18,16,
19,20]) exists, since the volume and length constraint al-
ready uniquely determine the shape of an ellipse.

4.3 First-order correction to the large shear-rate limit

In the mean-field approach the tension σ is assumed con-
stant and all modes fluctuate independently with ampli-
tudes given by equation (43). In this picture, the length
constraint is not fulfilled rigorously but only on average.
For strictly enforced length constraint the tension must
fluctuate according to equation (32), which induces cor-
relations between the deformation amplitudes. While this
general effect is worth considering in its own right, here we
concentrate on the much simpler large shear rate (or low
temperature) limit as a perturbation of the deterministic
solution.

At T = 0, the whole excess length ∆ is stored in the
|m| = 2 mode. Perturbing the modulus of the amplitude
|u2| alters the excess length ∆ to first order and is pro-
hibited by the constraint (2). Perturbing the other modes
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alters ∆ only to second order. At low temperature, we can
therefore assume the polar decomposition (55). Taking the
real and imaginary part of the equation of motion (30),
we arrive at a Langevin equation for the inclination angle

Θ̇ = γ̇

[
−1

2
+

1

2

√
3π

(λ + 1)
√

2∆
cos(2Θ)

]
+ ξ, (59)

where the noise term

ξ ≡
√

3

4∆
Im[ζ2 exp(2iΘ)] (60)

is Gaussian and delta-correlated

〈ξ(t)ξ(0)〉 =
3

4∆
Γ2kBTδ(t). (61)

In the stationary regime Θ fluctuates around the mean
value

Θ ≡ Θ0 + ∆Θ, (62)

where Θ0 is given by equation (57). For small ∆Θ we can
expand equation (59) to obtain

∆̇Θ = −γ̇

√
2π

3∆

1

λ + 1
sin(2Θ0)∆Θ + ξ. (63)

This implies the stationary correlations

〈∆Θ2〉= R0kBT

κχ∆1/2

1

8

[
3π

2
− (λ + 1)2∆

]−1/2

=
3kBTR0

8κ∆E2(σ0)
,

(64)
where we have used equation (57). For small ∆ we read
off

〈∆Θ2〉1/2 ≈
(

1

129π

)1/4 (
κχ∆1/2

R0kBT

)−1/2

≈ 0.20

(
κχ∆1/2

R0kBT

)−1/2

. (65)

5 Keller-Skalak theory

In order to compare with numerical simulation data, we
present a second, deterministic theoretical description of
the motion of vesicles, which takes into account the in-
fluence of the vesicle shape on the flow. In the theory of
Keller and Skalak [32], a three-dimensional vesicle is as-
sumed to have a fixed ellipsoidal shape

(x1/a1)
2 + (x2/a2)

2 + (x3/a3)
2 = 1, (66)

where the ai are the semi-axes of the ellipsoid, and the co-
ordinate axes xi point along its principal directions. The
x1 and x2 axes, with a1 > a2, are chosen to lie in the xy
plane and are rotated through an angle Θ with respect
to the x and y axes. The components of the undisturbed
shear flow are (γ̇y, 0, 0). The velocity field at the mem-
brane is assumed to be

v = ωKS
tt (−(a1/a2)x2, (a2/a1)x1, 0) , (67)

where ωKS
tt is a parameter having the dimensions of a fre-

quency. The energy supplied by the external flow has to
be balanced with the energy dissipated inside the vesicle.
The motion of the vesicle derived from this energy balance
reads [32]

dΘ

dt
= − γ̇

2
+ γ̇B cos(2Θ), (68)

with

B =
1

1 + r2
2

{
(1 − r2

2)
2[z2(1 − λ) − 2] − 8r2

2

2(1 − r2
2)[z2(1 − λ) − 2]

}
(69)

and

ωKS
tt = 2γ̇

r2(1 + r2
2)

(1 − r2
2)

2[z2(1 − λ) − 2] − 8r2
2

. (70)

The factors appearing in equations (68–70) are given by

r2 ≡ a2/a1, r3 ≡ a3/a1, z2 ≡ g′3(α
2
1 + α2

2),

α1 ≡ r
−1/3
2 r

−1/3
3 , α2 ≡ r

2/3
2 r

−1/3
3 , α3 ≡ r

−1/3
2 r

2/3
3 ,

(71)
and

g′3 ≡
∫ ∞

0

(α2
1 + s)−3/2(α2

2 + s)−3/2(α2
3 + s)−1/2ds. (72)

For B > 1/2, we obtain a steady tank-treading angle

Θ =
1

2
arccos

(
1

2B

)
. (73)

We calculate the inclination angle Θ and the tank-trading
frequency ωKS

tt by adapting the Keller-Skalak theory to
two dimensions. We numerically solve equations (68–70)
in the limit r3 → +∞ keeping r2 finite, which formally
corresponds to an ellipsoid with an infinite semi-axis in
the z-direction.

6 Simulation method

A 2d vesicle model system was simulated using the
multi-particle collision (MPC) dynamics [23,5,26]. In this
method the fluid is not treated on a continuum level, but
rather by a stochastic dynamics of effective fluid particles.

6.1 Solvent dynamics

We consider a two-dimensional system made of Ns identi-
cal particles of mass ms whose positions ri(t) and veloc-
ities vi(t), i = 1, 2, . . . , Ns, are continuous variables. The
time is discretized in intervals ∆ts. The evolution occurs
in two consecutive steps, streaming and collision. In the
streaming step, particles move ballistically,

ri(t + ∆ts) = ri(t) + vi(t)∆ts. (74)

For the collision step, the system is divided into the cells
of a regular square lattice of mesh size a. Each of these
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cells is the interaction area where an instantaneous multi-
particle collision occurs, which changes particles velocities
as [23]

vi(t + ∆ts) = u(t) + Ω[vi(t) − u(t)], (75)

where u is the average velocity of the colliding particles in
a cell. The velocity field u is considered to be the macro-
scopic velocity of the fluid and it is assumed to have the
coordinates of the center of the cell. Ω denotes a stochastic
rotation matrix which rotates, with equal probability, by
an angle of either +α or −α. The collisions are performed
simultaneously on all the particles in a cell with the same
rotation Ω, but Ω may differ from cell to cell. The local
momentum and kinetic energy are conserved under this
dynamics. The kinetic energy of particles fixes the tem-
perature kBT , where kB is the Boltzmann constant, via
the equipartition theorem.

It was shown in reference [39] that a proper description
of hydrodynamics in MPC requires large Schimdt num-
bers. This can be accomplished by choosing a mean-free
path l = ∆ts

√
kBT/ms, which is small compared to the

cell size a. It is known that a value of l much smaller than
a breaks the Galilean invariance [40] and that this problem
can be solved by applying a random shift procedure [40].
The viscosity of the solvent fluid is [25,41]

η =

[
l

2a

[
n2

c

(nc − 1 + e−nc) sin2 α
− nc

]

+
a

12l
(nc − 1 + e−nc)(1 − cos α)

]√
mskBT

a
, (76)

with particle density ρ = ncms/a2 and number nc of par-
ticles per cell.

In order to enforce shear flow, we place our system
of size Lx × Ly between two horizontal walls. The upper
and the lower walls slide along the x-direction with ve-
locities vwall = (vwall, 0) and −vwall, respectively, with
vwall > 0. Periodic boundary conditions are used along
the x-direction. Along the y-direction, we use a modified
bounce-back boundary condition which consists in requir-
ing that particles hitting the walls change their veloci-
ties according to vi → 2vwall − vi. Together with vir-
tual particles in partly filled cells at walls, this describes
no-slip boundary conditions very well [27,28]. A linear
flow profile (ux, uy) = (γ̇y, 0) is obtained with shear rate
γ̇ = 2vwall/Ly, with the walls placed at y = ±Ly/2. The
relative velocities in the collision cells are rescaled after
each time step ∆ts in order to keep the temperature con-
stant in the (driven) system.

6.2 Membrane model

The vesicle membrane is modeled by connecting Np beads
of mass mp successively with bonds into a closed ring.
Neighboring beads along the closed chain are connected
to each other with the harmonic potential

Ubond ≡ kh

2

Np∑

i=1

(|ri − ri−1| − r0)
2

r2
0

, (77)

where kh is a spring constant, ri is the position vector
of the i-th bead, and r0 is the average bond length. The
bending energy (A.4) is modeled on the discrete level by
a bending potential

Ubend ≡ κ

r0

Np∑

i=1

(1 − cos βi), (78)

where βi is the angle between successive bonds. The fluid
modeled with the MPC method is compressible. To en-
force the area constraint in the presence of thermal and
hydrodynamic forces, we add a constraint potential

Uarea ≡ kA

2

(A − A0)
2

r4
0

. (79)

6.3 Coupling of membrane and solvent dynamics

The membrane-solvent interaction must prevent solvent
particles from crossing the membrane and enforce no-slip
boundary conditions on the membrane. Therefore we place
hard disks centered on the membrane beads. The disk ra-
dius rp is set in order to ensure overlapping of disks and
a complete coverage of the membrane. The exchange of
momentum between the solvent particles and the mem-
brane occurs in the following way. After updating beads
positions and velocities via molecular dynamics (MD), we
freely stream all the solvent particles. We then execute
bounce-back scattering between solvent and membrane
disks only when a solvent particle j and a disk i satisfy
the conditions |ri − rj | < rp and (ri − rj) · (vi − vj) < 0.
This means that if the two collision partners i and j over-
lap and move towards each other, then their velocities are
updated according to

vi → vi − 2
ms

ms + mp
(vi − vj),

vj → vj + 2
mp

ms + mp
(vi − vj).

(80)

To avoid that a solvent particle moves too far inside a
disk, we require that l ≪ rp. The collision step (75) is
performed only on those solvent particles which did not
scatter. If the collision step were executed also on the scat-
tered solvent particles, they might continue to collide with
the same disk in the next time step. The fluids in the in-
terior and exterior of the vesicle are taken to be the same,
in particular to have the same viscosity.

A chain of disks of finite radius rp has an inner length
available to the solvent particles which is smaller than the
outer length. Since the solvent has the same density inside
and outside, the outer fluid exerts a compression force on
the membrane until the inner density increases so that
an expansion force compensates the compression one. It
is straightforward to show [6] that the density increase is
∆ρ/ρ = 2rp/R∗ where 2rp is the effective membrane thick-
ness. This requires that R0 is large enough compared to
the disk radius rp to reduce such compression effects. The
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number of solvent particles placed inside the vesicle fixes
an average area. However, since the MPC fluid is com-
pressible, shear and bending rigidity effects may change
the area A. For this reason the constraint potential (79)
is introduced to keep the area constant.

6.4 Parameters

In experiments with vesicles in shear flow, inertial ef-
fects are negligible since the Reynolds number Re ≡
γ̇ρR∗2/ηout is very small. We express our results using the
reduced area A∗ = A0/πR∗2, defined in equation (4), and
the reduced shear rate χ = γ̇ηoutR

3
0/κ, see equation (28),

as relevant dimensionless quantities.
We set α = π/4, nc = 10, and l = 0.008a. This implies

a viscosity ηout = ηin ≃ 28.0
√

mskBT/a. We use Lx =
150a, Ly = 90a, R∗ = 15.3a, and vwall such that Re <
0.1 for all the cases we considered with 0.5 ≤ χ ≤ 10.0.
Finally, we set mp = 10ms, Np = 96, ∆tp = ∆ts/20, rp =
0.9a, r0 = a, κ = 40kBTa, kA = 0.5kBT , kh = 4000kBT .
The area A0 is chosen in such a way that 0.7 ≤ A∗ ≤ 0.95.
With the choices for kA and kh the area and the length
of the vesicle are kept constant with a deviation of less
than 1% of the target values for all simulated systems. A
snapshot of a simulated vesicle and the resulting velocity
field for the reduced area A∗ = 0.95 and reduced shear
rate χ = 5.6 is shown in Figure 1.

7 Results and discussion

Comparing analytic predictions with simulation data is
facilitated by using real Fourier coefficients. In this section
we therefore employ the real Fourier series

u(φ) ≡ a0 +

∞∑

m=1

am cos(mφ) +

∞∑

m=1

bm sin(mφ), (81)

rather than the complex expansion (17). The real Fourier
coefficients am, bm are connected with the complex Fourier
coefficients um via (m �= 0)

um =

√
π

2
(am − ibm) . (82)

The corresponding correlations now read

〈δam(0)δam(t)〉 = 〈bm(0)bm(t)〉 =

kBTR0

πκEm
exp

(
−κΓmEm

ηoutR3
0

t

)
cos(mγ̇t/2),

〈δam(0)δbm(t)〉 = −〈bm(0)am(t)〉 =

kBTR0

πκEm
exp

(
−κΓmEm

ηoutR3
0

t

)
sin(mγ̇t/2)

(83)

and

〈δam(0)δam(0)〉 = 〈δbm(0)δbm(0)〉 =
kBTR0

πκEm(σ)
,

〈δam(0)δbm(0)〉 = 0.

(84)
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Fig. 3. Stationary correlations 〈δa2
m〉 (triangles) and 〈δb2

m〉
(circles) as a function of mode number m on a double log-
arithmic scale. The solid line corresponds to a fit of equa-
tion (84) with Σfit ≃ 103κ/R2

0. The inset highlights 〈δa2
2〉,

〈δb2
2〉 in comparison with the low-temperature expansion equa-

tion (86) (crosses). Simulation parameters are ∆ = 0.163 (cor-
responding to A∗ = 0.95) and χ ≃ 9.3. Deviations from the
fit for m ≥ 40 are due to the finite bond length r0 in the dis-
cretized vesicle membrane, below which continuum theory no
longer applies [42], and to numerical noise, which leads to a
constant background.

Finally, we calculate the fluctuations of the Fourier modes
a2, b2 in the large shear rate limit, cf. Section 4.3. The
polar expansion (55) implies

a2 =

√
2∆

3π
cos(2Θ),

b2 =

√
2∆

3π
sin(2Θ).

(85)

We derive the correlation functions of the m = 2 modes
from equation (64) to be

〈δa2δa2〉 =
kBTR0

πκE2(σ0)
cos2(2Θ0),

〈δa2δb2〉 =
kBTR0

πκE2(σ0)
cos(2Θ0) sin(2Θ0),

〈δb2δb2〉 =
kBTR0

πκE2(σ0)
sin2(2Θ0).

(86)

In Figure 3 we show the stationary deformation corre-
lations 〈δa2

m〉, 〈δb2
m〉 as a function of the mode number m

for ∆ = 0.163 and χ ≃ 9.3. We also show a fit of these cor-
relations for m ≥ 3 with the theoretical prediction (84).
From the fit we can extract the tension Σ. In this partic-
ular example we obtain Σfit ≃ 103κ/R2

0, whereas theory
predicts Σtheor ≃ 113κ/R2

0 from equations (44–46).
The mean-field treatment (84) predicts 〈δa2

m〉 = 〈δb2
m〉

for all m. We can see that this holds only for m ≥ 3. As
explained in Section 4.3, this is due to the fluctuations in
the line tension. In the inset of Figure 3, we compare 〈δa2

2〉,
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Fig. 4. Dimensionless tension ΣR2
0/κ as a function of reduced

shear rate χ. Symbols denote the fitted tensions σfit extracted
from fluctuation spectra for excess lengths ∆ = 0.163 (trian-
gles) and ∆ = 0.340 (circles), corresponding to A∗ = 0.95
and A∗ = 0.9, respectively (compare Fig. 3). The solid and
dashed lines show the corresponding numerical solution of
equations (44–46).

〈δb2
2〉 with the low temperature expansion (86), with very

good agreement.
Figure 4 shows the extracted dimensionless tensions

ΣfitR
2
0/κ for different dimensionless shear rates 0 ≤ χ ≤

10 and for two different excess lengths ∆ = 0.163 and ∆ =
0.340. The agreement with the theoretical prediction from
a numerical solution of equations (44–46) is satisfactory.
The fact that this function is nearly a straight line implies
that the large-shear-rate approximation (12) is valid down
to small shear rates. We find a crossover shear rate χc,
below which there are deviations from a linear behavior.
Theoretically, equation (49) gives an order-of-magnitude
estimate of χc ≃ 3.09 for ∆ = 0.163 and χc ≃ 0.99 for
∆ = 0.340.

In Figure 5, the time autocorrelation function
〈a3(t)a3(0)〉 is shown as a function of dimensionless time
γ̇t. The data follows the expected exponential decay (83)
very well. From the amplitude 〈δa3(0)δa3(0)〉 we can ex-
tract a tension Σ ≃ 65κ/R2

0, while from the time con-
stant we deduce Σ ≃ 44κ/R2

0. Theory predicts Σtheor ≃
73κ/R2

0. Given the rather noisy data, this agreement
seems reasonable. For moderate shear rates the autocorre-
lation function has decayed before the oscillations implied
by equation (83) become noticeable. Even for the large
shear rate χ ≃ 5.6 used in Figure 5, the oscillations are
barely visible. For the same reason the build-up of cross
correlation 〈a(t)b(0)〉 is hidden in the numerical noise.

We compare the averaged inclination angle 〈Θ〉 for dif-
ferent reduced areas A∗ with equation (57) in Figure 6,
valid in the quasi-circular limit. The agreement with sim-
ulation data is satisfactory, given the large error bars. The
2d Keller-Skalak theory, which is also shown in the plot,
gives slightly better agreement.

In Figure 7, we show the fluctuations of the inclination
angle 〈∆Θ2〉 ≡ 〈Θ2〉−〈Θ〉2 as a function of the shear rate.
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Fig. 5. Autocorrelation function 〈δa3(t)δa3(0)〉 of the a3 mode
as a function of dimensionless time γ̇t. Simulation parameters
are ∆ = 0.163, χ = 5.6. The solid line shows a fit of equa-
tion (83).
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Fig. 6. Scaled average inclination angle 〈Θ〉/π as a function of
reduced area A∗. Symbols with error bars show simulation data
for different values of the reduced shear rate χ = 10.0A∗3/2

(diamonds), χ = 6.0A∗3/2 (stars), χ = 3.3A∗3/2 (triangles),

χ = 1.8A∗3/2 (squares), χ = 0.8A∗3/2 (circles). The continuous
line corresponds to the deterministic limit equation (57) and is
independent of χ. Dashed-dot lines follow from the mean-field
equations (33, 36) with χA∗−3/2 ∈ {0.8, 1.8, 3.3, 6, 10} growing
in the direction indicated by the arrow. The thick dashed line
follows from the Keller-Skalak theory, see equation (73).

The theoretical scaling is given by equation (65), and is in
excellent agreement for A∗ = 0.85 (∆ ≃ 0.53), A∗ = 0.9
(∆ ≃ 0.34), and A∗ = 0.95 (∆ ≃ 0.163). The scaling of the
fluctuations of Θ for A∗ differs significantly for A∗ = 0.7
(∆ ≃ 1.23). In the deterministic case, a vesicle with such
a low reduced area would tumble within the quasi-circular
theory. This implies that the quasi-circular approximation
works well for ∆ ≤ 0.53 (corresponding to A∗ ≥ 0.85) in
two dimensions.

Finally, we show the rescaled tank-treading frequency
ωtt/γ̇ as a function of A∗ in Figure 8. Again, agreement
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Fig. 7. Fluctuations of the inclination angle 〈∆Θ1/2〉1/2 as
a function of reduced shear rate χ∆1/2κ/(R0kBT ). Symbols
denote simulation data for different A∗ = 0.95 (squares),
A∗ = 0.90 (triangles), A∗ = 0.85 (stars), A∗ = 0.7 (cir-
cles), corresponding to ∆ ≃ 0.163, ∆ ≃ 0.34, ∆ ≃ 0.53, and
∆ ≃ 1.23, respectively. The solid line is the quasi-circular scal-
ing prediction of equation (65).

0.6 0.7 0.8 0.9 1

A
*

0.2

0.3

0.4

0.5

y
tt
 /
"i0

Fig. 8. Tank-treading frequency ωtt rescaled by shear rate
γ̇, as a function of reduced area A∗ for different values of the
reduced shear rate χ = 10.0A∗3/2 (diamonds), 6.0A∗3/2 (stars),

3.3A∗3/2 (triangles), 1.8A∗3/2 (squares). The solid line follows
from the Keller-Skalak theory, see equation (70).

with the 2d Keller-Skalak theory is quite good, while
the quasi-circular theory neglects the effect of the vesi-

cle shape on the flow and would predict ωQC
tt /γ̇ = 1/2, see

equation (58).

8 Summary

We have studied the fluctuations and deformation of a 2d
vesicle in shear flow at finite temperature. In the limit of
small deformations from a circle, we have derived analyt-
ical Langevin-type equations of motion, which are nonlin-

ear due to the length constraint. A mean-field treatment
allows approximate predictions for the stationary correla-
tion functions and time autocorrelation functions of the
deformation amplitudes, which agree quantitatively with
simulation data. Deviations of the stationary correlations
from the mean-field predictions in the lowest mode are
explained quantitatively in a low-temperature expansion
of the original constrained Langevin equations. The mean
inclination angle and the tank-treading frequency are bet-
ter described by a deterministic 2d Keller-Skalak theory.
Fluctuations of the inclination angle are also determined
quantitatively. Theory and simulations agree well for low
excess lengths, but differ for larger excess lengths.

The good quantitative agreement of mesoscale simula-
tions of vesicles in flow with detailed theoretical calcula-
tions demonstrates the predictive power of these simula-
tion methods for more complex flow geometries.
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Appendix A. Derivation of the equations of

motion

We derive here in detail the deterministic equation of
motion for the deformation amplitudes um in the quasi-
circular limit as sketched in Section 3. Area conservation
fixes u0 in terms of the other um

u0 = − 1√
8π

∑

m �=0

|um|2. (A.1)

The contour length L of the membrane is calculated to
second order in u to be

L = 2πR0 +
R0

2

∑

m �=0

(m + 1)(m − 1)|um|2, (A.2)

thus giving the excess length ∆ (18).
The local curvature k evaluates to

R0k(φ) = 1 − u′′(φ) = 1 +
∑

m �=0

m2um
exp(imφ)√

2π
. (A.3)

This leads to the bending energy (ignoring constant terms)

Hκ =
κ

4R0

∑

m �=0

(
m2 − 1

) (
m2 − 3/2

)
|um|2. (A.4)

The bending forces (8) are determined by the deformation
amplitudes um and by the instantaneous tension

Σ(φ) ≡ κ

R0

⎛

⎝σ +
∑

m �=0

σm
exp(imφ)√

2π

⎞

⎠ . (A.5)
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The homogeneous tension κσ/R0 has been included into
the energy (20).

We now calculate the flow field, which satisfies the
force balance at the circular membrane and the bound-
ary conditions. In polar coordinates, the general solution
of Stokes’ equation can be expanded into the fundamental
modes [37]

v
Φ,±
m ≡ ∇(r±|m| exp(imφ))/

√
2π,

pΦ,±
m ≡ 0,

v
P,±
m ≡ 1

2(1±|m|)
√

2π

(
|m|±2
2|m| r2

∇(r±|m| exp(imφ))

−rr±|m| exp(imφ)
)
,

pP,±
m ≡ ηαr±|m| exp(imφ)/

√
2π.

(A.6)

In this representation the cases |m| = 1 and |m| = 0 are

special and have to be treated separately. v
Φ,±
±1 and v

Φ,±
0

correspond to constant flow and rotational flow, respec-

tively. v
P,±
±1 is undefined and v

P,±
0 corresponds to a fluid

source at the origin, which does not exist in our setting.
Therefore only one set of modes exists for these mode
numbers, and not all boundary conditions can be fulfilled
simultaneously. This is the mathematical manifestation of
the Stokes paradox [37]. We therefore exclude the possibil-
ity of constant external flow. It follows from the boundary
conditions that the induced velocity field on the inside
must be composed of “+” modes, and of “−” modes on
the outside.

The corresponding hydrodynamic stress tensor reads
in (r, φ) components

T
Φ,±
m = 2ηr±|m|−2 exp(imφ)√

2π

×
( |m|(|m| ∓ 1) im(±|m| − 1)

im(±|m| − 1) −|m|(|m| ∓ 1)

)
(A.7)

and

T
P,±
m = ηr±|m| exp(imφ)

2
√

2π

(
±|m| − 2 im

im ∓|m| − 2

)
. (A.8)

We can now express the 2d Oseen tensor in spectral com-
ponents. The radial and polar components of the fluid
velocity and hydrodynamic force at the reference circle
are expanded into Fourier modes analogous to the expan-
sion (17). The velocity field at the reference sphere to-
gether with the boundary conditions uniquely determines
the expansion (A.6). From the spatial velocity field the hy-
drodynamic force f

± ≡ T
± · n can be calculated, leading

to
(

fr,ind
m

fφ,ind
m

)
=

ηin + ηout

R0

(
2|m| 2i sign(m)

−2i sign(m) 2|m|

)
·
(

vr,ind
m

vφ,ind
m

)
.

(A.9)
In the absence of the vesicle the applied external flow

must be regular everywhere. Therefore apart from con-
stant flow and constant rotation only the “+” modes con-
tribute in the expansion (A.6). To avoid the intricacies of

the Stokes paradox, we neglect the possibility of constant
flow. A general expansion of the external flow therefore
reads

v
∞ =

∑

m

Φ∞
mv

Φ,+
m + P∞

m v
P,+
m + Ωreφ. (A.10)

The last term in this expansion corresponds to rotational
flow with the vorticity Ω. For a finite viscosity contrast
there is a jump in the traction
(

fr,∞

fφ,∞

)
=

∑

m

exp(imφ)√
2π

(ηin − ηout)

×
[(

2|m|(|m| − 1)
2im(|m| − 1)

)
Φ∞

m +

(
|m|/2 − 1

im/2

)
P∞

m

]
.

(A.11)

For the specific case of external linear shear flow

v
∞ = γ̇yex = (γ̇/2)(yex + xey) − (γ̇/2)(xey − yex) =

−(iγ̇
√

2π/8)
[
v

Φ,+
2 − v

Φ,+
−2

]
− (γ̇/2)reφ, (A.12)

we can read off the only non-vanishing components

Φ∞
2 = −Φ∞

−2 = −i
√

2πγ̇/8,

Ω = −γ̇/2.
(A.13)

The flow at the vesicle membrane is subject to the
incompressibility condition Dt

√
g ≡ (∂t + v · ∇)

√
g = 0,

which can be cast in the equivalent form t ·∂φv(r(φ)) = 0.
To leading order in the deformation, this condition reads

vr(R0) + ∂φvφ(R0) = 0. (A.14)

Separating the induced flow from the external flow, we
have in Fourier components

vr,ind
m (R0)+imvφ,ind

m (R0)=−vr,∞
m (R0)−imvr,∞

m (R0) =

|m|(|m| − 1)R
|m|−1
0 Φ∞

m +
m2

4(|m| + 1)
P∞

m . (A.15)

Using this relation, we can eliminate vφ
m and obtain

fr
m = 2

ηout

R0
(λ + 1)

m2 − 1

|m| vr,ind
m

+ Φ∞
m2(|m| − 1)

ηout

R0
[|m|(λ − 1) + (λ + 1)] + P∞

m .

(A.16)

Imposing the force balance (11) leads to

vind,r
m = −(κ/ηoutR

2
0)ΓmEm(σ)um + BmΦ∞

mR0, (A.17)

with

Bm ≡ −m2(λ − 1) + |m|(λ + 1)

(λ + 1)(|m| + 1)
, (A.18)

and where the mobility Γm is defined in equation (24).
From the induced velocity, we obtain the radial component
of the full velocity field

vr
m = vr,ind

m + vr,∞
m = vr,ind

m + |m|Φ∞
m . (A.19)

This leads directly to the advection equation (25).
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