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Two-dimensional folding technique for enhancing Fermi surface signatures in the momentum
density: Application to Compton scattering data from an Al-3 at. % Li disordered alloy
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We present a technique for enhancing Fermi surface~FS! signatures in the two-dimensional~2D! distribu-
tion obtained after the 3D momentum density in a crystal is projected along a specific direction in momentum
space. These results are useful for investigating fermiology via high-resolution Compton scattering and posi-
tron annihilation spectroscopies. We focus on the particular case of the~110! projection in a fcc crystal where
the standard approach based on the use of the Lock-Crisp-West~LCW! folding theorem fails to give a clear FS
image due to the strong overlap with FS images obtained through projection from higher Brillouin zones. We
show how these superposed FS images can be disentangled by using a selected set of reciprocal lattice vectors
in the folding process. The applicability of our partial folding scheme is illustrated by considering Compton
spectra from an Al–3 at. % Li disordered alloy single crystal. For this purpose, high-resolution Compton
profiles along nine directions in the~110! plane were measured. Corresponding highly accurate theoretical
profiles in Al–3 at. % Li were computed within the local density approximation~LDA !–based Korringa-Kohn-
Rostoker coherent potential approximation~KKR-CPA! first-principles framework. A good level of overall
accord between theory and experiment is obtained, some expected discrepancies reflecting electron correlation
effects notwithstanding, and the partial folding scheme is shown to yield a clear FS image in the~110! plane
in Al–3 at. % Li.

DOI: 10.1103/PhysRevB.64.045121 PACS number~s!: 71.18.1y, 78.70.Ck, 41.60.Ap, 78.70.Bj
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I. INTRODUCTION

Recent advances in synchrotron light sources and dete
technology have rejuvenated interest in high-resolut
Compton scattering as a probe of fermiology and elect
correlation effects in wide classes of materials.1–14 In a
Compton scattering experiment one measures a directi
Compton profile~CP!, J(pz), which is related to the twice
integrated ground-state electron momentum densityr(p) by

J~pz!5E E r~p!dpxdpy , ~1.1!
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wherepz is taken along the scattering vector of the x rays.
the independent particle approximation,

r~p!5(
b,k

U E cb,k~r !e2 ip•rdrU2

, ~1.2!

wherecb,k(r ) is the electron wave function in bandb and
statek. The summation in Eq.~1.2! extends over all initial
states that are excited in the scattering process. Throug
this paper this difinition of(b,k is used. The CP thus con
©2001 The American Physical Society21-1
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I. MATSUMOTO et al. PHYSICAL REVIEW B 64 045121
tains signatures of the Fermi surface~FS! breaks and corre
lation effects in the underlying three-dimensional~3D! mo-
mentum densityr(p).

The determination of FS geometry via the Compton sp
troscopy is complicated by the presence of the double i
gral in Eq. ~1.1!. As a result, FS breaks inr(p) do not in
general induce rapid variations inJ(pz), but only in the first
derivative of the profile. Moreover, breaks inr(p) caused by
FS crossings are scattered throughout momentum space
weights given by the appropriate matrix element. Therefo
if this matrix element happens to be small in a spec
case,15 then the related FS feature in the CP will be intrin
cally weak and difficult to measure. The standard appro
to tackle these problems is to measure CP’s along m
different directions, and to invert Eq.~1.1! to obtainr(p) by
using one of the available reconstruction methods.16,17 The
matrix element effects inr(p) can then be removed in prin
ciple by constructing the occupation number density inp
space,N(p), via the so-called Lock-Crisp-West~LCW! fold-
ing procedure:18

N~p![(
G

r~p1G!5(
G

(
b,k

dk,p1G , ~1.3!

where the sum overG runs over all reciprocal lattice vectors
The right hand side of Eq.~1.3! represents the occupatio
number density in the repeated zone scheme.19

In practical applications, an accurate reconstruction
r(p) along the preceding lines requires the demanding t
of making CP measurements along a suitable group of di
tions. However, in many cases the 2D projection of the m
mentum density,r(px ,py)5*r(p)dpz , and the correspond
ing 2D occupation number density,N(px ,py), along a
judiciously chosen direction can give most of the importa
features of the FS. As shown in Sec. II it is then sufficient
measure a set of CP’s with scattering vectors all lying in
plane of projection, yielding a significant reduction of me
suring time. The~110! plane in cubic lattices encompass
many of the high symmetry points and lines in the Brillou
zone and, therefore, a cross section in this plane capt
much of the character of the underlying 3D Fermi surface
this vein, the~110! projection has been exploited in a numb
of Compton scattering and positron annihilatio
investigations20–23on bcc crystals where the~110! projection
turns out to be reasonably free of complications of overl
ping FS images from higher Brillouin zones. In sharp co
trast, it has not been possible to use this approach in
crystals due to overlap problems that often distort the
image severely.

With this motivation, we have examined the question
how the aforementioned problems of overlap may
avoided in a projected 2D momentum distribution. O
analysis reveals that the problem can be solved by usin
selected subset of reciprocal vectors in the folding proced
of Eq. ~1.3!. Although we focus in this article explicitly on
the specific case of the~110! projection in an fcc crystal,
these ideas are generalized straightforwardly to other pro
tions in cubic lattices. The treatment of projections in gene
lattices will be taken up elsewhere.
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We illustrate the applicability of our folding procedure b
considering Compton spectra from an Al–3 at. % Li diso
dered alloy~fcc! single crystal specimen. For this purpos
nine high-resolution CP’s have been measured along a s
directions in the~110! plane, and corresponding highly ac
curate theoretical profiles have been computed within
KKR-CPA first-principles framework. Intercomparisons b
tween theory and experiment, and between results base
the use of a selected and a full set of reciprocal lattice vec
in the folding process, clearly show the value of our part
folding approach in enhancing FS signatures in the data

Some comment on our choice of the Al–3 at. % Li diso
dered alloy for this study is appropriate. Al, which posses
an almost spherical FS~in the extended zone!, is an interest-
ing base metal for exploring the evolution of fermiology wi
changes in the electrons/atom ratio via alloying on the o
hand, and for investigating electron correlation effects on
momentum density in multivalent systems on the other. M
allurgically, Al is quite ‘‘exclusive’’ in that only a few per-
cent impurities can be dissolved in the solid solutiona
phase.24 For example, in Al-Li thea phase extends at room
temperature to only about 3 at. % Li concentration. Al-
alloys, with the possible addition of other elements, are a
of great technological interest due to their high strength-
weight ratio.25 For these fundamental and practical reaso
the electronic structure and the nature of bonding in Al
alloys have drawn considerable interest.26–28 Insofar as the
Compton scattering technique is concerned, relatively li
by the way of high-resolution work on disordered alloys
available in the literature despite the fact that, unlike tra
tional spectroscopies which rely on quantum oscillatory p
nomena, Compton scattering is not affected by short elec
mean free paths and is thus particularly suited for investig
ing disordered alloys. For reasons outlined in this paragra
there is a strong motivation for undertaking a state-of-the
Compton scattering study of the Al-Li system as a means
gaining insight into the electronic structure of the system a
the possible role of fermiology in destabilizing thea phase
of Al.29

This article is organized as follows. Section II briefly d
lineates some reconstruction aspects needed later. It is sh
that it suffices to measure a set of CP’s with scattering v
tors all lying in one plane to obtain the 2D projection of th
momentum density onto that plane. In Sec. III, the foldi
procedure involving selected reciprocal lattice vectors is f
mulated. Section IV gives pertinent details of the Compt
scattering experiments, while Sec. V briefly describes
relevant computational details involved in obtaining theor
ical momentum densities and Compton profiles. Section
presents and discusses the theoretical and experim
Compton scattering results as well as the applicability of
partial folding procedure to these data. Some concluding
marks are collected in Sec. VII.

II. RECONSTRUCTION

The 3D momentum density can be reconstructed by us
the Fourier-Bessel method in which a so-calledB(r ) func-
tion is defined by
1-2
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B~r !5E r~p!exp~2 ip•r !dp. ~2.1!

It follows from Eqs.~1.1! and ~2.1! that

B~0,0,z!5E J~pz!exp~2 ipzz!dpz . ~2.2!

Thus, from a number of measured CP’s, correspond
B(r )’s are obtained on radii inr space given by the direc
tions of the respective scattering vectors. Next, a fine mes
set up inr space andB(r ) is obtained at every mesh point b
interpolation. This makes it then possible to carry out
inverse Fourier transform

r~p!5~2p!23E B~r !exp~ ip•r !dr ~2.3!

to obtainr(p). We refer the reader to Ref. 17 for a detail
discussion of our reconstruction scheme.

Here we briefly show how a 2D projection of the mome
tum density along a given direction can be reconstruc
from Compton scattering measurements in which all
scattering vectors lie in the perpendicular plane. Without l
of generality, we take@001# to be the projection direction
From the inverse Fourier transform equation~2.3! the pro-
jection onto the~001! plane is

r~px ,py!5E r~p!dpz5~2p!23E dpzE E E B~x,y,z!

3exp@ i ~pxx1pyy1pzz!#dxdydz. ~2.4!

The integration with respect topz produces 2pd(z), yielding

r~px ,py!5~2p!22E E B~x,y,0!exp@ i ~pxx1pyy!#dxdy.

~2.5!

But, as seen from Eq.~2.2! above,B(x,y,0) can be obtained
by interpolation on a fine mesh in the (x,y) plane from mea-
surements in which all scattering vectors lie in that plane

III. FORMULATION OF THE PARTIAL FOLDING
TECHNIQUE

This section delineates briefly how the~110! projection of
the LCW-folded momentum density in Eq.~1.3! can be di-
vided for an fcc crystal into two identical patterns where o
pattern is shifted by 2p/a along the@001# direction with
respect to the other. We consider an fcc lattice with primit
translation vectors:

a5
a

2
~ x̂1 ŷ!, b5

a

2
~ ŷ1 ẑ!, c5

a

2
~ ẑ1 x̂!, ~3.1!

where x̂, ŷ, ẑ are unit vectors along the Cartesian axes.
general lattice vector is

R5ua1vb1wc, u,v,w are integers. ~3.2!

Similarly, the primitive translation vectors of the~bcc! recip-
rocal lattice are
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A5
2p

a
~ x̂1 ŷ2 ẑ!, B5

2p

a
~2 x̂1 ŷ1 ẑ!,

C5
2p

a
~ x̂2 ŷ1 ẑ!,

and the general reciprocal lattice vector is

G5hA1kB1 lC, h,k,l are integers. ~3.3!

Because we are interested specifically in projecting onto
~110! plane, it is convenient to work with new unit vectorsŝ
and t̂ that lie along and perpendicular to@110#:

ŝ5
1

A2
~ x̂1 ŷ!, t̂5

1

A2
~ x̂2 ŷ!, ~3.4!

and thus

R5Rsŝ1Rt t̂1Rzẑ ~3.5!

with

Rs5
a

2A2
~2u1v1w!, Rt5

a

2A2
~2v1w!,

Rz5
a

2
~v1w!, ~3.6!

while

G5Gsŝ1Gt t̂1Gzẑ ~3.7!

with

Gs5
2p

a
A2h, Gt5

2p

a
A2~2k1 l !,

Gz5
2p

a
~2h1k1 l !. ~3.8!

Likewise, we have

p5psŝ1pt t̂1pzẑ, r5r sŝ1r t t̂1r zẑ.

The momentum density projected onto the~110! plane is

E r~p!dps5r~pt ,pz!. ~3.9!

Having established the relevant notation, we write the m
mentum density Eq.~1.2! as

r~p!5r~ps ,pt ,pz!

5(
b,k

E E
crystal

dr dr 8cb,k~r !cb,k* ~r 8!e2 ip•(r2r8).

~3.10!

Writing the wave functions in the Bloch form and convertin
the integral overr in Eq. ~1.2! into a sum of integrals over a
single cell, one obtains
1-3
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r~pt ,pz!5E dps(
b,k

(
R,R8

E E drdr 8ub,k~r !ub,k* ~r 8!

3eik•(R1r )e2 ik•(R81r8)e2 ip•(R2R8)e2 ip•(r2r8).

~3.11!

The two-dimensional projection of the occupation numb
density N(pt ,pz) obtained by LCW folding overall pro-
jected reciprocal lattice vectors is

N~pt ,pz!5 (
Gt ,Gz

r~pt1Gt ,pz1Gz! ~3.12!

where the sum runs over all sets (Gt ,Gz).
The formulation so far leading to Eq.~3.12! has been

quite general. The nature of the problem as well as its s
tion may be delineated with reference to Fig. 1, which sho
schematically the projection of the bcc reciprocal lattice o
the ~110! plane. The lattice points in the~110! plane going
through the origin@for which h50 in Eq. ~3.8!# lie at the
positions of the circles. The two nearest~110! planes (h
561) lie at a distance ofGs5(2p/a)A2 in front of and
behind this central plane and the corresponding lattice po
project into the crosses. The next pair of planes project
the circles and then the process repeats itself. The entire
reciprocal lattice is thus divided into two sublattices rela
to the circles and the crosses with associated 2D Brillo
zones shown by light and dark lines respectively.30 It is eas-
ily seen now that when the images of the Fermi surface gi
by the periodic LCW-folded 3D density are projected alo
@110#, the contributions from the circled and crossed sub
tices will overlap and get entangled. However, since
circled and crossed sublattices are related by a simple sh
2p/a along thez axis, if the contribution of one of thes
sublattices can be suppressed in the folding procedure
projection will no longer suffer from the aforementione
complication.

The preceding strategy may be carried out more form
as follows. In the (s,t,z) space, Eqs.~3.8! give the coordi-

FIG. 1. The bcc reciprocal lattice points~corresponding to an

fcc crystal! are shown projected onto the~110! plane.ẑ denotes the

@001# and t̂ the @11̄0# direction. As discussed in the text, ope
circles refer to points with evenh in Eq. ~3.8! and crosses to point
with odd h. Outlines of the Brillouin zones for the sublattices
circles and crosses are shown by thin and thick solid lines, res
tively.
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nates of various bcc lattice points generated via the integ
h, k, andl. Different layers perpendicular to the@110# direc-
tion correspond to different values ofh. It is easily shown
then that the circled sublattice in Fig. 1 involves onlyeven
values of the indexh whereGt andGz @ignoring prefactors
in Eqs.~3.8!# are either bothevenor bothodd. Similarly, the
crossed sublattice is given byodd values ofh whereGt and
Gz ~again, ignoring prefactors! possess opposite parities.

Bearing these considerations in mind, we divide the su
mation in Eq.~3.12! into two sums involving even and od
values ofh and we use Eq.~3.11!. This yields

N~pt ,pz!5 (
Gt ,Gz

h even

r~pt1Gt ,pz1Gz!

1 (
Gt ,Gz

h odd

r~pt1Gt ,pz1Gz!

5 (
Gt ,Gz

h even

(
b,k

(
R,R8

E dpsE E drdr 8ub,k~r !ub,k* ~r 8!

3eik•(R1r )e2 ik•(R81r8)e2 ips(Rs2Rs81r s2r s8)

3e2 i (pt1Gt)(Rt2Rt81r t2r t8)e2 i (pz1Gz)(Rz2Rz81r z2r z8)

1~a similar expression withh odd!. ~3.13!

We now make use of the following identities:

E dpse
2 ips(Rs2Rs81r s2r s8)5dR

s8Rs
d~r s2r s8!, ~3.14!

(
Gt ,Gz

e2 iGt(r t2r t8)2 iGz(r z2r z8)5d~r t2r t8!d~r z2r z8!,

~3.15!

(
Rt

(
Rz

ei (kt2pt)Rtei (kz2pz)Rz5d~kt ,pt1Gt
a!d~kz ,pz1Gz

a!,

~3.16!

where for the sake of simplicity we ignore forefactor
d(a,b) denotes the Kronecker deltada,b , and (Gt

a ,Gz
a) are

the components of an arbitrary reciprocal lattice vectorGa.31

Furthermore,

e2 iGt(Rt2Rt8)2 iGz(Rz2Rz8)5H 1 for evenh

e2(2p/a) i (Rz2Rz8) for oddh.
~3.17!

The last identity is easily seen by using Eqs.~3.6! and ~3.8!
and realizing thatv1w5(2/a)Rz . The final result is

Neven~pt ,pz!5c (
Gt

e ,Gz
e

h even

(
b,k

d~kt ,pt1Gt
e!d~kz ,pz1Gz

e!

~3.18!

and

c-
1-4
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Nodd~pt ,pz!5c (
Gt

o ,Gz
o

h odd

(
b,k

d~kt ,pt1Gt
o!

3dS kz ,pz1
2p

a
1Gz

oD , ~3.19!

where the constantc collects the irrelevant prefactor
and Gt

e(o) and Gz
e(o) are the components ofG with even

~odd! h.32

The right-hand side of Eq.~3.18! is just the projected
two-dimensionalk space occupation sampling function
the repeated zone scheme for the set of reciprocal la
vectors with evenh in Eq. ~3.3!, while the right-hand side o
Eq. ~3.19! fulfills the same function for the set with oddh.
Thus, the set of Fermi surface images appearing in
~3.18!, reappear in Eq.~3.19! but shifted by 2p/a along ẑ.
By carrying out the LCW folding over only one of these tw
sets of reciprocal lattice vectors, the Fermi surfaces co
sponding to the other set are removed and thus a pictu
obtained which is not complicated by superposition.

SinceNeven and Nodd are identical~apart from the shift!
and their sum yields the occupation functionN(pt ,pz), it
follows that Neven and Nodd each carry half the intensity o
the occupation function. Finally, it is clear that the pres
procedure can be used straightforwardly in the analysis
positron annihilation 2D ACAR spectra from an fcc cryst

IV. EXPERIMENT

A single crystal of Al–3 at. % Li was grown from th
melt by the Bridgman-Stockbarger method under a pres
ized argon atmosphere to reduce loss of Li. The composi
was determined by both atomic absorption spectrometry
proton-induced gamma emission and the final specimen
mm in diameter and 1.5 mm thick, was found to contain
at. % Li. The Compton profiles along nine directions, all l
ing in the ~110! plane~see Fig. 2!, were measured with the
KEK-AR spectrometer.33 The incident photon energy was 6
keV, which is high enough so that the impulse approxim
tion would be satisfied quite well. The overall momentu
resolution in the measurements is estimated to be 0.12
The total number of accumulated counts under the profi
was about 13108. The necessary energy-dependent corr
tions for absorption, detector, and analyzer efficiency a

FIG. 2. The nine directions in the~110! plane along which the
Compton profiles were measured and computed in this study.
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scattering cross section were applied. The contribution
double scattering was simulated via the Monte Carlo p
gram of Sakai.34 The integrated intensity of the double sca
tering events was found to be 10% of that of the single sc
tering events. By using Eq.~2.2!, the nine measured profile
yield the values ofB(z) along nine radial directions all o
which lie in the ~110! plane in real space.B(r ) was then
interpolated over an area of 50350 a.u.2 on a fine square
mesh of 5003500r points in the~110! plane. The projection
r(pt ,pz) of the 3D momentum density was obtained via
inverse 2D Fourier transformation of the interpolatedB(r ).
The r(pt ,pz) thus obtained was partially folded followin
the procedure of Sec. III to obtain the 2D occupation num
density.

V. COMPUTATIONS

The computation of the electronic structure of Al–3 at.
Li was carried out within the all-electron charge se
consistent KKR-CPA framework and is parameter-free.
lattice constant ofa57.6534 a.u. was assumed. The und
lying KKR-CPA methodology is described in Refs. 35–3
The relevant Green’s function formulation for treating t
momentum density and Compton profile in disordered allo
is given in Refs. 40 and 41. Exchange and correlation effe
were incorporated within the von Barth–Hedin local dens
approximation.42,43 In order to obtain the Compton profil
the momentum densityr(p) was first evaluated over a fin
mesh of 483485131777p points covering momenta up t
pmax;5 a.u. Compton profiles with scattering vectors alo
the same directions as the experimental ones were then c
puted accurately by evaluating the integral of Eq.~1.1!. The
accuracy of the computed profiles is about 1 part in 104. The
nine theoretical profiles were convoluted with the expe
mental resolution and then treated in a manner identica
that of the nine experimental profiles.

VI. APPLICATION TO AL –3 AT. % LI ALLOY

We briefly compare first the theoretical and experimen
directional profiles by taking the@100# CP as an example
results along other directions are similar. After subtraction
the core contribution the two profiles of Fig. 3 are norm
ized by area to yield the same number of electrons over
range64 a.u. The theoretical CP is seen to be higher th
the experimental one at low momenta with the situation
versing itself at high momenta. The Fermi cutoff in the fir
derivative of the CP around 1 a.u. is sharper in the theo
this effect is also evident in the second derivative where
corresponding calculated peak is higher and narrower c
pared to the measurements even though the theoretical
and their derivatives include resolution broadening. Sim
discrepancies between theory and experiment have been
served previously in other systems and can be ascribed to
failure of the present LDA-based independent particle mo
to properly account for correlations in the electron gas.5–13

These correlation effects result in the shift of spectral wei
from below to above the Fermi momentum (pF) and a re-
duction in the size of the break (Zk) in the momentum den-
1-5
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I. MATSUMOTO et al. PHYSICAL REVIEW B 64 045121
sity atpF . Concerning fine structure, features around 0.3 a
and 0.6 a.u. in the first derivative of the experimental CP
reproduced reasonably by theory. These features are q
similar to those found in Al in the positron annihilation~1D
angular correlation! experiments44 as well as in the recen
high-resolution Compton scattering measurements.45 In the
case of Al, these have been explained by the fact that
Fermi surface of Al deviates from a sphere~in the extended
zone! and bulges on the hexagonal zone face near
W-K-W and W-U-W zone edges;46 this mechanism is pre
sumably at play in Al–3 at. % Li as well since the addition
3 at. % Li induces relatively little change in the Fermi su
face of Al.

Before discussing the effects of folding, it is helpful
consider Fig. 4, which shows contour maps of the rec
structed experimental and theoretical momentum densit

FIG. 3. Experimental and theoretical directional Compton p
files in Al–3 at. % Li and the associated first and second derivat
are compared along the@001# direction. The theoretical results hav
been broadened to reflect the experimental resolution.
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the ~110! plane. We emphasize that an integration alo
@110# ~i.e., ps! is implicit here as well as throughout thi
article. Therefore, what is shown in all cases is the~110! 2D
projection of the underlying 3D momentum density distrib
tion. As expected, the data of Fig. 4 display twofold cryst
line symmetry, but it is difficult to ascertain the details of th
FS, except perhaps that it is roughly spherical in shape~in
the extended zone! with some bulging along thê110&
directions.

Insight into the nature of our partial folding scheme
provided by Fig. 5, which considers the case of the fr
electron model where the Fermi sphere corresponds to
electrons/atom appropriate to the number of conduction e
trons in Al–3 at. % Li. Figure 5~a! has been obtained via th
conventional LCW-folding procedure in whichall reciprocal
lattice vectors are used, whereas Fig. 5~b! includes the con-
tribution of only one of the sublattices as discussed in S
III. The imprint of the free-electron FS~repeated periodi-
cally! is obvious in the 2D occupation number density of F
5~b!, even though this is far from being the case in Fig. 5~a!,

-
s

FIG. 4. Contour maps of the reconstructed experimental
theoretical momentum densities in the~110! or (pz ,pt) plane. Note
that the results shown represent the 2D-distribution obtained a
the 3D momentum density is integrated along the@110# direction.
The first Brillouin zone boundary and the high symmetry points
the ~110! plane are indicated.

FIG. 5. Contour maps of the 2D occupation number dens
~after projection along@110#!, N(kz ,kt), in the ~110! plane for the
free-electron model at the electron concentration of Al–3 at. %
~a! Conventional LCW folding using all reciprocal lattice vector
~b! Present partial LCW folding scheme using selected recipro
lattice vectors. Experimental resolution broadening is included
the calculations. The Brillouin zone boundary and the projec
free-electron sphere are shown.1 signs indicate high-density
regions.
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which shows the appearance of four crosslike featu
around theL symmetry points due to overlapping Fermi su
faces. Furthermore, complicated structures arise in Fig.~a!
around the zone center. It is striking how the two overla
ping Fermi surfaces in Fig. 5~a! are disentangled in Fig
5~b!.47 These results show clearly the power of the pres
partial folding approach for analyzing FS images in terms
the ~110! projection in an fcc crystal.

The application to Al–3 at. % Li is considered in Fig.
which compares theoretical and experimental~110!-
projected, partially folded, 2D occupation densities. On
whole, the FS contours in Fig. 6 are rather like those in F
5~b!, indicating that the FS of the alloy is more or le
spherical, despite some deviations. Note that the FS cont
in Fig. 6 are not symmetrical with respect to theU-K lines,
even though this is strictly true for the free-electron case
Fig. 5~b!. This is a consequence of the asphericity of the F
the FS bulges more outside the hexagonal zone face nea
W-K-W zone edge~where two hexagonal faces of the fir
zone intersect! than near theW-U-W zone edge~intersection
between a hexagonal and a square face of the first zo!.
This can also be described as a slight flattening of the F
the vicinity of U, combined with a small expansion nearK.
Theory and experiment are in good overall accord in Fig
although the fact that the oblong maximum around theL
point in Fig. 6~b! is slightly more rotated compared to Fig
6~a! suggests that the aforementioned asphericity of the F
somewhat stronger in the experiment.

Finally, we consider radial cuts through the 2D mome
tum distribution of Fig. 4; a typical cut~alongG-L) is shown
in Fig. 7. It is well known that the value of the Fermi mo
mentumpF is not given correctly by the inflection point i
the profile of Fig. 7~a!, or equivalently, the position of the
minimum in the first derivative of Fig. 7~b!.48 The situation
may be simulated by considering the free-electron case. H
the 2D distribution corresponding to the profile of Fig. 7~a! is
a semicircle and the first derivative is negative and diver
at pF . When the semicircle is convoluted with the expe
mental resolution, a tail appears beyondpF and the diver-
gence of the first derivative atpF disappears. The inflection
point defining the minimum of the first derivative the

FIG. 6. Contour maps of the theoretical and experimental
occupation number densities~after projection along @110#!,
N(kz ,kt), in the ~110! plane based on the present partial LCW
folding scheme in Al–3 at. % Li. Resolution broadening is includ
in the theory. See caption to Fig. 5 for other notational details.
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moves belowpF to an extent which depends on the width
the resolution function. Accordingly, by using a free-electr
semicircle of radius 0.919 a.u. and the present experime
resolution of 0.12 a.u., we have determined that the posi
of the inflection points in cuts such as those of Fig. 7 must
increased by 4.2% in order to obtain the correct value ofpF .
Applying this correction, theoretical and experimentalpF
values in the~110! plane can be mapped out from the data
Fig. 4. The results of the analysis are given in Fig. 8, a
show an excellent level of accord between theory and exp
ment. Nevertheless, a careful examination of Fig. 8 revea
slight contraction of the experimental FS~compared to
theory! nearU in combination with a slight expansion nea
K, consistent with our earlier discussion in connection w
Fig. 6 above.

VII. SUMMARY AND CONCLUSIONS

We address the question of how Fermi surface~FS! sig-
natures can be enhanced in the 2D distribution obtained
projecting the 3D momentum density along the@110# direc-
tion in an fcc crystal. The standard LCW folding procedu
invoked in this connection involves a summation of the m
mentum density over all reciprocal lattice vectors to obt
the electron occupation number density in the system. T
procedure has been used to produce a reasonably clea
imprint, even when the~110!-projected momentum density i
considered, in several studies of bcc crystals, but it has
been successful in fcc crystals. We show, however, that

FIG. 7. Radial sections along theG-L direction through the
experimental and theoretical@110#-projected momentum distribu
tions of Fig. 4 are shown together with the corresponding first
rivatives.

FIG. 8. Fermi momentumpF in the ~110! plane in the Al–3
at. % Li disordered alloy. Open circles give results deduced fr
the present Compton profile measurements, while the KKR-CP
based theoretical predictions are given by filled circles. The s
circular arc indicates the free-electron momentum of 0.919 a.u.
Al–3 at. % Li.
1-7
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~110! projection of the LCW-folded momentum density
the fcc lattice can be viewed as a superposition of t
equivalent FS images that are shifted by 2p/a along the
@001# axis, and that these two images can be disentangle
one uses a selected subset of reciprocal lattice vectors in
folding process. Our folding procedure is particularly w
suited for investigating fermiology-related issues via hi
resolution Compton experiments where a full 3D reconstr
tion of the data is far more demanding than a 2D reconst
tion using measured directional profiles, all of which invol
scattering vectors in the~110! plane. The technique will also
be valuable in analyzing positron annihilation~2D ACAR!
experiments in fcc lattices.

An extensive application of the aforementioned par
folding procedure to the case of an fcc disordered alloy
presented. To this end, we have measured nine h
resolution directional Compton profiles on a single-crys
specimen of Al–3 at. % Li with scattering vectors in th
~110! plane. We have also carried out highly accurate co
putations of corresponding theoretical profiles within t
self-consistent, parameter-free KKR-CPA framework. Oc
pation number densities based on theoretical as well as
experimental profiles obtained via partial folding displ
clear images of the FS. A reasonable level of accord is fo
between theory and experiment with respect to the ove
shape of the directional profiles as well as the fine struc
l-
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in the first and the second derivatives. The experimental
sults with regard to the FS are also in accord with KKR-CP
predictions, although there is an indication of a sligh
stronger bulging of the measured Fermi surface outside
hexagonal zone face along theW-K-W than along theW-U-
W zone edge. Upon adding 3 at. % Li, the FS of Al rema
essentially free-electron-like, some overall shrinking of
size due to the reducede/a ratio notwithstanding. Large FS
sheets in Al thus show no sign of an anomaly that mig
destabilize thea phase. A Fermi surface–driven mechanis
in this connection will therefore need to focus on small fe
tures in the FS of Al~electron pockets in the third conductio
band! that can undergo substantial change and may e
disappear with decreasing electron concentration or alte
electron lattice interaction upon alloying.
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