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An implementation of a two bit Gray-coded temporal logic based cellular
automaton created several emergent properties. A program implementing
the two-dimensional four color cellular automaton using Ant Farm is
demonstrated. New and previously described emergent integer sequences
are also identified. Possible applications in spatial modeling, knowledge
domain modeling, and mobile robot movement are suggested.

1. Introduction

This paper studies the movement of a simple cellular automaton called
the lean quaternary temporal logic (LQTL) ant. In particular, I study the
movement of an ant that is searching a “space” using a Gray-code logic
to direct it. In this paper a minimal interaction context is modeled and
some outcomes reported about the interaction between two entities. In
the first section the fundamental premises on which the ant’s movement
is based are described. In the second section, the two entities used to
model a minimal interaction are described and their behavior is detailed.
In the third section, observations are reported on the results of running
an algorithm that models the behavior of the two entities. In the fourth
section, the behavior of the interacting entities is described and further
work identified.

The task of identifying the simplest emergent algorithmic spatial
search behavior that also included a return-to-base attribute led to my
study of cellular automata. No other spatial search strategies are re-
ported here from the literature. Research, over some 40 or more years
into cellular automata, is reviewed in Sarkar [1] and Ganguly et al. [2].
Cellular automata take many forms but underlying them all is a set of
simple rules and the behavioral interactions that result from playing the
rules out in a modeling facility, usually a computer. A two-dimensional
(2D) cellular automaton can be viewed as a “virtual ant” interacting
with a grid of cells. Little communication occurs between adjacent cells.
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Each cell has a limited rule set that controls its behavior. Repeating the
steps described in an algorithm generates cell states sometimes producing
complex patterns that are often unexpected (Langton in Wolfram [3]).

2. Underlying logic

The logical model (a Gray-code developed from Frank Gray’s 1953
concepts [4]) that underlies the interaction is consistent with modal
logic S4S (modal logic S with four successants [5]). Applying that
logic, there are four (among many possible categories) statements about
the status of the interaction: false, moving towards truth, true, and
moving towards false. Taking these four possibilities and their logic and
applying them to a 2D four color cellular automaton is described in this
section. The choice of colors for the cellular automata cells is arbitrary
but makes the differences between the status of the interactions taking
place in the cells clearer for the observer. By construction, the status
changes follow a defined succession from false (color white), to moving
towards true (color green), true (color black), and those moving towards
false (color yellow). We avoid anthropomorphizing the behavior of the
model, objects, and processes under consideration. To avoid confusion
words used in unusual ways will be “quoted” when introduced. The
entities referred to in this section are conceptual entities though they
have analogs in screen displays as will be illustrated and can be readily
exemplified by suitable physical models. The major goal in section 2.1
is to outline a model of a minimal data exchange system for the LQTL
ant. The model described is usually known as a 2D four color cellular
automaton [3].

2.1 The ant and the grid

An “ant” or cellular automaton, occupies a single cell and has a simple
set of behaviors. It interacts with the grid surface that also has simple
behavior. In its simplest form, the grid is a 2D array of pixels. The
interaction begins with all cells set to a single “status,” represented by a
color, say white. The simulation of the cellular automaton instantiated
in the Ant Farm software [6] has a screen-displayed surface of the grid
that is programmed to record an interaction with the second entity, the
ant, by changing color as it moves on through a cell.

Each cell may be one of the four colors listed where the color indicates
the number of times the ant has passed through the cell. To start the
simulation the ant may be positioned anywhere in the grid of cells.
The cells begin white and change to green when the ant passes through
them the first time. The cells then change to black on the second visit
and yellow when the ant moves through a cell on the third occasion.
After the fourth occasion each cell begins the color change cycle again,
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Figure 1. LQTL ant after 5000 iterations showing four color bilateral symmetry.

Figure 2. LQTL ant cell visit frequency and most recent path after 5000 itera-
tions.

returning to white. The cell “reports” its grid coordinates to the ant
which “collects” the cell data that is written out to a file enabling a
subsequent recapitulation or examination of the path of an interaction.
In a metaphoric sense the ant can be programmed to “remember” where
it has been by having it step back through the path of coordinates
recalling previous moves. The grid of cells is programmed to keep a
counter reporting the number of times each cell is entered. The cells
“provide” a second piece of information to the ant, the current color.
To the observer these behavioral details are made visible on screen as
illustrated in Figures 1 and 2 after 5000 iterations. The overall pattern
in these illustrations is symmetrical about the origin.

The ant has simple behavior; it can turn left (say away from truth), or
right 90 degrees (say towards truth), and it can move ahead one cell at
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a time. If the ant moves into a white or green cell it makes a right-hand
90 degree turn and moves ahead into the next cell. If the ant enters
a black or yellow cell it turns 90 degrees to the left and moves ahead
into the next cell. The grid surface is also programmed to “maintain”
a record of the number of times each cell is visited and retains the
cumulative total of cell visits as color shown in a contour map. The
software that implements the 2D cellular automaton is called Ant Farm
[6]. In the following, Langton’s ant is briefly discussed as a forerunner
to a more detailed description of emergent behavior of Ant Farm.

Langton’s ant is a 2D two color cellular automaton. The demonstra-
tion of Langton’s ant gave a first indication that there may be interesting
emergent behavior with other variants of cellular automaton. Using Ant
Farm, configured to replicate Langton’s ant moves, the following integer
sequences emerged.

Integer sequence A102358 [7] is the finite sequence of 28 iterations
at which Langton’s ant passes through the origin of the grid:

0, 4, 8, 16, 52, 60, 96, 140, 184, 276, 368, 376, 384, 392,
428, 436, 472, 656, 660, 3412, 4144, 4152, 6168, 6764,
8048, 8052, 8056, 8060, 8068.

It is puzzling why there should be just 28 of these passages. It
is equally puzzling that the integer sequence A102369 [7] should be
generated by the 29 successive arrivals of Langton’s ant at the origin:

4, 4, 8, 36, 8, 36, 44, 44, 92, 92, 8, 8, 8, 8, 36, 8, 36, 184, 4,
2752, 732, 8, 2016, 596, 1284, 4, 4, 4, 8

The Ant Farm parameters used for this research are configurable to
facilitate investigations into a range of 2D two, three, and four color
ants. The speed at which the ant moves and the number of steps it takes
are also configurable, an attribute that enables, at slow speeds, identi-
fication of emergent patterns and their further close study. The size of
the ant is also user selectable enabling very large iterations to be visually
examined or detailed examinations of a very few iterations. At high
speeds, ant paths can be rapidly searched for patterns at selected step
totals. Lastly, the ant may have one of eight compass points designated
as the “start direction.” The interaction of Langton’s ant with the grid
has well-known emergent behavior. After around 10,000 steps, Lang-
ton’s ant creates a so-called superhighway with a regularly repeating
pattern of 104 cells. Running Ant Farm with the 2D two color cellular
automaton raised the question: What would occur with a 2D four color
ant implementing a Gray-code?

With a 2D four color ant, traversing the grid could be taken as
a metaphor of learning about exploring a grid space. The learning
process would require two visits by the ant. On the first visit the cell
would respond by turning from white “not learned” to green, “being
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learned.” On the second visit, the cell would turn black indicating
it was “learned.” A next visit would report “forgetting” making the
cell yellow, and by the next visit the cell status would return to the
“unknown” color of white, that is, it would be “forgotten” in relation
to other cells.

In the foregoing, a description of Ant Farm was provided and its
relationship with research into cellular automata identified. In the next
section the relationships between the logic underlying the ant and its
behavior is described. Then the patterns in the pixels created by the
interacting ant and grid are reported.

2.2 Lean quaternary temporal logic

The constructs of false, becoming true, true, and becoming false can
also be thought of as representing temporal extensions to boolean logic.
Lean quaternary temporal logic (LQTL) [7] is a terse form of temporal
logic created by assigning four descriptors such that false, becoming
true, true, and becoming false are represented and become a linear
sequence (S4S, mentioned earlier). An analogous set of constructs is
used in rotary control system logic where four states are assigned two
bit representations 00, 01, 11, and 10 [4]. Movement through the
ordered two bit pairs indicates both that change has occurred and more
importantly indicates the direction of that change. As a status is changed
the direction of the change is recorded by changing a single bit that, in
Ant Farm, is reflected in the grid cell color change. In a balanced binary
tree two alternatives are open at any point in time, change or no change.
Should there be a change then, in the ant cellular automaton described,
that change causes the ant to move to the next cell. The changes to cell
color as the ant moves on-screen reflect the underlying logic described
here and reported as results in the next section.

3. Results

Three patterns of integer sequences created as the LQTL ant moves
through the grid are described next.

a. The count of the row possibilities of the four states over successive
steps [8].

Here the sequence does not predict what the status will be but rather
we look ahead and on the basis of previous status probabilities for prior
steps, report the probability of each of the four states on that particular
step. Given that there are four possibilities it could be expected that the
possible outcomes would be about the same for each. It is apparent in
Table 1 that prior states influence future states. In the short run, the
sequence shows that the most likely outcome over the first four steps
shifts rightwards from becoming true, to true, to becoming false. Note
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Status 00 01 11 10

Row 1 count 1 1 0 0

Row 2 count 1 2 1 0

Row 3 count 1 3 3 1

Row 4 Count 2 4 6 4

Row 5 Count 6 6 10 10

Row 6 count 16 12 16 20

Row 7 count 36 28 28 36

Row 8 count 72 64 56 64

Row 9 count 136 136 120 120

Row 10 count 256 272 256 240

Table 1. Moving count of occurrence of status towards equiprobable outcomes.

Status 00 01 11 10

Iteration 1 1 0 0 0

Iteration 2 2 1 0 0

Iteration 3 3 3 1 0

Iteration 4 4 6 4 1

Iteration 5 6 10 10 5

Iteration 6 12 16 20 15

Iteration 7 28 28 36 35

Iteration 8 64 56 64 71

Iteration 9 136 120 120 135

Iteration 10 272 256 240 255

Iteration 11 528 528 496 495

Iteration 12 1024 1056 1024 991

Iteration 13 2016 2080 2080 2015

Iteration 14 4032 4096 4160 4095

Iteration 15 8128 8128 8256 8255

Table 2. Predominance of status values by iteration.

that as the steps continue, the difference in magnitude between the out-
comes rapidly moves to roughly similar counts, suggesting confirmation
of the intuitive expectation of a 1-in-4 probability for each state.

b. The count of the column possibilities of the four states over
successive steps [9]. The cumulative column frequencies are shown in
Table 2 from the first to fifteenth iteration of LQTL logic. Note that
with an initial false in the zeroth iteration Murphy’s Law holds in all
but six iterations (the 6th, 7th, 14th, and 15th). Note also that these
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Figure 3. LQTL ant completed squares on iterations 4, 8, 32, 64, 416, and 832.

are the only iterations where the reports favor “true” or “learned” in
the first 15 iterations.

c. The unique squares created by the ant completing specific succes-
sive iterations in the grid [10]. The integer sequence A094867 is the
number of unique iterations required to generate six emergent regular
squares using LQTL logic. Subsequent emergent behavior at greater
than 832 iterations becomes symmetrically random (Figure 3).

Iterating the sequence creates a remarkable emergent outcome: regu-
lar single color homogenous status squares from the origin and created
by only two of the four status reports, green (01) and black (11). Note
that yellow (10) and white (00) squares are never formed even though
the iterations have been observed into the tens of thousands. Further-
more, there do not appear to be any further Barbour–Chapman squares
beyond these six iterations: 4 (green), 8 (black), 32 (green), 64 (black),
416 (green), and 832 (black). The squares are completed when the ant
“returns-to-base.”

The movement patterns of the LQTL ant are shown in Figures 3
and 4. Figure 3 shows the cell visit status while Figure 4 shows the
frequency of visits overlaid by the path taken by the ant during the
previous cell visits. Notice the early signs of symmetry loss in visit
patterns in the top right of the last square. The following section draws
the data and conjectures presented in this paper together pointing to
future work that the results suggest.

4. Discussion

The behavior of cellular automaton (2D, two and four color) described
in this paper has not been reported in the literature. So far as has been
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Figure 4. LQTL ant cell visit frequency and recent path during iterations 4, 8,
32, 64, 416, and 832.

determined there have been no reported attempts as yet to study the
relationship between cellular automata and Gray-code though Wolfram
raises the question of possible relationships [3]. The behavior of the
ant described here has been observed over thousands of iterations over
a 24-month period of time. At iterations beyond 832 the ant creates no
further regularities in any of its subsequent patterns. Bilateral symme-
try is preserved but no further single color squares appear (Figure 1).
Figure 2 shows the frequency of cell visits overlaid by the path traversed
through the grid by the automaton. The relationships modeled in the
LQTL ant are readily observable, easily replicated, and demonstrate
intriguing regularities accessible to beginning programmers.

The Ant Farm illustrates the emergence of symmetry in apparently
random behavior. Langton’s ant does not demonstrate emergent be-
havior until well into the iterating sequences whereas the LQTL ant
shows emergent regularities in behavior very early in the interaction.
The LQTL cellular automaton clearly demonstrates both early unpre-
dictability and irreducibility.

Given that a cellular automaton can be viewed as a “virtual robot,”
the ant behavior described here is predictive of robotic behavior un-
der conditions of a featureless plain. Taken at its most simple level
the “learn about a space” and “return-to-base” tasks require the au-
tomaton to search and map the extent of a featureless grid. It does
this, as required, though perhaps there are more efficient return-to-base
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space-searching algorithms. For those robots operating at very large
or very small scales two fundamental questions are addressed by the
LQTL ant simulation. How shall the ant move and how long should
it continue to move? The simulation shows that the movement is well
defined up to 832 iterations. The simulation also shows that the ant will
return-to-base six times during those 832 iterations when all the cells
have the same status. That means six checks can be made over the 832
movements on the cell’s status. Failure to return means that the ant has
encountered some impediment. Here then is a very simple algorithm
that when implemented gives a number of control or check points for a
virtual robot that could be applied to an actual space-searching robot.
Using this algorithm could very well provide a key control element for
autonomous nanobots as to both movement and life span. The fact of
the emergent regularities has a mathematical significance as yet unde-
termined. Some outstanding questions include: Why only six regular
squares? Why no yellow or white squares? It could be speculated that
once visited it would be unlikely that all visited cells would return to
white (unlearned/forgotten) at the same time. Would such speculations
be making much out of mere coincidence? Probably, but that does not
account for the visited sets of green and black squares (learned) having
repeating single color squares or alternating but increasing size.

5. Conclusion

The significance of the cellular automaton simulations and the exper-
imental results described here are that they provide a visual represen-
tation of spatial search behavior under a very simple set of rules. The
patterns open to question the long held view that, all other things be-
ing equal, four equally possible outcomes have equal probability in the
short and long run. The four possible outcomes have no other associa-
tion than that they are ordered in a linear sequence. Yet the emergent
patterns clearly support the folk knowledge implied in Murphy’s Law.
Slightly revised, Murphy’s Law could read: anything that can go wrong,
will, in the short run. In the long run, the outcome could go equally
the way of any of the possible outcomes. Relationships of underlying
lean quaternary temporal logic (LQTL) with other four-valued forms of
logic are under active investigation.
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